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Abstract

The foundational theory of quantum enhanced metrology for parameter estimation is of
fundamental importance to the progression of science and technology as the scientific
method is built upon empirical evidence, the acquisition of which is entirely reliant on
measurement. Quantum mechanical properties can be exploited to yield measurement
results to a greater precision (lesser uncertainty) than that which is permitted by classical
methods. This has been mathematically demonstrated by the derivation of theoretical
bounds which place a fundamental limit on the uncertainty of a measurement. Further-
more, quantum metrology is of immediate interest in the application of quantum techno-
logies since measurement plays a central role.

This thesis focuses on the role of quantum correlations and uncertainty relations which
govern the precision bounds. We show how correlations can be distributed amongst lim-
ited resources in realistic scenarios, as permitted by current experimental capabilities,
to achieve higher precision measurements than current approaches. This is extended to
the setting of multiparameter estimation in which we demonstrate a more technologically
feasible method of correlation distribution than those previously posited which perform
as well as, or worse than, our scheme.

Furthermore, a quantum metrology protocol is typically comprised of three stages: probe
state preparation, sensing and then readout, where the time required for the first and last
stages is usually neglected. We consider the more realistic sensing scenario of time being
a limited resource which is divided amongst the three stages and demonstrate the most
efficient use of this resource.

Additionally, we take an information theoretic approach to quantum mechanical uncer-
tainty relations and derive a one-parameter class of uncertainty relations which supplies
more information about the quantum mechanical system of interest than conventional
uncertainty relations. Finally, we demonstrate how we can use this class of uncertainty
relations to reconstruct information of the state of the quantum mechanical system.
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′) (as defined in section 6.1.3) which

exposes them to the magnetic field during the twisting operation. Each

scheme ends with a measurement of the final state |ψi〉 (i ∈ {A,B,C}),
which we assume can be done in a negligible time. For a fair comparison,

between the three schemes, each is constrained by the time τ . . . . . . . . 83

6.2 Bloch Sphere representation (with inverted z axis for ease of representation)

of a) a rotation operation around the y axis, as given by equation (6.4),

applied to the CSS |↓〉⊗N and b) a TAT operation as given by equation

(6.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 These plots show that for a sufficiently small value of ητ (e.g. ητ = 0.4 in

the upper plots), scheme B gives no improvement over scheme A. For a

sufficiently large value of ητ (e.g. ητ = 4 in the lower plots), both scheme B

and scheme C can give a better sensitivity than scheme A (i.e the two-axis

twisting state preparation is worthwhile), if the sensing time t/τ is optimised. 87



xii

6.4 The upper plots show the optimised sensitivity bound maxt/τ (
√
Fi/τ) as a

function of ητ , and the lower plots show the corresponding optimal sensing

times, (t/τ)opt. Comparison of schemes reveals that scheme B gives no

advantage over scheme A for ητ . 0.5. Scheme C, however, does better

than scheme A for all values of ητ , although the advantage vanishes as ητ → 0. 87

6.5 In schemeB′, the one-axis twisting operation T̂χ(t′) generates a spin squeezed

state before exposure to the magnetic field through D̂ω(t). The “echo”

(anti-squeezing) operation T̂ †χ(t′) = T̂−χ(t′) (as introduced in section 6.2.1)

is applied before the final measurement. In scheme C ′ the spins are ex-

posed to the magnetic field during the OAT and echo operations. For a fair

comparison, each protocol is constrained by the time τ . . . . . . . . . . . . 90

6.6 Bloch Sphere representation (with inverted z axis for ease of representation)

of a OAT operation, as given by equation (6.24), on the CSS |↓〉⊗N . In

contrast to TAT, the resulting reduction in quantum fluctuations is not in

line with any of the primary axes. . . . . . . . . . . . . . . . . . . . . . . . 92

6.7 These plots show that for a sufficiently small value of χτ (e.g. χτ = 4 and

N = 10), scheme A gives a better sensitivity than scheme B′ and scheme C ′.

For a sufficiently large value of χτ (e.g. χτ = 50 and N = 10 or N = 100),

both scheme B′ and scheme C ′ give a better sensitivity than scheme A, i.e

the spin squeezing is worthwhile. . . . . . . . . . . . . . . . . . . . . . . . . 94

6.8 The upper plots show the optimised sensitivity bound maxt/τ
[
(
√
ντδω)−1

]

as a function of χτ . These plots are optimised over time, but not over meas-

urements, in contrast to Fig.6.3 and Fig.6.4 which are optimised over both.

We choose the measurement in line with the scheme of Davis et.al [107].

Comparison of schemes reveals that when N = 10 scheme A outperforms

scheme B′ for χτ . 11.5 and scheme C ′ for χτ . 5. These threshold values

decrease for larger N . For very large χτ , the sensitivities of schemes B′ and

C ′ converge. The lower plots show the optimal sensing time (t/τ)opt as a

function of χτ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 [116] The “entropy Venn diagram”, with the discrete Shannon entropy of

the random variable X denoted by H(X), allows the heuristic deduction of

many of the entropy inequalities but is not a completely reliable guide. . . . 101

7.2 [117] Quantisation of a continuous random variable. . . . . . . . . . . . . . 103



xiii

7.3 [120] The 2- and 3-dimensional representations of the probability simplex

with the entropy α-norm of arbitrary point (or PMF) p. . . . . . . . . . . . 107

7.4 [120] The 3-dimensional probability simplex isoentropy contours (contours
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8.3 Plot of REPUR against the Rényi parameter r for the Cat State. It is

evident that the bound is saturated for r = −1/2, begins to diverge as r

increases then plateaus for large r. . . . . . . . . . . . . . . . . . . . . . . . 125

8.4 Plots of the position and momentum PDFs for the superposition state con-

sisting of the vacuum and squeezed vacuum with z = 2. . . . . . . . . . . . 127

8.5 Plots of the REPUR (in units of ~) for the superposition state consisting of

the vacuum and squeezed vacuum against log10(1 + r) for squeezing para-

meters ζ ∈ {1, 2, 3}. The REPUR bound is saturated in both N∞(x)N1/2(p)

and N1/2(x)N∞(p) cases. Deviation from this bound saturation is observed

for all other values of r with maximal deviation at r = 0 corresponding to

the Shannon EP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.6 Plot of the variance based uncertainty relation for the superposition state

of a vacuum and squeezed vacuum. The bound is saturated for z = 0 as

this corresponds to the Gaussian vacuum state but blows up rapidly as z

increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.1 A heuristic example depicting the failings of variance as a measure of un-

certainty in which a particle in state A can be found over length L and in

state B it can be found over a length L/2. Clearly we know more about

position in state B but the variance suggests otherwise. . . . . . . . . . . . 133

9.2 Plot of the PDF of the Balanced Cat state in the x-quadrature with α = 4.

This is a physical analogue of State B. . . . . . . . . . . . . . . . . . . . . . 134

9.3 An alternative example depicting the failings of variance as a measure of

uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.4 Plot of the PDF for the unbalanced cat state in the x-quadrature with α = 1

and ν = 0.2. This is a physical analogue of State C. . . . . . . . . . . . . . 135



xiv

9.5 Information scan of F(y) and the equimeasurably rearranged PDF F̃(y).

Cumulative distribution function f(x) measures the area of F(y) within the

limits dictated by the intercept line F(y) = 2−x with F(y) (shaded area).

For the entropy measured in nats 2−x → e−x. The information PDF g(x)

represents the rate of change of the area of the cumulative distribution f(x).

Note that f(x) and g(x) are identical for the equimeasurably rearranged

PDFs F(y) and F̃(y). The 3-peak structure of g(x) is one of the invariant

characteristics of the equimeasurable family of PDFs. . . . . . . . . . . . . . 138

9.6 (a) Cumulative distribution functions fζ(x) and information PDFs gζ(x)

for the superposition state of a vacuum with a squeezed vacuum. (b) The

logarithmic scaling depicting the tail behaviour (corresponding to x > 1) of

F(y) = |ψV (y)|2. From (a) it is apparent that the larger the value of ζ, the

higher the peak of F(y), and the peaks have heights 2−a
+
ζ . For ζ = 2 and

ζ = 3 we see a second peak near x = 3 which is due to a sharp change in the

overall shape of the PDF at height F(y) = 2−x. From (b) the tail behaviour

is displayed and the best-fit analysis reveals the tails to be Gaussian. . . . 140

9.7 Tail convergence of the reconstructed information distribution of a Gaussian

for higher order terms of the exponential expansion denoted by m. Only

the first cumulant contributes to the reconstruction of a Gaussian PDF. . . 146

9.8 Convergence of the reconstructed information distribution of an Unbalanced

Cat State (UCS) with ν = 0.97 and α = 10. The value a+
2 corresponds to

the value of x at the point of intersection with the second (lower) peak of

the F(y) for the UCS. The Edgeworth expansion has been used here to

order n−3/2 requiring control of the first 5 cumulants. . . . . . . . . . . . . 148



1

Chapter 1

Introduction

1.1 Thesis Outline

In classical mechanics a system can be modelled as a collection of particles, each with

a definite position and momentum. In contrast to this, it is a fundamental property

of the quantum mechanical model that the state of the position and momentum of a

particle has some inherent uncertainty. Quantum mechanics utilizes the mathematical

framework provided by linear algebra in order to produce predictions, with unpreceden-

ted accuracy, on the probabilistic nature of measurement outcomes. Furthermore, this

mathematical framework predicts natural behaviour which cannot be reproduced within

a classical framework. These non-classical phenomena are quantum mechanical properties

which can be harnessed and exploited in modern technologies. A fundamental use of such

quantum technologies is the bootstrapping of the quantum theory, describing how to per-

form enhanced precision measurements, with the technological progress on which theory

is reliant. This particular area of research is collectively known as quantum enhanced

metrology and is the focus of this thesis.

In chapter 2 and 3 we provide essential background on the mechanics of bosonic and

fermionic systems respectively. In chapter 4 we review quantum enhanced metrology and

parameter estimation while introducing the theoretical tools required to understand the

results that follow. In chapter 5 we explore the role of quantum correlations in optical

quantum metrology and moreover, we present schemes for both single and multiparameter

estimation strategies which are better suited to practical implementation than the current

proposed strategies and can return equivalent, or higher, precisions. Chapter 6 begins

by addressing the traditional three stage quantum metrology protocol which consists of
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preparation, sensing and readout. Regarding time as a limited resource in such protocols

motivates the proposal of concurrent sensing during the probe preparation and readout

stages which we show outperforms it’s sequential preparation-sensing-readout counterpart.

In chapter 7 we give an overview of entropic measures in information theory. In chapter 8

we present a generalised uncertainty relation based on a specific entropy measure known as

the Rényi entropy and apply this bound to a system state of particular interest in quantum

metrology. This yields an infinite class of uncertainty relations and as such, provides far

more information on the underlying physical system than the generic uncertainty relation

can supply. This notion is furthered in chapter 9 where we establish an “information

scan” using the aforementioned Rényi entropies and apply this technique to system states

of particular interest in quantum metrology. In chapter 10 we give concluding remarks.

In the subsections that immediately follow, we review some of the underlying physical

and mathematical principals that form the building blocks of quantum mechanics and

give a brief overview of the development of metrology, the more experienced reader may

wish to advance to chapter 2.

1.2 Quantum Mechanics

1.2.1 Entanglement

Entanglement is fundamental phenomenon from which some of the most peculiar aspects

of quantum mechanics emerge such as nonlocality which is the mechanical interaction of

objects that are spatially separated or as Einstein famously disparaged it as “spooky ac-

tion at a distance”. This was brought to attention in 1935 through the EPR paradox [1]

which was put forward to highlight the incompleteness of the Copenhagen interpretation

of quantum mechanics (this interpretation takes the wavefunction to be a mathematical

object that predicts the probability of specific outcomes of an experiment), however in the

same year Erwin Shrödinger introduced the counter-intuitive notion of “Verschränkung”

roughly meaning “entanglement” [2] (alongside his famous thought experiment of a cat

that has curiously entered a state of being simultaneously dead and alive based on quantum

mechanical principles). Shrödinger emphasises the importance of this concept in stating “I

would not call [entanglement] one but rather the characteristic trait of quantum mechanics,

the one that enforces its entire departure from classical lines of thought”. This recogni-

tion of the fundamental importance that entanglement manifests eventually facilitated
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the resolution of the paradox and now has experimental evidence based upon violations

of the so called “Bell inequalities” [3, 4]. In particular, violation of the Bell inequalities

challenges the assumption of locality and shows it to be mathematically inconsistent with

the underlying theory of quantum mechanics [5]. Even so, whether evidence of nonlocality

is demonstrated by the evidence supporting the violation of the Bell inequalities depends

on the interpretation of quantum mechanics employed and this is still an area of highly

active debate which strays into the all-encompassing territory of philosophy. Our interests

lie in the utilisation of entanglement as a resource to be exploited, some particularly fruit-

ful applications of entanglement include quantum cryptography including key distribution

[6, 7, 8], quantum teleportation [9, 10], the development of quantum computers [11] and

quantum enhanced metrology [12, 13] which is the area of investigation for this thesis.

Though entanglement has many useful features it is not without it’s drawbacks; it is ex-

tremely fragile and susceptible to unwanted interaction from it’s environment and it is

not possible to impart entanglement on spatially separated objects i.e one cannot “in-

crease” entanglement between objects that are not directly in contact (but entanglement

can persist over spatially separated regions once established).

1.2.2 Dirac Notation

Here we introduce the notation used throughout this thesis, it is referred to as Dirac

notation or “bra-ket” notation and is used to describe a quantum mechanical system’s

physical state and evolution. This notation is not only compact and concise, it is designed

to describe quantum mechanical systems that cannot be described by position and mo-

mentum alone, examples of this include the two-level atom and the single quanta of light;

the photon.

A general state of a quantum mechanical system is denoted by the “ket” |ψ〉, which is

a vector built of component basis vectors |i〉

|ψ〉 =
N∑

i

ci |i〉 (1.1)

where ci ∈ C are the normalising coefficients and the basis states |i〉 are an orthonormal

basis of the N -dimensional vector space which describes the physical system and thus the

inner product 〈i|j〉 = δi,j which is the Kronecker delta given by

δi,j =





0 if i 6= j

1 if i = j

(1.2)
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and it is now apparent that

〈ψ|ψ〉 =
N∑

i

|ci|2 = 1 (1.3)

where this condition is known as “normalisation”. Furthermore, given a vector

〈φ| =
N∑

j

b∗j 〈j| (1.4)

the inner product or “overlap” of this and (ket) vector (1.1) is

〈φ|ψ〉 =




N∑

j

b∗j 〈j|



(

N∑

i

ci |i〉
)

=
N∑

i

b∗i ci (1.5)

Note that since the states are represented by vectors, the terms are interchangeable. The 〈·|
is known as a “bra vector” and as we’ve already seen the |·〉 is referred to as a “ket vector”,

this constitutes the “bra-ket” notation more commonly referred to as Dirac notation. As is

now evident, Dirac notation is simply another way of writing vectors but done so in a way

that distils the minimum amount of information required to perform quantum mechanical

calculations. It is useful to highlight this by introducing the notion of operators; given a

quantum mechanical operator Â, it is always possible to find states |λi〉 such that

Â |λi〉 = λi |λi〉 (1.6)

hence, |λi〉 are referred to as eigenstates of Â with eigenvalues λi. As a consequence of the

spectral theorem, λi ∈ R and the eigenstates form an orthonormal basis i.e. 〈λi|λj〉 = δi,j

so the operator can be written

Â =
N∑

i

λi |λi〉 〈λi| . (1.7)

The notion of using operators to model physical observables is covered more formally in

the following subsection. For now, in order to see how Dirac notation translates, consider

the more general operator written in matrix representation

A =




A11 A12 A13 . . . A1N

A21 A22 A23 . . . A2N

...
...

...
. . .

...

AN1 AN2 AN3 . . . ANN



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which acts on the vector

ψ =




c1

c2

...

cN




in the same way that the operator

Â = A11 |1〉 〈1|+A12 |1〉 〈2|+A13 |1〉 〈3| . . . A1N |1〉 〈N |

+A21 |2〉 〈1|+A22 |2〉 〈2|+A23 |2〉 〈3| . . . A2N |2〉 〈N |
...

+AN1 |N〉 〈1|+AN2 |N〉 〈2|+AN3 |N〉 〈3| . . . ANN |N〉 〈N |

(1.8)

acts on the vector

|ψ〉 = c1 |1〉+ c2 |2〉+ c3 |3〉+ . . .+ cN |N〉 (1.9)

then it is clear that operator in its eigenbasis is one in which all off diagonal terms are

zero i.e Aij = 0, ∀i 6= j; an operator of this form is referred to as diagonalised. A special

case of such operator is known as the Identity matrix and is of the following form

I =

N∑

i

|i〉 〈i| (1.10)

which, when applied to a general state of the same dimension, has the following effect

I |ψ〉 =

(
N∑

i

|i〉 〈i|
)


N∑

j

cj |j〉


 =

N∑

i

ci |i〉 = |ψ〉 (1.11)

hence, the Identity operator returns the state it acts upon. Note that up until now, only

finite dimensional systems have been considered i.e vectors and operator of size N however,

there a many systems that require the limiting case of N →∞. Although the mathematics

required is different and more involved, the same underlying physical principles outlined

here still apply [14].

1.2.3 The Postulates of Quantum Mechanics

The physical laws presented here underpin the entirety of quantum theory as a formalism

for predicting the probabilistic outcomes of measurements on a system. In particular, given

an ensemble of identically prepared systems, the aim of quantum theory is to accurately

predict the underlying probability distributions of measurement outcomes. With that, the

postulates of quantum mechanics are as follows
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1. The state of a quantum mechanical system is represented by a state vector |ψ〉,
taken to be of unit length, which exists in a state space known formally as a Hilbert

space H. This implies that if two vectors |ψ1〉 , |ψ2〉 ∈ H then it is possible for the

superposition of these to yield a vector |ψ〉 = c1 |ψ1〉 + c2 |ψ2〉 with |ψ〉 ∈ H where

c1, c2 ∈ C. Additionally, the Hilbert space associates a complex number to any

two state vectors defined within the Hilbert space via the inner product i.e for any

|ψ〉 , |φ〉 ∈ H, ∃ 〈ψ|φ〉 = (〈φ|ψ〉)∗ ∈ C. Strictly speaking, the “bra” belongs to the

dual space of H and defines a linear map from the Hilbert space to the complex

numbers Lψ : H → C. For a state vector to be of unit length it must satisfy the

normalisation condition | 〈ψ|ψ〉 |2 = 1.

2. All quantum mechanical observables are represented by Hermitian operators of the

form

Â =
∑

i=1

λi |λi〉 〈λi| (1.12)

where |λi〉 are the eigenstates satisfying Â |λi〉 = λi |λi〉 with the eigenvalues λi. In

general, the action of the operator on the state vector alters the state itself however,

in the special case where the system exists in an eigenstate of the operator the system

remains unchanged by measurement.

3. The eigenvalues of the observable Â represent the only possible outcomes upon meas-

urement of Â. Since Â is a Hermitian operator this implies λi ∈ R as expected of

measured results. These quantized results of measurement are the very manifesta-

tion of quantum theory. Moreover, the complete set of eigenstates S = {λ1, ..., λN}
form an orthonormal basis with 〈λi|λj〉 = δi,j ∀i, j; this set forms the linear span of

the Hilbert space denoted [S] = H.

4. For a general state |ψ〉 =
∑

i ciλi, a measurement of observable Â will return the

eigenvalue λj given by the conditional probability P (A = λi; |ψ〉) = | 〈λi|ψ〉 |2, the

overlap 〈λj |ψ〉 is referred to as the probability amplitude. The expectation value (in

the usual statistical sense) of observable Â for the state |ψ〉 is given by

〈Â〉 =
〈ψ| Â |ψ〉
〈ψ|ψ〉 = 〈ψ| Â |ψ〉 =

∑

i=1

λi|ci|2. (1.13)

In practise, this number is obtained by performing a large number of measurements

on an ensemble of identically prepared systems.
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5. Once a measurement of a general observable Â has submitted an eigenvalue λj , all

subsequent measurements of observable Â on the system will yield the same value

λj . This is interpreted as the “collapse of the wave function” onto the eigenstate λj .

6. The state vector of the system evolves in time in accordance with the time-dependent

Shrödinger equation

i~
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 (1.14)

where |ψ(t)〉 is a time-dependent state vector that moves along a trajectory through

the Hilbert space. As a consequence of the conservation of probability, this evolution

preserves the normalisation of the states and is thus referred to as unitary evolution.

An operator Û is defined to be unitary iff Û †Û = I. Equation (1.14) gives the unitary

time evolution operator Û(t) = e−iĤt/~ so a system initially in state |ψ(0)〉 evolves

to |ψ(t)〉 = Û(t) |ψ(0)〉 = e−iĤt/~ |ψ(0)〉 thus preserving normalisation.

We note that the number of postulates given can vary depending on convention, here we

have given a relatively comprehensive account.

1.2.4 Mixed states and Density Matrices

So far, we have considered quantum systems in known states denoted by the vector |ψ〉,
we now formally refer to this as a pure state. Here we consider the case where the state

of a quantum system is not completely known i.e the system can be in state |ψi〉 with

probability pi, we refer to this as an ensemble of pure states - from which we can construct

a mathematical object for the mixed state given by the so called density matrix

ρ̂ =
∑

i=1

pi |ψi〉 〈ψi| (1.15)

here we shall explore some of the properties of the density matrix. As such, let Â be

a general observable and let {|e1〉 , |e2〉 , ..., |eN 〉} be an orthonormal basis on the Hilbert

space, the trace of Â is defined by [14]

Tr[Â] =

N∑

i=1

〈ei| Â |ei〉 (1.16)

then taking a general state vector defined on the Hilbert space, we find

〈ψ| Â |ψ〉 =
N∑

i=1

〈ψ| Â |ei〉 〈ei|ψ〉 =
N∑

i=1

〈ei|ψ〉 〈ψ| Â |ei〉

=

N∑

i=1

〈ei| P̂ψÂ |ei〉 = Tr[P̂ψÂ] (1.17)
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where P̂ψ = |ψ〉 〈ψ| is known as a projection operator; these are explored in detail in

section 4.1.2. It is clear that the conditional probability P (A = λj ; |ψ〉) = Tr[P̂ψP̂j ] and

from the linearity of the trace function we consequently have

〈ψ| Â |ψ〉 =
∑

i=1

piTr[P̂ψiÂ] = Tr

[∑

i=1

piP̂ψiÂ

]
= Tr[ρ̂Â] (1.18)

and similarly P (A = λj ; ρ̂) = Tr[ρ̂P̂j ]. In essence, the density matrix embodies an exten-

sion of the type of mathematical object that constitutes a probability measure. This can

be seen more clearly via the following properties of the operator:

1. ρ̂ = ρ̂†

2. 〈ψ| ρ̂ |ψ〉 ≥ 0, ∀ |ψ〉

3. Tr[ρ̂] = 1

and in general, any operator satisfying these properties is a density matrix. It is useful

to clarify the language here, density operator and density matrix are used equivalently,

a quantum state of which we have full knowledge is known as a pure state |ψ〉 and has

an equivalent density matrix representation ρ̂ = |ψ〉 〈ψ|, a quantum state of which we

have partial knowledge is known as a mixed state i.e a mixture of different pure states

from the ensemble. A notable mathematical difference is that for pure state Tr[ρ2] = 1

and for mixed states Tr[ρ̂2] < 1. So far we have rephrased some of the basic notions of

quantum mechanics in terms of density matrices, a final example of this is to consider

unitary evolution of the system that is in the initial state |ψi〉 with probability pi and thus

enters the final state Û |ψi〉 with probability pi. Then it follows that the evolution of the

density matrix is given by

ρ̂ =
∑

i

pi |ψi〉 〈ψi| →
∑

i

piÛ |ψi〉 〈ψi| Û † = Û ρ̂Û †. (1.19)

We can then determine the time evolution of a system in a mixed state (taking the states

|ψi〉 to be time dependent)

∂ρ

∂t
=
∑

i

pi

[(
∂

∂t
|ψi〉

)
〈ψi|+ |ψi〉

(
∂

∂t
〈ψi|

)]
(1.20)

then using the Schrödinger equation and noting that for the bra

−i~ ∂
∂t
〈ψi| = 〈ψi| Ĥ (1.21)



9

it follows that

∂ρ

∂t
=

1

i~
∑

i

pi

[(
Ĥ |ψi〉

)
〈ψi| − |ψi〉

(
〈ψi| Ĥ

)]

=
1

i~
(Ĥρ̂− ρ̂Ĥ)

=
1

i~
[Ĥ, ρ̂] (1.22)

It is possible to give an intrinsic characterisation of the density matrix [15] which is

achieved by using the three mathematical properties listed above, in this way a refor-

mulation of quantum mechanics in terms of density matrices is possible.

1.2.5 The Schrödinger, Heisenberg and Interaction Pictures

In the Schrödinger picture, the quantum states evolve in time (governed by the Schrödinger

equation) and the operators are time independent, this is given by (1.14). In the Heisenberg

picture, the time dependency exists in the operators and the states are time independent.

Using the subscripts S and H to distinguish between the Shcrödinger and Heisenberg

pictures respectively, we have

|ψ(t)〉S = Û(t− ti) |ψ(ti)〉S = e−iĤ(t−ti)/~ |ψ(ti)〉S (1.23)

and we define

|ψ(t)〉H ≡ Û †(t− ti) |ψ(t)〉S = |ψ(ti)〉S . (1.24)

It is clear that the expectation value of an arbitrary operator should be the same regardless

of the picture used, thus

〈ψ(t)|S ÂS |ψ(t)〉S = 〈ψ(t)|S Û(t− ti)Û †(t− ti)ÂSÛ(t− ti)Û †(t− ti) |ψ(t)〉S
= 〈ψ(t)|H ÂH |ψ(t)〉H (1.25)

where we have defined

ÂH ≡ Û †(t− ti)ÂSÛ(t− ti) (1.26)

as the Heisenberg operator. An importance consequence of this is the evolution equation

i~
∂

∂t
ÂH = [ÂH , Ĥ] (1.27)

which is known as Heisenberg’s equation of motion. Note that if an operator commutes

with Ĥ we can conclude that the associated physical observable is conserved over time.
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Another widely used and extremely helpful picture is the Interaction picture. In order

to understand this picture it is first useful to introduce the following Schrödinger picture

Hamiltonian

Ĥ = Ĥ0 + V̂ (1.28)

where, Ĥ0 is the “main” Hamiltonian and V̂ is an “interaction” or “perturbation” term.

The utility of this decomposition is that we can use Ĥ0 to put the time dependence into

operators and use V̂ to give the evolution of states. If we let

|ψ(t)〉I = eiĤ0t/~ |ψ(t)〉S (1.29)

then we have

i~
∂

∂t
|ψ(t)〉I = −Ĥ0e

iĤ0t/~ |ψ(t)〉S + ei~H0t/~i~
∂

∂t
|ψ(t)〉S (1.30)

then defining the Interaction picture operator to be V̂I ≡ eiĤ0t/~V̂ e−iĤ0t/~ we have

i~
∂

∂t
|ψ(t)〉I = V̂I |ψ(t)〉I (1.31)

and finally, for an arbitrary Interaction picture operator ÂI(t) = eiĤ0/~ÂSe
−iĤ0/~ we find

the following equation of motion

i~
∂

∂t
ÂI = [ÂI , Ĥ0] (1.32)

note the subtle difference in signs with the density matrix evolution operator (1.22).

1.3 Metrology: An Overview of the Science of Measurement

“To measure is to know” - Lord Kelvin

Empirical investigation is the acquisition of evidence, through sensory experience, that

verifies or falsifies claims of reality. The practise of empirical investigation can be traced

back to classical antiquity, these investigations have been described by the natural philo-

sophers of ancient Greece such as Thales and Aristotle [16]. The scientific method is

built upon empirical evidence, the acquisition of which is entirely reliant on measurement.

Indeed the scientific method consists of question, hypothesis, prediction, testing and ana-

lysis - it is the testing aspect that employs empirical investigation. The outlined scientific

method has been employed since the middle ages (notable pioneers include Galileo Galilei
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and Johannes Kepler) and has since been refined and bolstered by the additional steps of

replication, peer review and data sharing.

Our ability to measure the natural world thus imposes a fundamental limitation on sci-

entific progress. This immediately raises the fundamental question of what defines evidence

however, a shift in intuition neatly bypasses such ambiguity through demanding that the

nuance must lie in the question asked; measured evidence is that which answers empirical

questions (hypothesis) i.e one must ask the right questions. How to do this is far beyond

the scope of this thesis, instead the focus of the following work is on how to improve upon

probing the universe for precise information. Crucially, measurement cannot prove a sci-

entific hypothesis, it can either disprove, or act as statistical support, to a current working

hypothesis. Metrology encompasses both the experimental and theoretical aspect of the

measurement itself. Significant developments in classical metrology include the develop-

ment of telescopes, clocks, the refutation of the ether by Michelson and Morley (1887)

and the discovery of the atomic nucleus by Rutherford (1911) to name a few. Modern

metrology primarily concerns itself with the measurement of particles, the discrete nature

of which results in Poisson noise or “Shot noise” as we shall refer to it. This is easily

conceptualised by counting electrons, or indeed by counting photon numbers. A specific

understanding of the origins of shot noise can be exemplified by a simple coin tossing ex-

periment; after a great many number of coin tosses N � 1, the number of occurrences of

heads and tails will be approximately equal nh/nt ≈ 1 however for relatively small N there

can be a significant difference in the number of occurrences of heads and tails nh/nt � 1 or

nh/nt � 1. Nonetheless, upon repeating such an experiment of small N the difference in

outcomes will fluctuate significantly and it can be proven that this fluctuation reduces as

1/
√
νN where ν is the number of experimental repeats. Hence in order to reduce the noise

(increase the precision) of a measurement we can simply increase the number of resources

used. However this may not always be possible, for example it may be desired to probe

a fragile living sample (e.g DNA combing [17]) which would be denatured if too many

photons are incident upon it, another such example includes trying to illuminate a distant

object where only a few photons are reflected thus reducing the number of measurements

[18]. To overcome this limitation of precision we turn to quantum mechanics.

Quantum enhanced metrology utilizes purely quantum mechanical correlations in order to

enhance the precision of measurements. Measurement is at the core of quantum mechanics
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as is evident from the postulates 1.2.3 and the language used which deals with observ-

ables, outcomes and expectation values. A natural question can arise: what distinguishes

measurement from any other kind of interaction in quantum mechanics, an interesting

question but beyond the scope of this thesis which follows the aforementioned postulates.

Regardless of interpretation, quantum metrology has been successfully used in applica-

tions such as gravitational wave detection [19], biological physics and medicine [20]. A

key theoretical result is the use of entanglement to obtain a precision that scales with the

number of particles as the Heisenberg limit 1/N which is a
√
N improvement over the

shot noise limit.
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Chapter 2

Bosonic Systems

In this chapter an overview is given of bosonic systems corresponding to the quantised

electromagnetic field. With this we introduce some of the more prolific states in quantum

optics and investigate the properties of particular interest to quantum metrology.

2.1 The Quantum Harmonic Oscillator

2.1.1 Field Quadrature Operators

Quantum optics treats the electric and magnetic fields as Hermitian operators, the ubi-

quitous method used to arrive at this treatment is to decompose the fields into modes and

to treat each mode as a quantum harmonic oscillator [21, 22]. To achieve this, it is useful

and concise to define the non-commutative, non-Hermitian field operators a† and a which

satisfy the following commutation relation

[â, â†] = 1 (2.1)

One method that facilitates the emergence of this relation is to simply use the correspond-

ence principle for classical position and momentum i.e replace the variables with their

corresponding Hermitian operators, this gives the commutation relation

[q̂, p̂] = i~. (2.2)

The classical Hamiltonian that describes the single mode confined to a cavity of volume

V is given by

H =
1

2

∫
dV

[
ε0E

2
x(z, t) +

1

µ0
B2
y(z, t)

]
(2.3)

where ε0 and µ0 are the vacuum permittivity and permeability respectively, x, y and z are

orthogonal spatial dimensions, t is the temporal dimension and the electric and magnetic
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fields are given by

Ex(z, t) =

(
2ω2

V ε0

)1/2

q(t) sin(kz) (2.4)

By(z, t) =
(µ0ε0

k

)(2ω2

V ε0

)1/2

q̇(t) cos(kz) (2.5)

where ω is the frequency of the mode. Hamiltonian (2.3) can then be neatly rewritten,

using the correspondence rule (as postulated and demonstrated by Bohr, Heisenberg and

Jordan (1926) [23]), in the following form

Ĥ =
1

2
(p̂2 + ω2q̂2) (2.6)

which is the Hamiltonian for the 1-dimensional quantum harmonic oscillator (QHO). At

this point it is convenient to define the creation and annihilation operators in terms of the

position and momentum operators

â = (2~ω)−1/2(ωq̂ + ip̂) (2.7)

â† = (2~ω)−1/2(ωq̂ − ip̂) (2.8)

which reproduces eqn. (2.2) and reveals the following form of the Hamiltonian of the QHO

ĤQ = ~ω
(
ââ† +

1

2

)
. (2.9)

Furthermore, we are now able to define a specific type of operator, in terms of the creation

and annihilation operators, that act like the position and momentum operators but are

scaled to be dimensionless; these are known as quadrature operators

X̂ =
1√
2

(â+ â†) (2.10)

P̂ =
1

i
√

2
(â− â†) (2.11)

noting that the factor 1/
√

2 is chosen by convention and is sometimes taken to be 1/2, thus

one should take particular care to keep track of factors of 2 when using these operators.

With this it is simple to find

[X̂, P̂ ] = i. (2.12)

This non-commutivity leads to an important consequence that distinguishes quantum

optics from the classical formalism. To see this, it is instructive to first recall [24] that for

two operators satisfying [Â, B̂] = Ĉ, it follows that

∆Â∆B̂ ≥ 1

2
| 〈Ĉ〉 | (2.13)
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where ∆Â and ∆B̂ are the standard deviations of the respective operators and 〈Ĉ〉 is the

expectation value (in the usual statistical sense) of the operator Ĉ, hence

∆2X̂∆2P̂ ≥ 1

4
(2.14)

Since variance quantitatively captures the spread among the outcomes as deviation around

the mean, it can be used as a measure of uncertainty (or equivalently, certainty) of an

expectation value (or equivalently, the average measurement outcome) thus we deduce

that simultaneous knowledge of a quantum mechanical system’s position and momentum

is fundamentally limited. This is in stark contrast to classical mechanics with which one

can, in principle, attain certainty about a system’s position and momentum simultaneously.

A more general statement can be made by defining the general quadrature operator

X̂λ =
1√
2

(âe−iλ + â†eiλ) (2.15)

then we have that for any two quadrature operators X̂λ and X̂λ+π/2 (which for λ = 0

corresponds to (2.10) and (2.11) respectively) i.e any two operators associated with field

amplitudes that are oscillating with a phase difference of π/2, the following commutation

relation holds

[X̂λ, X̂λ+π/2] = i (2.16)

and pairs of such operators are referred to as canonically conjugate. From this, we obtain

the uncertainty relation for general conjugate pairs of quadrature operators

∆2X̂λ∆2X̂λ+π/2 ≥
1

4
. (2.17)

2.1.2 The Number Operator

Another important Hermitian operator that can be constructed from the creation and

annihilation operators is the number operator, this is given by

n̂ = â†â. (2.18)

In order to gain some intuitive understanding of this operator, it is useful to introduce the

number states |n〉. These can be defined as the eigenstates of the QHO Hamiltonian

ĤQ |n〉 = ~ω
(
n+

1

2

)
|n〉 (2.19)

or equivalently, the eigenstates of the number operator

n̂ |n〉 = n |n〉 (2.20)
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which thus form an orthonormal set, consequently
∞∑

n=0

|n〉 〈n| = I (2.21)

and 〈n|m〉 = δn,m. The individual actions of the creation and annihilation operators upon

the number states are given by

â |n〉 =
√
n |n− 1〉 (2.22)

â† |n〉 =
√
n+ 1 |n+ 1〉 (2.23)

i.e the creation and annihilation operators raise and lower the photon number by one

respectively. With this it is evident that the number operator serves to count the number

of photons that exist in a given state and the vacuum state is represented by |0〉, a single

photon is given by |1〉, two photons by |2〉 etc. In fact, the general number state can be

given in terms of the vacuum state and the creation operator as

|n〉 =
(a†)n√
n!
|0〉 . (2.24)

2.2 Coherent States

Following the introduction of the creation and annihilation operators along with the num-

ber states, a natural question arises; do eigenstates of the creation and annihilation oper-

ators themselves exist and if so, what are they? With hindsight, this question is answered

by introducing the (Glauber) coherent state [25] which, in the number state basis, is given

by

|α〉 = e−|α|
2/2

∞∑

n=0

αn√
n!
|n〉 (2.25)

where α = |α|eiθ with θ ∈ [0, 2π] so that in general, α ∈ C. From this we have

â |α〉 = e−|α|
2/2

∞∑

n=0

αn√
n!
â |n〉

= e−|α|
2/2

∞∑

n=1

αn√
n!

√
n |n− 1〉

= e−|α|
2/2

∞∑

n=0

αm+1

√
m!
|m〉

= α |α〉 (2.26)

thus |α〉 is the eigenstate of â however it is essential to note that |α〉 is clearly not a right

eigenstate of â†. Nonetheless, it does follow that

〈α| â† = (â |α〉)† = (α |α〉)† = α∗ 〈α| (2.27)
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so |α〉 is a left eigenstate of â†. The coherent state can be defined by the condition of

being an eigenstate of the annihilation operator and it’s coefficients in the number state

basis can be deduced from this [21]. Evidently, the coherent state is a superposition

of the infinity of number states. This constitutes the state of the QHO which behaves

“most classically” while implicitly being a quantum mechanical state, furthermore this

state accurately describes the monochromatic light produced by lasers. With this we

review some of the properties of the coherent state. The expectation value of the general

quadrature variable (2.15) with respect to the coherent state is given by

〈α| X̂λ |α〉 = 〈α| 1√
2

(âe−iλ + â†eiλ) |α〉

=
1√
2

(αe−iλ + α∗eiλ) (2.28)

and for X̂2
λ, the expectation value is found to be

〈α| X̂2
λ |α〉 = 〈α| 1

2

[
â2e−2iλ + (â†)2e2iλ + 2â†â+ 1

]
|α〉

=
1

2

[
α2e−2iλ + (α∗)2e2iλ + 2|α|2 + 1

]
(2.29)

thus the variance of the general quadrature variable for all coherent states is

∆X̂2
λ = 〈α| X̂2

λ |α〉 −
(
〈α| X̂λ |α〉

)2
=

1

2
(2.30)

and furthermore, for any conjugate pair of quadrature observables X̂λ and X̂λ+π/2 the

following uncertainty relation holds for all coherent states

∆X̂2
λ∆X̂2

λ+π/2 =
1

4
(2.31)

which saturates the bound given by (2.17). In other words, coherent states minimise

the product of uncertainties of conjugate observables, it is for this reason that coherent

states are also referred to as minimum uncertainty states [26]. It’s helpful to visualise

the coherent state via phase space plots and to do so we first note that from (2.28) the

expectation values in the dimensionless position and momentum quadratures are revealed

to be 〈X̂〉 = (α + α∗)/
√

2 =
√

2Re(α) and 〈P̂ 〉 = (α − α∗)/i
√

2 =
√

2Im(α) hence the

complex plane of α models phase space (that has been scaled to be dimensionless). Fig.2.1

displays such plots of the quasi probability distributions known as Wigner functions [27]

for the vacuum state and a coherent state. We shall explore the Wigner functions in more

detail in the following subsection, for now we are only interested in the phase space plane

it affords. By inspection of the plots given in Fig.2.1, the coherent state is revealed to be
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Figure 2.1: Plots of Wigner functions for vacuum state (left) coherent state with α = 2

(centre) and coherent state with α =
√

2+i
√

2 (right). Taking α ∈ R displaces the vacuum

state along the position axis whereas taking α ∈ C displaces the vacuum in the plane of

phase space. Note that the vacuum state is equivalent to a coherent state with α = 0.

the vacuum state displaced in phase space and can indeed be defined in such a manner,

as we shall see by the introduction of the so called displacement operator

D̂(α) = eαâ
†−α∗â. (2.32)

It is immediately apparent that D̂†(α) = e−αâ
†+α∗â = D(−α) ⇒ D̂†(α)D̂(α) = I,

hence the displacement operator is unitary. To see how the displacement operator defines

a coherent state, it is useful to first recall the Baker-Campbell-Hausdorff formula (also

known as the disentangling theorem)

eÂ+B̂ = eÂeB̂e−
1
2

[Â,B̂] = eB̂eÂe
1
2

[Â,B̂] (2.33)

which holds iff [Â, [Â, B̂]] = [B̂[Â, B̂]] = 0. With this, it follows that

D̂(α) |0〉 = eαâ
†−α∗â |0〉

= eαâ
†
e−α

∗âe−
1
2
|α|2[â†,−â] |0〉

= eαâ
†
e−α

∗âe−
1
2
|α|2 |0〉 (2.34)

then since e−α
∗â |0〉 = |0〉, we have

D̂(α) |0〉 = e−
1
2
|α|2

∞∑

n=0

αn(â†)n

n!
|0〉 = |α〉 (2.35)

where we have used (2.24). This is perhaps the most revealing definition of the coherent

state since it is now straight forward to give the parameter α = |α|eiθ physical meaning;

|α| is the magnitude of displacement from the vacuum and θ dictates the direction of the

displacement. Moreover, many useful properties are easily unveiled by the displacement

operator such as

〈α|α〉 = 〈0| D̂†(α)D̂(α) |0〉 = 〈0|0〉 = 1 (2.36)
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hence the coherent state is normalised. Another useful operator theorem which states

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!

[
Â, [Â, B̂]

]
+

1

3!

[
Â,
[
Â, [Â, B̂]

]]
+ · · · (2.37)

enables us to inspect how the displacement operator transforms the annihilation operator

D̂†(α)âD̂(α) = â+ [−αâ† + α∗â, â] + · · · = â+ α (2.38)

from which it immediately follows that D̂†(α)â†D̂(α) = â† + α∗ (using the potentially

subtle fact that (ÂB̂Ĉ)† = Ĉ†B̂†Â†). Consequently, the expectation value of the number

operator is found to be

〈α| n̂ |α〉 = 〈0| D̂†(α)n̂D̂(α) |0〉

= 〈0| D̂†(α)â†D̂(α)D̂†âD̂(α) |0〉

= 〈0| (â† + α∗)(â+ α) |0〉 = |α|2. (2.39)

Additionally, the for two distinct displacement operators we find

D̂(α)D̂(β) = eαâ
†−α∗âeβâ

†−β∗â

= eiIm(αβ∗)e(α+β)â†−(α∗+β∗)â

= eiIm(αβ∗)D̂(α+ β) (2.40)

where we have used [αâ† − α∗â, βâ† − β∗â] = αβ∗ − α∗β = 2iIm(αβ∗). It is then simple

to find that the overlap of two coherent states is given by

〈β|α〉 = 〈0| D̂†(β)D̂(α) |0〉

= e−
1
2

(|β|2+|α|2−2β∗α) (2.41)

2.2.1 The Wigner Function

In Fig.2.1 we introduced the Wigner function in which enabled a phase space representation

of the coherent state to be given, following the work of [21] the Wigner function itself is

detailed here. For pure states, the Wigner function is defined as

W (x, p) =
1

2π~

∫ ∞

−∞
ψ∗
(
x− q

2

)
ψ
(
x+

q

2

)
eipq/~dq (2.42)

where |x± q/2〉 are the eigenstates of the position operator and ψ(x+ q/2) = 〈x+ q/2|ψ〉
etc. Importantly, the Wigner function is a quasi-probability distribution since (2.42)

can take negative values which arise for some non-classical states, as demonstrated in

subsection 2.4. Indeed, negativity of the Wigner function is a good indicator of quantum
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mechanical interference however, not all quantum mechanical states necessarily display

negative regions of the Wigner function. Integrating (2.42) over momentum we find

∫ ∞

−∞
W (x, p)dp =

∫ ∞

−∞
ψ∗
(
x− q

2

)
ψ
(
x+

q

2

)
dq

∫ ∞

−∞
eipq/~dpdq

=

∫ ∞

−∞
ψ∗
(
x− q

2

)
ψ
(
x+

q

2

)
δ(q)dq

= |ψ(x)|2 (2.43)

and similarly by integrating (2.42) over position we find
∫∞
−∞W (q, p)dx = |ϕ(p)|2 where

ϕ(p) is the probability amplitude of the momentum space related to the position space

probability amplitude via a Fourier transform. In other words, the integral of the Wigner

function over position or momentum gives the respective conjugate probability distribu-

tion. This can be generalised further [22] in that the integral of the Wigner function over

any quadrature variable Xλ must be positive semi-definite. Hence, the Wigner function

gives a useful phase space representation of optical states.

2.3 Squeezed States

2.3.1 Quadrature Squeezing

In the previous section we reviewed the “most classical” state of the QHO system, here

we will look at one of many non-classical states. The squeezed state is defined to be a

state whose variance in the general quadrature variable is less than that of the vacuum (or

equivalently less than that of the coherent state). The mathematical statement is then

∆2X̂λ ≤
1

2
(2.44)

and from the uncertainty relation (2.17) it is clear that for a conjugate pair of quadrature

operators, if we have (2.44) then this imposes the condition

∆2X̂λ+π/2 ≥
1

2
(2.45)

and of course the reverse is true; ∆2X̂λ+π/2 ≤ 1
2 ⇒ ∆2X̂λ ≥ 1

2 . Clearly the variance in

any given quadrature has become dependent on λ, the state is said to be squeezed in the

quadrature of smaller variance. Squeezed states are generated by the so-called squeezing

operator

Ŝ(ζ) = exp

(
1

2
[ζ∗a2 − ζ(a†)2]

)
(2.46)
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where ζ = reiφ ∈ C with r ∈ [0,∞) and φ ∈ [0, 2π]. Note that much like the displacement

operator, the squeezing operator is unitary since

Ŝ†(ζ) = exp

(
−1

2
[ζ∗a2 − ζ(a†)2]

)
= Ŝ(−ζ) (2.47)

thus Ŝ†(ζ)Ŝ(ζ) = I. To reveal how the squeezing operator results in reduced quadrature

uncertainties consider the action of the squeezing operator on the general state |ψ〉 which

gives a squeezed state |ψ(ζ)〉 = Ŝ(ζ) |ψ〉. For now, we shall aim to inspect the variances

of the dimensionless position and momentum quadratures (2.10) and (2.11) respectively.

In order to accomplish this, it is useful to know how the squeezing operators transform

the annihilation operator (from which the action on the creation operator immediately

follows) which, through use of (2.37), is found to be

Ŝ†(ζ)âŜ(ζ) = â cosh(r)− â†eiφ sinh(r) (2.48)

Ŝ†(ζ)â†Ŝ(ζ) = â† cosh(r)− âe−iφ sinh(r) (2.49)

hence

〈ψ(ζ)| â |ψ(ζ)〉 = 〈ψ|
(
â cosh(r)− â†eiφ sinh(r)

)
|ψ〉 (2.50)

and further

〈ψ(ζ)| â2 |ψ(ζ)〉 = 〈ψ|
(
â2 cosh2(r)− (2â†â+ 1)eiφ cosh(r) sinh(r) + (â†)2e2iφ sinh2(r)

)
|ψ〉 .

(2.51)

For a specific example, the simplest squeezed state to investigate is the squeezed vacuum

|ζ〉 = Ŝ(ζ) |0〉 for which it is immediately clear that 〈X̂〉 = 〈P̂ 〉 = 0. Then using (2.51) we

find

∆2X̂ =
1

2

(
cosh2(r) + sinh2(r)− 2 sinh(r) cosh(r) cos(φ)

)

∆2P̂ =
1

2

(
cosh2(r) + sinh2(r) + 2 sinh(r) cosh(r) cos(φ)

)
(2.52)

Setting φ = 0 results in squeezing in the position axis

∆2X̂ =
1

2
e−2r, ∆2P̂ =

1

2
e2r (2.53)

i.e, since r ∈ [0,∞), uncertainty in the position quadrature decreases with increased

squeezing while uncertainty in momentum increases hence this is referred to as position

quadrature squeezing. Setting φ = π gives

∆2X̂ =
1

2
e2r, ∆2P̂ =

1

2
e−2r (2.54)
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which evidently describes momentum quadrature squeezing. This can be furthered to

encompass the general quadrature operator for which the variance is found to be

∆2X̂λ =
1

2

[
e2r sin2(λ− φ/2) + e−2r cos2(λ− φ/2)

]
. (2.55)

Squeezing of the vacuum state in various quadratures is demonstrated in Fig.2.2, as pre-

viously noted the Wigner function is negative for some non-classical states, the squeezed

states are a notable exception in being non-classical states that have entirely positive

Wigner functions.

4 2 0 2 4〈
X̂
〉
=
√

2Re(α)

4

2

0

2

4

〈 P̂〉 =
√ 2

Im
(α

)

4 2 0 2 4〈
X̂
〉
=
√

2Re(α)

〈 P̂〉 =
√ 2

Im
(α

)

4 2 0 2 4〈
X̂
〉
=
√

2Re(α)

〈 P̂〉 =
√ 2

Im
(α

)

0.000

0.032

0.064

0.096

0.128

0.160

0.192

0.224

0.256

0.288
Q

u
a
si

-P
ro

b
a
b
ili

ty

0.000

0.032

0.064

0.096

0.128

0.160

0.192

0.224

0.256

0.288

Q
u
a
si

-P
ro

b
a
b
ili

ty

0.000

0.032

0.064

0.096

0.128

0.160

0.192

0.224

0.256

0.288

Q
u
a
si

-P
ro

b
a
b
ili

ty

Figure 2.2: Plots of Wigner functions for the squeezed vacuum state with φ = 0 (left)

φ = π (centre) and φ = π/2 (right) and r = 1/2 for all. This corresponds to squeezing in

the position, momentum and general quadrature axis respectively.

It is useful to inspect some of the overlaps of squeezed states with other common optical

states. Firstly, the squeezed vacuum state takes the following form in the number state

basis

|ζ〉 =
1√

cosh(r)

∞∑

m=0

(−1)m
√

(2m)!

2mm!
eimθ(tanh(r))m |2m〉 (2.56)

the overlap of two squeezed vacuum states is then found to be

〈ζ|ζ ′〉 =

(
sech(r)sech(r′)

1− ei(φ′−φ) tanh(r) tanh(r′)

)1/2

(2.57)

where ζ ′ = r′eiφ
′
. The overlap of a squeezed vacuum with a coherent state is given by

〈α|ζ〉 =
√

sech(r) exp

(
−1

2
(α∗)2eiφ tanh(r)

)
e−|α|

2/2. (2.58)

Finally, we note that the expectation value of the number operator with respect to the

squeezed vacuum is given by

〈ζ| n̂ |ζ〉 = 〈0| Ŝ(ζ)†â†Ŝ(ζ)Ŝ†(ζ)âŜ(ζ) |0〉

= 〈0| [â† cosh(r)− âe−iφ sinh(r)][â cosh(r)− â†eiφ sinh(r)] |0〉

= sinh2(r) (2.59)
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hence as squeezing is increased, the photon number increases or in other words, squeezing

the vacuum state requires energy input and results in a non-zero mean photon number in

the resultant state. As we have seen, the vacuum is a special case of the coherent state

and similarly the squeezed vacuum is a special case of the more general squeezed-displaced

vacuum states which are given by

|α, ζ〉 = D̂(α)Ŝ(ζ) |0〉 . (2.60)

It is crucial to note that the squeezing and displacement operators do not commute

[Ŝ(ζ), D̂(α)] 6= 0. In fact, by using (2.49), we have

Ŝ(ζ)D̂(α) |0〉 = Ŝ(ζ)D̂(α)Ŝ(−ζ)Ŝ(ζ) |0〉

= exp
[
α(â† cosh(r) + âe−iφ sinh(r))− α∗(â cosh(r) + â†eiφ sinh(r))Ŝ(ζ)

]
|0〉

= D̂(α cosh(r)− α∗eiφ sinh(r))Ŝ(ζ) |0〉

= |γ, ζ〉 (2.61)

where γ = α cosh(r)− α∗eiφ sinh(r). Thus,

|α, ζ〉 = D̂(α)Ŝ(ζ) |0〉 = Ŝ(ζ)D̂(γ) |0〉 . (2.62)

The translation of the annihilation operator under the joint action of the squeezing and

displacement operators is given by

Ŝ†(ζ)D̂†(α)âD̂(α)Ŝ(ζ) = Ŝ†(ζ)(â+ α)Ŝ(ζ)

= â cosh(r)− â†eiφ sinh(r) + α (2.63)

and similarly for the creation operator

Ŝ†(ζ)D̂†(α)â†D̂(α)Ŝ(ζ) = â† sinh(r)− âe−iφ sinh(r) + α∗ (2.64)

then it is straight forward to find that

〈α, ζ| â |α, ζ〉 = Ŝ†(ζ)D̂†(α)âD̂(α)Ŝ(ζ)

= 〈0| (â cosh(r)− â†eiφ sinh(r) + α) |0〉

= α (2.65)

and similarly 〈α, ζ| â |α, ζ〉 = α∗. With this the expectation value of the general quadrature

operator is revealed to be non-zero

〈α, ζ| X̂λ |α, ζ〉 =
1√
2

(αe−iλ + α∗eiλ) (2.66)
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and furthermore,

〈α, ζ| X̂2
λ |α, ζ〉 =

1

2

(
e2r sin2(λ− φ/2) + e−2r cos2(λ− φ/2)

)
+

1

2

(
αe−iλ + α∗eiλ

)2

(2.67)

so that the variance of the general quadrature operator with respect to the displaced

squeezed state is found to be

∆2X̂λ =
1

2

(
e2r sin2(λ− φ/2) + e−2r cos2(λ− φ/2)

)
(2.68)

which is precisely the expression of the variance for the squeezed vacuum state (2.55)

thus the expectation value is dependent only on the displacement while the variance is

dependent only on the squeezing. The Wigner function for the squeezed-displaced vacuum

is plotted in Fig.2.3
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Figure 2.3: Plots of Wigner functions for the vacuum state (left), the squeezed vacuum

state with r = 1
2 and φ = 0 (centre) and the squeezed-displaced vacuum state with r = 1

2 ,

φ = 0 and α = 2 (right).

2.3.2 Practical Generation of Squeezed Light

A widely practised method of generating quadrature-squeezed light uses a device known

as a “parametric down converter” in which a nonlinear medium is pumped by a field of

frequency ωp. From this pump field a signal field is generated via the conversion of some

of the pump photons into pairs of identical (signal) photons each of frequency ω = ωp/2.

Following the work of [21] we give an account of the process here. The Hamiltonian

governing the process is given by

H = ~ωa†a+ ~ωpb†b+ i~χ(2)[a2b† − (a†)2b] (2.69)

where, a and b are the annihilation operators (for brevity we have dropped the “hat”

notation for these operators) for signal and pump modes respectively and χ(2) is the

second order nonlinear susceptibility (of the medium). Now by making the “parametric
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approximation” i.e by assuming the pump field is a coherent classical field which loses no

photons over the duration of the process, denoted by time t, the field state is given by

|βe−iωpt〉 where β = |β|eiθ with θ ∈ [0, 2π] and the operators b and b† are approximated

by βe−iωpt and β∗eiωpt respectively. The Hamiltonian then becomes

H = ~ωa†a+ i~[η∗a2eiωpt − η(a†)2e−iωpt] (2.70)

where, η = χ(2)β and the irrelevant constant term in the Hamiltonian has been dropped.

Transforming to the interaction picture yields the Hamiltonian

HI(t) = i~
[
η∗a2ei(ωp−2ω)t − η(a†)2e−i(ωp−2ω)t

]
(2.71)

whose time dependency is overcome by choosing the classical pump field frequency to

be ωp = 2ω thus defining the relationship between pump and signal photons. The final

Hamiltonian is the given by

HI = i~[η∗a2 − η(a†)2] (2.72)

and the associated unitary time evolution operator is given by

UI(t) = exp
(
η∗ta2 − ηt(a†)2

)

= exp
(

(χ(2)|β|eiθ)∗ta2 − χ(2)|β|eiθt(a†)2
)

(2.73)

which we compare to the familiar form of the squeezing operator (2.46) and discern the

relationship between the physical parameters involved in the parametric down conversion

and the compact form of the squeezing parameter used in (2.46)

r = 2χ(2)|β|t

= 2ηt. (2.74)

2.4 Gaussian and Non-Gaussian States

2.4.1 Gaussian Probability Distributions

So far, we have encountered the “most classical” and quadrature squeezed states of the

QHO. If we are to inspect the probability distribution function (PDF) of each of these

states in the position and momentum quadratures we find that each is a Gaussian distri-

bution as depicted in Fig.2.4. To see this more concretely, we first find the overlap of a

general coherent state with α ∈ R

|eiθα〉 = e−
|α|2
2

∞∑

n=0

(eiθα)n√
n!
|n〉 (2.75)
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Figure 2.4: Plots of position and momentum probability distributions for a coherent state

with α = 2 (left) and for a squeezed vacuum state with r = 1/2 and φ = 0 (right). All

are Gaussian PDFs.

with the general quadrature state (the eigenstate of X̂λ as given by (2.15)) in the number

state representation

|Xλ〉 =

∞∑

n=0

(2nn!)−
1
2π−

1
4 e−X

2
λ/2e−inλHn(Xλ) |n〉 . (2.76)

where, Hn(Xλ) are the Hermite polynomials of degree n. Hence, for the overlap we find

〈Xλ|eiθα〉 =
∞∑

m=0

(2mm!)−
1
2π−

1
4 e−X

2
λ/2eimλHm(Xλ) · e−

|α|2
2

∞∑

n=0

(eiθα)n√
n!
〈m|n〉

= π−
1
4 exp

(
−1

2
(X2

λ + α2)

) ∞∑

n=0

1

n!
Hn(Xλ)(2−

1
2 eiλeiθα)n (2.77)

noting that α ∈ R, hence |α|2 = α2. Then using the following relation

∞∑

n=0

1

n!
Hn(x)tn = e−t

2+2tx (2.78)

we find

〈Xλ|eiθα〉 = π−
1
4 exp

(
−1

2
(X2

λ + α2)

)
exp

(
−2−1e2i(λ+θ)α2 + 2(2−

1
2 ei(λ+θ)α)Xλ

)
.

= π−
1
4 exp

(
−1

2
(X2

λ + α2)

)
exp

(
−1

2
e2i(λ+θ)α2 +

√
2ei(λ+θ)αXλ

)
. (2.79)

thus the PDFs of a coherent state with θ = 0 for the conjugate quadrature variables X0

and Xπ/2 are given by

F(X0) = |〈X0|α〉|2 = π−
1
2 e−(X0−

√
2α)2 (2.80)

F(Xπ/2) = |〈Xπ/2|α〉|2 = π−
1
2 e
−X2

π/2 . (2.81)



27

Comparing this to the general form of a Gaussian distribution

f(x) = a exp

(−(x− b)2

2c2

)
(2.82)

it is clear that both (2.80) and (2.81) are (normalised) Gaussian PDFs. Similarly for the

squeezed vacuum state, the overlap is given by [22]

〈Xλ|ζ〉 = (2π∆2Xλ)−1/4 exp

(
X2
λ

4∆2Xλ
[1− i sin(2λ− φ) sinh(2r)]

)
(2.83)

where the variance ∆2Xλ is given by (2.55) hence, taking φ = 0, the PDFs of the squeezed

vacuum state for the conjugate quadrature variables X0 and Xπ/2 are found to be

F(X0) = π−1/2 exp
(
−X2

0e
2r + r

)
(2.84)

F(Xπ/2) = π−1/2e
−X2

π/2 (2.85)

and again, in comparison to (2.82) the PDFs are revealed to be Gaussian even though

the states are non-classical. At this point we note that the displacement operator governs

the first statistical moment (the mean) of the Gaussian PDF and the squeezing operator

governs the second moment (the variance). Furthermore, the probability amplitudes given

by ψ(Xλ) = 〈Xλ|ψ〉 and ϕ(Xλ+π/2) = 〈Xλ+π/2|ψ〉 are related by the Fourier transform

ψ(X̂λ) =
1

2π~

∫ ∞

−∞
e
i
~XλXλ+π/2ϕ(Xλ+π/2)dXλ+π/2 (2.86)

2.4.2 Non-Gaussian States

As a first example of a state with a non-Gaussian PDF in phase space, we inspect the

number states |n〉 (as given by (2.24)) also referred to as Fock states [28]. In Fig.2.5 we

see the Wigner functions take on negative values implying the quantum (non-classical)

nature of the Fock states and clearly the nature of the position and momentum PDFs are

more exotic than Gaussian. Indeed, inspection of the overlap with the general quadrature
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Figure 2.5: Plots of Wigner functions for the Fock states |n〉 with n = 1 (left) n = 2

(centre) and n = 4 (right).
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variable reveals

〈n|Xλ〉 =
∞∑

m=0

(2mm!)−
1
2π−

1
4 e−X

2
λ/2e−imλHm(Xλ) 〈n|m〉

= (2nn!)−
1
2π−

1
4 e−X

2
λ/2e−inλHn(Xλ) (2.87)

thus the overlaps for the Fock states with the quadrature states for X = X0 and P = Xπ/2

only differ by a phase factor and thus F(x) = F(p) which is demonstrated in Fig.2.5.

Furthermore, Fig.2.6 shows the overall non-Gaussian structure of the PDFs for various

Fock states.
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Figure 2.6: Probability distribution functions for the Fock states |n〉 with n = 1 (left)

n = 2 (centre) and n = 4 (right). All PDFs display an overall non-Gassian structure.
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Figure 2.7: Plots of Wigner functions for odd cat states with φ = 0 and φ̃ = −π (left) and

with φ = π/2 and φ̃ = −π/2 (right).

We now turn our attention to the following state

|ψ±CS(φ, φ̃)〉 = N±α (φ, φ̃)(|eiφα〉 ± |eiφ̃α〉) (2.88)

where the normalising factor is given by

N±α (φ, φ̃) =
[
2± e−α2

(
exp(α2ei(φ̃−φ)) + exp(α2ei(φ−φ̃))

)]− 1
2
. (2.89)

This state is a superposition of two macroscopic states and as such, this type of state

is known as a “cat state” in reflection of Shrödinger’s thought experiment. When the

constituent superposition states are φ = π out of phase the state is referred to as an “even

cat state” for the “+” case and an “odd cat state” for the “-” case, this is because the

even and odd states contain only even or odd numbers of photons, this can be seen from

the simple example of φ = 0 and φ̃ = π

|ψ+
CS(0, π)〉 = 2N+

α (0, π)e−|α|
2/2
∑

n=0

α2n

(2n)!
|2n〉 (2.90)

|ψ−CS(0, π〉 = 2N−α (0, π)e−|α|
2/2
∑

n=0

α2n+1

(2n+ 1)!
|2n+ 1〉 . (2.91)

The Wigner functions for two examples of odd cat states are plotted in Fig.2.7 where

interference fringes - a manifestation of the quantum superposition principle - are clearly

visible. The probability distribution of the general quadrature variable for state (2.88) is

given by

F±(Xλ, φ, φ̃) = | 〈Xλ|ψ±CS(φ, φ̃)〉 |2

= 〈Xλ|ψ±CS(φ, φ̃)〉 〈ψ±CS(φ, φ̃)|Xλ〉

= 〈Xλ|ψ±CS(φ, φ̃)〉
(
〈Xλ|ψ±CS(φ, φ̃)〉

)†

= (N±α )2
(
〈Xλ|eiφα〉 ± 〈Xλ|eiφ̃α〉

) [(
〈Xλ|eiφα〉 ± 〈Xλ|eiφ̃α〉

)]†
. (2.92)
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Everything we need here is given by (2.79), we find

〈Xλ|eiφα〉+ 〈Xλ|eiφ̃α〉 = π−
1
4 exp

(
−1

2
(X2

λ + α2)

)[
exp

(
−1

2
e2i(λ+φ)α2 +

√
2ei(λ+φ)αXλ

)

+ exp

(
−1

2
e2i(λ+φ̃)α2 +

√
2ei(λ+φ̃)αXλ

)]

(2.93)

thus the general probability density function is given by

F±(Xλ, φ, φ̃) = π−
1
2 (N±α )2

∣∣∣∣∣ exp

(
−1

2
(X2

λ + α2)

)[
exp

(
−1

2
e2i(λ+φ)α2 +

√
2ei(λ+φ)αXλ

)

± exp

(
−1

2
e2i(λ+φ̃)α2 +

√
2ei(λ+φ̃)αXλ

)]∣∣∣∣∣

2

.

(2.94)

Finding a specific state-variable probability distribution function is then simply a matter

of inputting the desired phase values λ, φ and φ̃. As an example we shall inspect the usual

probability distribution functions of orthogonal quadrature variables x0 and xπ/2 for the

even cat state

|ψ+
CS(φ = π/2, φ̃ = −π/2)〉 = N+

α (|iα〉+ |−iα〉) (2.95)

which gives the following

F+(x0, π/2,−π/2) = π−
1
2 (N+

β )2

∣∣∣∣ exp

(
−1

2
(x2

0 + β2)

)[
exp

(
−1

2
(−1)β2 +

√
2(i)βx0

)

+ exp

(
−1

2
(−1)β2 +

√
2(−i)βx0

)]∣∣∣∣
2

(2.96)

thus,

F+(x0, π/2,−π/2) = = π−
1
2 (N+

β )2

∣∣∣∣ exp

(
−x

2
0

2

)(
ei
√

2βx0 + e−i
√

2βx0
) ∣∣∣∣

2

= π−
1
2 (N+

β )2

∣∣∣∣ exp

(
−x

2
0

2

)
2 cos(

√
2βx0)

∣∣∣∣
2

= 4π−
1
2 (N+

β )2e−x
2
0 cos2(

√
2βx0). (2.97)

where we have used cos(x) = (eix + e−ix)/2. Through very similar working we find for the

conjugate variable (i.e for λ = π/2)

F+(xπ/2, π/2,−π/2) = 4π−
1
2 (N+

β )2e
−x2

π/2
−2β2

cosh2(
√

2βxπ/2). (2.98)



31

Noting further that sin(x) = (eix−e−ix)/2i and sinh(x) = (ex−e−x)/2 we can immediately

conclude that the probability distributions of the conjugate quadrature variables for the

odd cat state are given by

F−(x0, π/2,−π/2) = 4π−
1
2 (N+

β )2e−x
2
0 sin2(

√
2βx0) (2.99)

and

F−(xπ/2, π/2,−π/2) = 4π−
1
2 (N+

β )2e
−x2

π/2
−2β2

sinh2(
√

2βxπ/2) (2.100)
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Figure 2.8: Probability distribution functions for odd cat states with φ = 0 and φ̃ = −π
(left) and with φ = π/2 and φ̃ = −π/2 (right). Both PDFs display an overall non-Gassian

structure.
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Chapter 3

Fermionic Systems

3.1 Two-Level System

All elementary fermions are spin-1/2 particles [29] meaning that observation of the mag-

netic quantum number along any one axis yields the eigenvalues±~/2 only, this is predicted

through solving the Shrödinger equation for angular momentum. This phenomenon was

first measured in the famous Stern-Gerlach experiment [30] which was designed to test the

“intrinsic angular momentum” (spin) of silver atoms, the values of which were expected

to be integer valued which would have required the observation of three fringes. Contrary

to the expected results, only two fringes were observed and thus the conclusion was that

the silver atoms had intrinsic angular momentum of 1/2. As these spin-1/2 particles can

only be observed in one of two states they are often referred to as two-level systems; these

are among the simplest of quantum mechanical systems. The spin operators (Sx, Sy, Sz)

can be described in terms of the Pauli matrices

Sx =
~
2
σx, Sy =

~
2
σy, Sz =

~
2
σz (3.1)

where the Pauli matrices are given by

σx =


0 1

1 0


 , σy =


0 −i
i 0


 , σz =


1 0

0 −1


 (3.2)

which satisfy the following commutation relations

[σx, σy] = 2iσz, [σy, σz] = 2iσx, [σz, σx] = 2iσy. (3.3)
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The eigenvectors of the Pauli matrices are denoted by

σx |→〉 = |→〉 , σx |←〉 = − |←〉

σy |4〉 = |4〉 , σy |�〉 = − |�〉

σz |↑〉 = |↑〉 , σz |↓〉 = − |↓〉 (3.4)

where,

|→〉 =
1√
2


1

1


 , |←〉 =

1√
2


 1

−1


 , |4〉 =

1√
2


1

i


 , |�〉 =

1√
2


 1

−i


 , |↑〉 =


1

0


 , |↓〉 =


0

1




(3.5)

and from this it is evident that

|→〉 =
1√
2

(|↑〉+ |↓〉), |←〉 =
1√
2

(|↑〉 − |↓〉)

|4〉 =
1√
2

(|↑〉+ i |↓〉), |�〉 =
1√
2

(|↑〉 − i |↓〉) (3.6)

which reveals that any pure state of a two-level quantum can be written as a superposition

of the basis vectors |↑〉 and |↓〉 thus, taking θ ∈ [0, π] and φ ∈ [0, 2π], a general pure state

vector of a two-level system can be written as

|ψ〉 = cos

(
θ

2

)
|↑〉+ eiφ sin

(
θ

2

)
|↓〉 (3.7)

where we have taken the coefficient of |↑〉 to be real and positive since it is only the

relative phase of the basis states that has physical consequence. It is then possible to use

parameters θ and φ to specify a vector in spherical coordinates

~r = (sin θ cosφ, sin θ sinφ, cos θ) (3.8)

which submits a useful representation of the general two-level system i.e any state of a

spin-1/2 particle can be represented by the vector ~r; this is known as the Bloch sphere

representation and is depicted in Fig.3.1. Furthermore, the Pauli matrices, along with

the 2 × 2 identity matrix I (sometimes denoted σ0), form a basis for the 2 × 2 vector

space of Hermitian matrices. This means that any operator on the spin-1/2 Hilbert space

(H = C2) can be represented by a linear combination of the Pauli matrices and thus the

general density matrix of a two-level system can be given by

ρ =
1

2
(I+ ~r · ~σ) (3.9)

where ~σ = (σx, σy, σz). Furthermore, pure states have |~r| = 1 and exist on the surface of

the Bloch sphere while mixed states have |~r| < 1 and thus exists within the sphere.
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Figure 3.1: The Bloch sphere representation of a two-level system such as a spin-1/2

particle. The choice of axis that represent the |0〉 and |1〉 state are arbitrary but conven-

tionally taken to be along the positive and negative z axis.

3.2 N Spin-1/2 System

We now extend the two level system to that of an N spin-1/2 system. We begin by

considering a system of two spin-1/2 particles which exists in a Hilbert space described

by the tensor produce of the individual spaces of the two particles H = C2 ⊗C2, here the

basis states can have the property of being either symmetric

|↑, ↑〉 , |↓, ↓〉 , 1√
2

(|↑, ↓〉+ |↓, ↑〉) (3.10)

or antisymmetric

1√
2

(|↑, ↓〉 − |↓, ↑〉) (3.11)

which is determined by how the state changes when any two spins are swapped - a property

bosons do not have. For a system of N spin-1/2 particles, the Hilbert space is given by

HN = (C2)⊗N and the associated spin operators are sometimes referred to as “big-spin

operators” or “collective spin operators”, given by

Jα =
1

2

N∑

i=1

σ(i)
α , for α ∈ {x, y, z} (3.12)

which satisfy the commutation relation

[Jµ, Jν ] = iεµνρJρ (3.13)
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where εµνρ is the antisymmetric tensor (such that εxyz = 1). This reveals the uncertainty

relation

∆2Jz∆
2Jy ≥

1

4
〈J2
x〉 . (3.14)

The dimension of the Hilbert space for this N spin-1/2 system is Dim(HN ) = 2N i.e it

grows exponentially with the number of particles. We now introduce the so-called “Dicke

states” |j,m〉N . These states must satisfy two conditions, the first is that

Jz |j,m〉N = m |j,m〉N (3.15)

where j ∈ {0, 1, ..., N2 } for N even, j ∈ {1
2 ,

3
2 , ...,

N
2 } for N odd, m ∈ {−j,−j+ 1, ..., j} and

the subscript of |·〉N denotes a state of the N spin-1/2 system. For the second requirement

we must introduce the “total spin” operator

J2 = J2
x + J2

y + J2
z (3.16)

then the state |j,m〉N is a Dicke state if it satisfies both (3.15) and

J2 |j,m〉N = j(j + 1) |j,m〉N (3.17)

or in other words, a Dicke state is defined to be the simultaneous eigenstate of Jz and J2

(hence these two operators commute). Akin to the creation and annihilation operators

(2.23) and (2.22), we are able to define the raising and lowering operators

J± |j,m〉N =
√
j(j + 1)−m(m± 1) |j,m± 1〉N (3.18)

which satisfy the commutation relations

[J−, J+] = −2Jz, [Jz, J±] = ±J±,
[
J2, J±

]
= 0. (3.19)

The j = N/2 subspace is one of particular interest, the Dicke states are completely

symmetric in this subspace [31] and m ∈ {−N/2, ..., N/2}, thus there are N + 1 of

these states. In this subspace it is sometimes helpful to relabel the Dicke states as

|N/2,m〉N = |N/2, n−N/2〉N ≡ |n〉N . There is an underlying connection between the

model of quantised angular momentum and the model of two uncorrelated QHO’s which

we will explore here. It is first useful to define

N+ ≡ a†↑a↑ ≡
N

2
+ Jz and N− ≡ a†↓a↓ ≡

N

2
− Jz (3.20)
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which, upon acting on a Dicke state in the j = N/2 subspace, returns the number of

spin-up and spin-down particles as the eigenvalue

a†↑a↑ |N/2,m〉N =

(
N

2
+m

)
|N/2,m〉N (3.21)

a†↓a↓ |N/2,m〉N =

(
N

2
−m

)
|N/2,m〉N . (3.22)

If we rewrite this as N+ |n+, n−〉 = n+ |n+, n−〉 and N− |n+, n−〉 = n− |n+, n−〉, then in

complete analogy with the creation and annihilation operators (2.23) and (2.22) we have

a†↑ |n+, n−〉 =
√
n+ + 1 |n+ + 1, n−〉 , a↑ |n+, n−〉 =

√
n+ |n+ − 1, n−〉 (3.23)

a†↓ |n+, n−〉 =
√
n− + 1 |n+, n− + 1〉 , a↓ |n+, n−〉

√
n− |n+, n− − 1〉 (3.24)

and as such we are able to obtain any general eigenstate of N+ and N− by repeatedly

applying a†↑ and a†↓ to the vacuum state but this requires redefining the notion of the

vacuum state since we have the ground state |N/2,−N/2〉N = |↓〉⊗N (all spins down) and

the “roof state” |N/2, N/2〉N = |↑〉⊗N (all spins up), thus we define the vacuum state to

be |0, 0〉 so that

a↑ |0, 0〉N = 0 = a↓ |0, 0〉N (3.25)

and

|n+, n−〉N =
(a†↑)

n+(a†↓)
n−

√
n+!
√
n−!

|0, 0〉N . (3.26)

With this, it is straightforward to see that

a†↑a↓ |n+, n−〉 =
√
n−(n+ + 1) |n+ + 1, n− − 1〉 (3.27)

a†↓a↑ |n+, n−〉 =
√
n+(n− + 1) |n+ − 1, n− + 1〉 (3.28)

then substituting n+ → j +m and n− → j −m we find the eigenvalues to be exactly that

of (3.18). Furthermore, it is now natural to use j ≡ (n+ + n−)/2 and m ≡ (n+ − n−)/2

which reveals that the raising and lowering operators (3.18) are composed of

J+ = a†↑a↓, J− = a†↓a↑ (3.29)

and additionally, the general Dicke state can be written

|j,m〉N =
(a†↑)

j+m(a†↓)
j−m

√
(j +m)(j −m)!

|0, 0〉N (3.30)
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3.3 Coherent Spin States and Rotations

There are multiple ways to define the Coherent Spin State (CSS), we begin with a specific

example and establish the notion of a CSS in the j = N/2 subspace in which we can utilize

the symmetry properties. In this setting the CSS can be regarded as the “most classical”

state of N spin-1/2 particles or indeed of N two-mode bosons [32, 33] and are realised by

placing all N particles in the same (arbitrary) superposition state of the two modes

|N/2, (θ, φ)〉N =
1√
N !

[
cos

(
θ

2

)
a†↓ + e−iφ sin

(
θ

2

)
a↑

]⊗N
|0, 0〉N (3.31)

and hence are parametrised by θ and φ. It is simple to find that for a single spin-1/2

particle oriented along the x-axis is ∆2σz∆
2σy = 1

4 · 1
4 and since the CSS is a separable

state of N spin-1/2 particles it immediately follows that

∆2Jz = ∆2Jy =
N

4
(3.32)

thus the CSS is characterised by having equal variance in the directions orthogonal to the

axis of spin orientations (parametrised by θ and φ). A general coherent state, i.e in the

jth subspace, can be given as a superposition of Dicke states

|j, (θ, φ)〉N =

j∑

m=−j
cm(θ)e−i(j+m)φ |j,m〉N (3.33)

where,

cm(θ) =

(
2j

j +m

)1/2

cos(θ/2)j−m sin(θ/2)j+m (3.34)

hence the PDF of a CSS is a binomial distribution

| 〈j, (θ, φ|j,m)〉 |2 =

(
2j

j +m

)
pj+m(1− p)j−m. (3.35)

An alternative representation of the CSS is given by the stereographic projection of the

spherical coordinates θ and φ to ς ∈ C via

ς = e−iφ tan

(
θ

2

)
(3.36)

thus the CSS becomes

|j, ς〉N =

j∑

m=−j

(
2j

j +m

)1/2 ςj+m

(1 + |ς|2)j
|j,m〉N (3.37)

A particularly useful definition of the CSS is that it must be simultaneous eigenstate of

the Ĵ2 and ~r · ~J operators where ~J = (Ĵx, Ĵy, Ĵz) and the associated eigenvalues are j(j+1)
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Figure 3.2: Representation of a CSS on the unit sphere.

and j respectively. This allows the visualisation of the CSS as given in Fig.3.2 where it

is characterised as a point on the unit sphere specified by θ and φ. The CSS can then be

regarded as a displacement of a “reference CSS” where the displacement is modelled by a

rotation operator

R(θ, φ) = exp(−iθ ~J · ~n) (3.38)

which acts to rotate the reference CSS about the unit vector ~n by the angle θ. Indeed,

taking the reference CSS to be the Dicke state |j,−j〉N and the unit vector to be ~n =

(sinφ,− cosφ, 0) in the xy-plane, then we find

|j, (θ, φ)〉 = R(θ, φ) |j,−j〉N
= exp[−iθ(Jx sinφ− Jy cosφ)] |j,−j〉N

=

[
cos

(
θ

2

)
+ (e−iφσ+ − eiφσ−) sin

(
θ

2

)]⊗N
(3.39)

then considering the symmetric j = N/2 subspace, the reference state becomes |N/2,−N/2〉N =

|↓〉⊗N , and using (3.4) we find

|N/2, (θ, φ)〉N =

[
cos

(
θ

2

)
|↓〉+ e−iφ sin

(
θ

2

)
|↑〉
]⊗N

(3.40)

which is precisely the CSS (3.31) which was introduced as the state of all (independent)

N spin-1/2 particles in the same (arbitrary) superposition state. A physical example of

this is the application of a magnetic field to the reference state |↓〉⊗N . Taking the free

Hamiltonian of the N spin-1/2 system to be H0 = ωĴz and an external classical magnetic
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field to be governed by the Hamiltonian HB = −γ ~B · ~J where γ is the gyromagnetic ratio

of the spins, the total Hamiltonian is H = H0 +HB = ωĴz − γ ~B · ~J and from this we can

prepare the general CSS given by (3.40) via one of the two following methods: applying

the magnetic field

~B =




−B sinφ

B cos

ω/γ


 (3.41)

yielding the Hamiltonian H = B sinφĴx −B cosφĴy. Evolving our reference state within

this classical external magnetic field for time t = θ/B returns the CSS given by (3.40).

3.4 Spin Squeezing

Figure 3.3: Schematic representation of Spin Squeezing of a N spin-1/2 system which

constitutes a coherent spin state (CSS). The squeezing process introduces quantum mech-

anical correlations into the system.

In analogy to the notion of squeezing in the QHO system (section 2.3) we can define

spin-squeezing by conditions on the variance for complementary observables i.e since we
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have [Jα, Jβ] = iεαβγJγ and thus

∆2Jα∆2Jβ ≥
| 〈Jγ〉 |2

4
(3.42)

we can quantify spin-squeezing by the condition

∆2Jα ≤
| 〈Jγ〉 |

2
for α 6= γ (3.43)

which would signify spin-squeezing in the α direction. Then for two general orthonormal

vectors ~n1 and ~n2, we can define the squeezing parameter

ξH =
2∆2J~n1

| 〈J~n2
〉 | (3.44)

where the subscript H is used to highlight the underlying connection to the Heisenberg

uncertainty relations, if ξ2
H < 1 then the state is squeezed. Considering the CSS (3.40)

with n1 in the x-direction and introducing n0 to be in the z-direction it can be shown [34]

that

ξ2
H =

1− (~n0 · ~n1)2

|~n0 · ~n2|
= | sin(θ)| (3.45)

which implies that by varying θ the CSS can be squeezed but as we have seen, this is

clearly not the case and as such we conclude that ξ2
H is not a reliable quantifier of spin

squeezing.

An alternative spin squeezing operator has been proposed by Kitagawa and Ueda which

relies on the idea of “mean spin direction” (MSD). We have previously established that

the variance of the coherent state in the bosonic system is equal in all directions whereas

the variance of the CSS is dependent on ~n and has a prior direction; the MSD, which is

given by

~n0 =
〈 ~J〉
| 〈 ~J〉 |

. (3.46)

with this we define ~n⊥ to be the unit vector in the direction perpendicular to that of the

MSD. The spin-squeezing parameter is then given to be

ξ2
S =

min
(
∆2J~n⊥

)

j/2
=

4 min
(
∆2J~n⊥

)

N
(3.47)

where j = N/2 and the minimisation is over all directions ~n⊥. It can be shown that for a

CSS ∆2J~n⊥ = j/2 and thus we have for a CSS ∆2J~n⊥ = N/4 and as such, ξS = 1. A spin

state is said to be squeezed if ξ2
S < 1.
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Another squeezing parameter of particular significance in quantum metrology is that pro-

posed by Wineland et. al [35] in the context of Ramsey spectroscopy. The squeezing

parameter ξS is the analogue of the bosonic squeezing parameter, the parameter intro-

duced here exhibits a deep connection to sensitivities provided by rotations of angular

momentum states. This is a consequence of using the CSS as a noise-reference state. To

portray this idea, we consider a spin state |ψ〉 and take the MSD to be in the z-axis (so

〈Jx〉 = 0 = 〈Jy〉). Using the error propagation formula

∆x =
∆f(x)∣∣∣∂〈f(x)〉
∂x

∣∣∣
(3.48)

it can be shown that

∆φ =
∆Jy
| 〈Jz〉 |

(3.49)

and indeed for general MSD we find

∆φ =
∆J~n⊥
| 〈 ~J〉 |

. (3.50)

For the CSS, the phase sensitivity is found to be

(∆φ)CSS =
1√
N
. (3.51)

The squeezing parameter is then given to be

ξ2
R =

∆2φ

(∆2φ)CSS
=
N∆2J~n⊥
| 〈 ~J〉 |2

(3.52)

which is in fact related to parameter ξS by

ξ2
R =

(
j

| 〈 ~J〉 |

)2

ξ2
S (3.53)

and since j = N/2 ≥ | 〈 ~J〉 |, we have that ξ2
S ≤ ξ2

R.

3.4.1 One-Axis Twisting

There are multiple ways of producing squeezed spin systems as quantified by the above

measures [35, 36, 37], here we investigate a particular method of spin squeezing known as

“One-Axis Twisting” (OAT) which uses the following Hamiltonian (in units of ~) for a

system of N spin-1/2 particles

HOAT = χJ2
x (3.54)
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so that the unitary time evolution operator that constitutes the OAT operation is given

by Uχ(t) = exp [−itHOAT ]. Note that the twisting is often modelled along the z-axis and

is applied to a CSS with all spins aligned with the x-axis, here we have reversed the roles

of the respective axes. Hence, a spin-squeezed state can be written in the form

|ψOAT 〉 = exp
(
−itχJ2

x

)
|j,−j〉 = exp

(
−iθJ2

x/2
)
|j,−j〉 (3.55)

where θ = 2χt is the angle through which the CSS is twisted. It is well known [34, 36] that

for sufficiently large N and sufficiently small |θ| such that N |θ|2 � 1, the optimum value of

the spin-squeezing parameter (the value which minimises variance) scales as ξ2
R ∼ N−2/3.

Two notable differences between spin squeezing and bosonic squeezing (2.46) are that

while (3.54) influences the quantum fluctuations, it also gives rise to a small rotation and

for longer interaction times (3.54) yields non-Gaussian states such as oversqueezed states

and maximally entangled GHZ states [38]. The resulting spin squeezed state is highly

sensitive to rotation operations (3.38) about the y-axis. Practical implementation of spin

squeezing via OAT has been demonstrated to be very viable and has been carried out with

BECs [39, 40, 41, 42] as well as with atomic ensembles [43, 44, 45, 46].

Visual Representations of Spin Phase Space

Akin to the Wigner function introduced in section 2.2.1 which is implemented as a visual

representation of phase space for the QHO, here we introduce phase space plots of fi-

nite spin systems. Indeed the so-called spin-Wigner function [47, 48] gives the analagous

quasi-probability distribution for the finite spin system. However, we choose to utilize an

alternative representation known as the spin Q-function. Before doing so it is useful to

note that since the CSSs form an overcomplete basis

∫
dΩ |j, (θ, φ)〉N 〈j, (θ, φ)|N =

4π

2j + 1
(3.56)

an arbitrary state of a finite spin system (for fixed j) can be expressed in the CSS basis

ρ =

∫
dΩP (θ, φ) |j, (θ, φ)〉N 〈j, (θ, φ)|N (3.57)

where the function P (θ, φ) is generally chosen to be a smooth function [32] and is not

unique to the particular state ρ. In spherical coordinates, for fixed j, the spin Q-function

is defined as

Q(θ, φ) =
2j + 1

4π
〈j, (θ, φ)| ρ |j, (θ, φ)〉 (3.58)
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Figure 3.4: Plots of the spin Q-function for the Dicke state |N/2,m〉 with N = 20 and

m = 0 (left), the CSS |↓〉⊗N with N = 10 (centre) and the squeezed spin state (right)

where the OAT Hamiltonian (3.54) has been applied to the CSS.

From this it is possible to discern that Q(θ, φ) ≥ 0, ∀θ, φ and the spin Q-function is nor-

malised
∫
dΩQ(θ, φ) = 1. Plots of the Spin Q-function are depicted in Fig.3.4. Although

it may not be immediately clear from Fig.3.4, the spin squeezed state (right) deviates

from the geodesic of the sphere; this is a consequence of the aforementioned rotation (the

twisting) that the OAT evolution imparts on the CSS during the squeezing of quantum

fluctuations.

3.4.2 Two-Axis Twisting

Another method of spin-squeezed state creation is that of “two-axis twisting” (sometimes

referred to as “two-axis countertwisting”) [36] which involves the simultaneous twisting, in

both the clockwise and anti-clockwise, around two orthogonal axis which lie in the plane

normal to the MSD of the initial state |j,−j〉, this has the effect of cancelling out the

rotation (the twisting) that occurs in the OAT case. This is depicted in Fig. 3.5. The

associated Hamiltonian is composed of the raising and lowering operators (3.18)

HTAT = iη(J2
− − J2

+) (3.59)

where η dictates the magnitude of squeezing. This method of spin squeezing is in fact

analagous to the bosonic squeezing (2.46), indeed we will show in the following section

that in the N → ∞ limit, we recover the bosonic squeezing operator. The disadvant-

age of TAT in comparison to that of OAT are the complexities involved in the practical

implementation, though some viable approaches have been demonstrated [49, 50, 51].
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Figure 3.5: Plots of the spin Q-function for the CSS |↓〉⊗N with N = 10 (left) and the

squeezed spin state (right) where the TAT Hamiltonian (3.59) has been applied to the

CSS.

3.5 Bosonic limit

Here we review how j-subspace spin systems with finite dimensional state spaces cor-

respond to bosonic QHO systems with infinite dimensional state spaces in the so-called

“bosonic limit”. Considering the j = N
2 symmetric subspace of the N spin-1/2 system,

the raising and lowering operators (3.18) take the form

Ĵ+ =

N∑

n=0

√
(n+ 1)(N − n) |n+ 1〉N 〈n|N (3.60)

Ĵ− =

N∑

n=0

√
n(N − n+ 1) |n− 1〉N 〈n|N (3.61)

where the Dicke state |N2 ,m〉N = |N2 , n− N
2 〉N ≡ |n〉N . Additionally, the operators (3.20)

can be written in the form a↑ =
∑N

n=0

√
n |n− 1〉N 〈n|N and a†↑ =

∑N−1
n=0

√
n+ 1 |n+ 1〉N 〈n|N

with which, we arrive at the Holstein-Primakoff transformations [52]

Ĵ+√
N

= a†↑

√

1−
a†↑a↑

N
(3.62)

Ĵ−√
N

=

√

1−
a†↑a↑

N
a↑ (3.63)

then taking the limit N →∞ reveals

lim
N→∞

Ĵ+√
N

= lim
N→∞

a†↑ = a† (3.64)

lim
N→∞

Ĵ−√
N

= lim
N→∞

a↑ = a (3.65)



45

where a, a† are the QHO creation and annihilation operators which obey the bosonic

commutation relation [a, a†] = 1. Furthermore, for finite N , we have

[
Ĵ−√
N
,
J+√
N

]
= I−

2a†↑a↑

N
. (3.66)

thus
[
Ĵ−√
N
, J+√

N

]
≈ I ⇒ a†↑a↑

N ≈ 0. The operator a†↑a↑ counts the number of spins in the

|↑〉 state, thus if the number of spins in the excited state is small compared to N the

spin system can be treated approximately as an optical QHO system. Noting that we are

free to scale Hamiltonian (3.59) by 1/N (which physically corresponds to scaling of the

magnitude of squeezing) it is clear that

lim
N→∞

HTAT = lim
N→∞

iη

(
J2
−
N
− J2

+

N

)

= iη
(
a2 − (a†)2

)
(3.67)

which is exactly the Hamiltonian that governs squeezing of bosonic systems (noting that

(3.59) can be generalized such that η ∈ C). Additionally, it is known [32, 33] that in

the limit N → ∞ the spin coherent state converges to the coherent state of the QHO

|ζ〉N → |ζ〉 and moreover, in the limit ζ → 0, we retrieve the bosonic vacuum state which

corresponds to the limit

lim
N→∞

|↓〉⊗N = |0〉 . (3.68)

When N is finite, the spin coherent |ζ/
√
N〉N state is well approximated by the coherent

state |ζ〉 under the condition |ζ| �
√
N . It is now clear that a natural transition exists

between the N spin-1/2 system and the bosonic QHO system.
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Chapter 4

Quantum Enhanced Metrology

and Parameter Estimation

4.1 Measurements

4.1.1 Classical and Quantum Measurements

Consider a system of N particles, classically this can be described the R6N phase space

and the state of the system is given by a probability distribution on this phase space.

A subtle underlying question of this description arises about what the information given

by the probability distribution represents. This is an interpretational question, the de-

bate of which is beyond the scope of the present work, however it is important to clarify

which interpretation we use here; we directly utilize the interpretation that probability

distributions are subjective by nature [53] so the state of a system represents an observer’s

knowledge of system variables. Classically, a perfect measurement would yield the value of

the variable of interest and the system enters a state of complete knowledge. An imperfect

measurement would leave the system in a state of incomplete knowledge thus introducing

uncertainty. Such classical measurements are performed through system-apparatus meas-

urements in which a variable of the apparatus is coupled to the system variable of interest

(e.g electrical voltage coupled to the momentum of a voltmeter needle which ultimately

varies the position on a dial). Inference of the system variable comes through the probab-

ility distribution of the apparatus variable. Imperfections may exist between the coupling

of these variables or may be introduced independent of the system in the form of noise

affecting the apparatus.

Measurement of a quantum mechanical system is fundamentally different to a classical
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system in that an observer may have the maximal amount of knowledge about the system

yet the measurement outcome can still not be determined. In other words, maximal know-

ledge of a quantum mechanical system does not imply complete knowledge and thus, in

general, uncertainty remains. As such, measurement outcomes themselves are described

by probability distributions. This naturally opens up an interpretational debate of know-

ledge e.g attributing the incomplete knowledge to hidden variables [54], again we circum-

vent such a discussion and take an operational approach by using quantum mechanics as

a tool to calculate predictions of experiment. From the postulates of quantum mechanics

(see section 1.2.3) it is evident that the notion of knowledge of a quantum state can only

refer to predictions of future measurement outcomes since measurement fundamentally

changes the state. This implicit uncertainty associated with measurements of quantum

mechanical systems is the main focus of the following work.

4.1.2 Projective Measurements

From the 2nd postulate of quantum mechanics (see section 1.2.3) we have that any

quantum mechanical observable is given by

Â =
∑

i=1

λi |λi〉 〈λi| (4.1)

where |λi〉 are the eigenstates satisfying Â |λi〉 = λi |λi〉 with the eigenvalues λi. The “but-

terfly operator” |λi〉 〈λi| = π̂λ is a projector operator which projects onto the eigenstates

of Â with eigenvalue λi. This can be generalised to include degenerate eigenvalues [53];

if the eigenvalues of Â are Nλ-fold degenerate, the butterfly operator is replaced by the

projector Π̂λ =
∑Nλ

j=1 |λi, j〉 〈λi, j| and the observable is given by

Â =
∑

i=1

λiΠ̂λ. (4.2)

The projectors are orthonormal, that is Π̂λΠ̂λ′ = δλ,λ′Π̂λ which is equivalent to the

statement that the subspaces onto which they project are orthonormal i.e if the set

{|λ1〉 , |λ2〉 , ...} constitutes an orthonormal basis for the Hilbert space of the system, the

projection operators |λi〉 〈λi| and |λj〉 〈λj | are orthonormal. Note that in general, ob-

servables that commute represent observables that can be measured simultaneously. The

algebraic definition of projection operators is given by [14]

Π̂2
λ = Π̂λ, Π̂†λ = Π̂λ (4.3)
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that is to say, any operator that satisfies conditions (4.3) is a projection operator. From

this we find the sum of projectors is indeed a projector

(Π̂λ + Π̂λ′)
2 = Π̂2

λ + Π̂2
λ′ + Π̂λΠ̂λ′ + Π̂λ′Π̂λ = Π̂λ + Π̂λ′ (4.4)

for λ 6= λ′. Performing a measurement of a system variable at time t that then takes

a duration of time T , results in the following probability of measurement outcome λ

Pr[A(t) = λ] = 〈ψ(t)| Π̂λ |ψ(t)〉, and as a consequence of wave-function collapse (see

section 1.2.3) the (conditional) state vector is given by

|ψ(t+ T )〉 =
Π̂λ |ψ(t)〉√
〈ψ(t)| Π̂λ |ψ(t)〉

. (4.5)

It is important to note that the projection operator is in general non-unitary, that is unless

one keeps track of all measurement results the projection operation is an entropy increasing

process and does not preserve normalisation. These results are easily generalised form the

discrete case to the continuous case [53] by taking the projection operator to a projection

density operator that satisfies the orthonormality condition Π̂(x)Π̂(x′) = δ(x − x′)Π̂(x)

where 〈x|x′〉 = δ(x−x′) is the delta function. For a measurement of observable X̂ we have

X̂ =

∫ ∞

−∞
xΠ̂(x)dx (4.6)

and the associated conditional probability of obtaining outcome in the infinitesimal inter-

val x and x+ dx is Pr[X̂ ∈ (x, x+ dx)] = | 〈x|ψ(t)〉 |2dx.

Modelling quantum mechanical measurements via projective observables is inherently lim-

ited, indeed upon considering a photodetector which must absorb quanta of light for de-

tection to be made possible, it is clear that the state of the photons after detection is

not an eigenstate of the number operator since the photons have been destroyed. More

fundamentally, a system is never measured directly in experiment; a system is coupled to

an apparatus which is directly coupled to the variable of interest and an observer sub-

sequently measures the changes in the apparatus much like in the classical case described

in the preceding subsection. This of course can involve many steps and couplings; as an

example again considering a photodetector, if we wish to measure an atom this can be

coupled to a mode of the electromagnetic field which can generate a current which can

modify a display which emits more photons etc. this is known as a von Neumann chain.

This motivates the following review of system-apparatus measurements which first require

a formal introduction of quantum entanglement.
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4.1.3 Entanglement

The states we have looked at so far have all been single mode states, we now turn our

attention to the effects of including multiple modes. We begin with a two-mode system

consisting of modes a and b, the composite state of the two-mode system can be encapsu-

lated by the tensor product of the two modes

|Ψ〉 = |ψ〉a ⊗ |ϕ〉b (4.7)

and when such a representation is possible the state is said to be separable, however forms

of a two-mode system exist where such a state cannot be factorised for example

|Ψ〉 = N (|ψ〉a |ϕ〉b + |ϕ〉b |ψ〉a) (4.8)

where, N is a normalising factor. Note that the notation of the tensor product varies in

the literature with equivalence between |ψ〉a ⊗ |ϕ〉b ≡ |ψ〉a |ϕ〉b ≡ |ψ,ϕ〉a,b and subscripts

are often omitted. When a composite state cannot be written as a tensor product i.e when

it is not separable it is said to be entangled, indeed this is the definition of entanglement.

Entanglement is a pivotal resource in quantum enhanced metrology, it is important to note

that mode entanglement is just a single form the general phenomenon which is dependent

on the division of the Hilbert space, which describes the system of interest, into subsystems

[55]. As a concrete example, we shall inspect the two-mode Fock state |1〉a |1〉b. It is

instructive to recall the “first quantisation” of the electromagnetic field (which offers an

equivalent yet alternative description of photons) where, although photons are bosonic,

the notation used is that of distinguishable particles; for N photons we have

|n〉 = |n1〉1 ⊗ |n2〉2 ⊗ · · · ⊗ |nN 〉N (4.9)

where mode mi contains the ith photon and the total number of photons is given by

N = n1 + n2 + ... + nm. The subscripts on the kets have been included to discern the

representation of these distinct particles from the representation of various modes which

the kets usually denote. If we are then to rewrite the two-mode Fock state in this way, we

must take into account the indistinguishability of the two photons which demands that

all possible permutations of particle arrangements must be included in order to maintain

symmetry, hence

|1〉a |1〉b =
1√
2

(|a〉1 |b〉2 + |b〉1 |a〉2) (4.10)

so although the two-mode Fock state is clearly mode separable, the division of the Hilbert

space into “particle” subsystems reveals entanglement. This subtle point is of particular

importance when considering squeezed states as we shall see in the following chapter.
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4.1.4 von Neumann Measurement Schemes

A system-apparatus measurement scheme is known as a von Neumann measurement

scheme, this can be broken down into two steps: i) coupling of the system variable of

interest with an apparatus variable ii) a projective measurement of the apparatus vari-

able. If we are to consider the apparatus device to be a needle on a dial, the Hamiltonian

governing the measurement interaction is given by

Ĥ = g(t)Â⊗ P̂d (4.11)

where, Â is the observable of interest and P̂d is the conjugate momentum of the canonical

position variable of the apparatus device q̂d such that [q̂d, P̂d] = i~ and g(t) as a coupling

impulse function (corresponding to a non-zero value for only a very short time) and is

normalised so that

∫
g(t)dt = 1. (4.12)

Following the calculation presented in Ref.[56], a brief analysis of the coupling process is

given here. The position of the needle is determined by the position operator q̂d such that

q̂d |x〉 = x |x〉 where x and |x〉 are the respective position eigenvalues and eigenvectors

of the measurement device’s needle. There is a continuum of possible eigenstates of the

position operator on our device’s Hilbert space so a general state vector of the device can

be decompose to

|φ(x)〉 =

∫

x
φ(x) |x〉 dx (4.13)

where, φ(x) is a functional probability amplitude which is reasonably assumed to be given

by

φ(x) = (2π∆)−
1
4 e−x

2/4∆, (4.14)

a normalised Gaussian distribution, of zero mean and variance ∆(= ∆q̂d). Turning our

attention to the system that we wish to measure, a general state vector can be decomposed

as

|ψ〉 =
N∑

i

αi |ai〉 (4.15)

where αi ∈ C is the probability amplitude of obtaining the ith eigenvalue of Â upon

measurement. Since we are interested in the interaction between the system and the

apparatus device, we must consider the tensor product of the measurement device’s Hilbert
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space and the quantum system’s (that we wish to measure) Hilbert space H = Hs ⊗Hd,
thus we will be considering the direct product of the vector states

|ψ〉 ⊗ |φ(x)〉 =

N∑

i

αi

∫

x
φ(x) |ai〉 ⊗ |x〉 dx. (4.16)

To inspect how this full system state vector evolves in time, we apply a time evolution

operator (a solution of the Shrödinger equation) which is given by

Û(t) = exp(−iĤt/~) (4.17)

Applying this to the system-device product space state vector (4.16) in conjunction with

the (time-dependent) Hamiltonian (4.11), the evolution of the system over time is thus

given by

U(t) |ψ〉 ⊗ |φ(x)〉 = exp

(
− i
~

∫
Ĥdt

)
|ψ〉 ⊗ |φ(x)〉

= exp(−iÂ⊗ P̂d/~) |ψ〉 ⊗ |φ(x)〉
(4.18)

from which we gain meaningful insight by inspecting the operator q̂d, over some interaction

time interval T . Using the fundamental theorem of calculus in combination with the

Heisenberg equation of motion, we find

q̂d(T )− q̂d(0) =

∫ T

0
dt
∂q̂d
∂t

=

∫ T

0

i

~
[Ĥ, q̂d]dt

=

∫ T

0

i

~
Â[P̂d, q̂d]dt

=

∫ T

0

i

~
(−i~)Âdt

= ai

(4.19)

where the final equality is true for eigenstates of Â only. It is then evident that q̂d(T ) =

q̂d(0) + ai so we infer that the system evolves each state vector by taking q̂d to q̂d + ai.

Decomposing the general state vectors in terms of the eigenbasis allows us to write

U(t) |ψ〉 ⊗ |φ(x)〉 =

N∑

i

αi |ai〉 ⊗ |φ(x− ai)〉

=
N∑

i

αi

∫

x
(2π∆)−

1
4 e−(x−ai)2/4∆ |ai〉 ⊗ |x〉 dx.

(4.20)

thus the system and apparatus device become entangled. The probability density of

measuring the device’s pointer in state x′, given by a projective measurement on the
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apparatus, is found to be

p(x′) = 〈ψ, φ(x)|U †(t) |x′〉 〈x′|U(t) |ψ, φ(x)〉 = | 〈x′|U(t) |ψ, φ(x)〉 |2

=

∣∣∣∣∣
∑

j

α∗j 〈aj | 〈x′|
∫

x

∑

i

αi |ai〉 (2π∆)−
1
4 e−(x−ai)2/4∆ |x〉 dx

∣∣∣∣∣

2

= (2π∆)−
1
2

∣∣∣∣∣

∫

x

∑

i,j

α∗jαi 〈aj |ai〉 e−(x−ai)2/4∆ 〈x′|x〉 dx
∣∣∣∣∣

2

= (2π∆)−
1
2

∣∣∣∣∣

∫

x

∑

i,j

α∗jαiδije
−(x−ai)2/4∆δ(x− x′)dx

∣∣∣∣∣

2

= (2π∆)−
1
2

∑

i

|αi|2e−(x′−ai)2/2∆

a multinormal distribution with many modes. It is then apparent that the process has

shifted the initial Gaussian distribution to another multivariate Gaussian distribution

dependent on the eigenvalues of the system observable. Note that this projective meas-

urement disentangles the system and apparatus; this can be seen through inspection of

the (normalised) final state

|Ψ〉f =
|x′〉 〈x′|U(t) |ψ, φ(x)〉√

p(x′)
=
|x′〉 M̂x′ |ψ〉√

p(x′)
(4.21)

where M̂x′ = 〈x′| Û(t) |φ(x)〉 is an operator that acts only on the system Hilbert space Hs.

4.2 Uncertainty Measures

Quantum parameter estimation concerns itself with the ability to encode and decode in-

formation onto, and from, quantum mechanical states of a system of interest. Since, in

general, only partial knowledge is attainable even with total knowledge of the prepara-

tion of a system state, an ensemble of identically prepared states is necessary. Given this

statistical nature, a natural question arises concerning how to quantify the fundamental

uncertainties involved in these processes. These uncertainties establish the fundamental

limits of encoding and decoding information, after doing so we can then ask how to op-

timally encode and decode information on quantum mechanical systems.

4.2.1 Helstrom-Holevo Lower bound

The first ultimate quantum limit for precision in quantum parameter estimation was in-

dependently established by both Holevo [57] and Helstrom [58] in the context of quantum

communication. Following the work of Milburn and Wiseman [53] we review the so called

Helstrom-Holevo lower bound and further the notion of uncertainty measure to that of the
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Fisher information. The underlying method to address optimality is to minimise a cost

function associated with the error of the estimated parameter of interest. Firstly, to get

a feel for precision bounds we review the derivation of the Helstom-Holevo lower bound

by considering the probe state (given as a density matrix) ρ0, the encoding of information

onto the probe is given by

ρ0 → ρX = e−iXĜρeiXĜ (4.22)

where Ĝ is a Hermitian “generator” operator and X is the parameter of interested to be

estimated via the measured parameter Xe (the decoders best estimate of X) provided by

observable X̂e. The disparity between X and Xe comes about from the possibility of a

systematic bias b(X) = 〈Xe〉X − X and the score function is given by the mean-square

error

〈(Xe −X)2〉X = ∆2Xe + [b(X)]2 (4.23)

where the variance of the estimator (in ρX) is given by

∆2Xe = Tr[(X̂e − 〈Xe〉X)2ρX ]. (4.24)

We note

d 〈Xe〉X
dX

= −iTr
[
[X̂e, Ĝ]ρX

]
(4.25)

and from the general Heisenberg uncertainty relation

∆2Xe∆
2Ĝ ≥ 1

4

∣∣∣Tr
[
[X̂e, Ĝ]ρx

] ∣∣∣
2

(4.26)

which reveals the lower bound

〈(Xe −X)2〉X ≥
[1 + b′(X)]2

4 〈(∆G)2〉X
+ b2(X). (4.27)

Considering the case of no systematic bias b(X) = 0 which implies 〈Xe〉X = X, thus

∆2Xe ≥
1

4 〈∆2G〉0
(4.28)

where we have set X = 0 by acknowledging the commutativity of Ĝ with the unitary

parameter transformation. Note that for canonically conjugate observables [X̂, Ĝ] = i, it

is clear that this result follows immediately from the Heisenberg uncertainty principle.
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4.2.2 The Fisher Information

To address the notion of optimality and to introduce an uncertainty measure that will be

used extensively in the following work, we present a derivation of the so-called “Fisher

Information” based on that presented in Ref.[59]. To begin with, we explicitly define the

likelihood function which is the probability of obtaining data s when the true value of the

parameter we wish to estimate is θ, thus for a given probability function fθ, the likelihood

is given by L(θ|s) = fθ(s) and the likelihood function is given by L(·|s). So if we have

fθ1(s) > fθ2(s), we infer that θ1 is a more accurate value (closer to the true value θ) than

θ2. Note that L(θ|s) is not the probability of θ given that we have observed s. Generally,

we are interested in a point estimate of θ so a value that maximises L(θ|s) is desirable

hence we define θ̂(s) such that L(θ̂(s)|s) ≥ L(θ|s), ∀θ and refer θ̂(s) as the maximum like-

lihood estimate (MLE). Calculating the MLE often requires using optimisation methods

of calculus and as such we require fθ(s) to be a continuously differentiable function of θ.

To this end, we define the log-likelihood function

l(·|s) = ln [L(·|s)] (4.29)

noting that L(θ̂(s)|s) ≥ L(θ|s)⇒ l(θ̂(s)|s) ≥ l(θ|s). Furthermore for a sample (s1, ..., sn),

the likelihood function is given by

L(θ|s1, ..., sn) =
n∏

i=1

fθ(si) (4.30)

which gives the log-likelihood as

l(θ|s1, ..., sn) =
n∑

i=1

ln[fθ(si)] (4.31)

and since it is generally a simpler task to differentiate a sum than it is a product, the

advantage of the log-likelihood is revealed. In fact, this property is so useful that it’s

derivative is defined as the score function

S(θ|s) =
∂l(θ|s)
∂θ

(4.32)

and then it is clear that the MLE is found by solving the equation

S(θ|s) = 0 (4.33)

and ensuring that this solution is a local maximum at θ̂(s) by checking the following

condition is satisfied

∂S(θ|s)
∂θ

∣∣∣∣∣
θ=θ̂(s)

=
∂2l(θ|s)
∂θ2

∣∣∣∣∣
θ=θ̂(s)

< 0. (4.34)
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Now, suppose we have X, θ ∈ R and the following conditions:

∂2 ln[fθ(x)]

∂θ2
exists for each x, (4.35)

and

Eθ[S(θ|X)] =

∫ ∞

−∞

∂ ln[fθ(x)]

∂θ
fθ(x)dx = 0 (4.36)

along with

∫ ∞

−∞

∂

∂θ

(
∂ ln[fθ(x)]

∂θ
fθ(x)

)
dx = 0 (4.37)

and finally

∫ ∞

−∞

∣∣∣∣∣
∂2 ln[fθ(x)]

∂θ2

∣∣∣∣∣fθ(x)dx <∞. (4.38)

Noting that in general

∂fθ(x)

∂θ
=
∂ ln[fθ(x)]

∂θ
fθ(x) (4.39)

we can rewrite (4.36) as

∫ ∞

−∞

∂fθ(x)

∂θ
dx = 0. (4.40)

Furthermore, condition (4.37) can be rewritten

0 =

∫ ∞

−∞

∂

∂θ

(
∂l(θ|x)

∂θ
fθ(x)

)
dx

=

∫ ∞

−∞

[
∂2l(θ|x)

∂θ2
+

(
∂l(θ|x)

∂θ

)2
]
fθ(x)dx

=

∫ ∞

−∞

[
∂2l(θ|x)

∂θ2
+ S2(θ|x)

]
fθ(x)dx

= Eθ

[
∂2l(θ|x)

∂θ2
+ S2(θ|x)

]
. (4.41)

So with this and conditions (4.36) and (4.38) we can finally rewrite (4.37) as

Varθ(S(θ|X)) = Eθ[S
2(θ|X)] = Eθ

(
− ∂2

∂θ2
l(θ|x)

)
. (4.42)

The quantity on the left of (4.42) is defined as the Fisher information F (θ) = Varθ(S(θ|X)).

Moreover, if Eθ[S(θ|X)] = 0 the Fisher information is given by

F (θ) =

∫ ∞

−∞
fθ(x)

(
∂ ln[fθ(x)]

∂θ

)2

dx

=

∫ ∞

−∞

1

fθ(x)

(
∂fθ(x)

∂θ

)2

dx. (4.43)
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We also highlight the quantity

F̂ (s) = −∂
2l(θ|s)
∂θ2

∣∣∣∣∣
θ=θ̂(s)

(4.44)

which is referred to as the observed Fisher information, this serves as a measure of how

concentrated the log-likelihood function is at its peak. An important result that utilizes

the Fisher information is a bound known as the Cramér-Rao bound [60, 61] which states

that the variance of an unbiased estimator is as least equal to that of the inverse Fisher

information, that is

∆2θ̂ ≥ 1

νF (θ)
(4.45)

where ν is the number of repeats of the estimation procedure.

4.3 Quantum Fisher Information

Since the systems we wish to investigate are quantum mechanical, if we wish to use the

notion of Fisher information as a quantifier of uncertainty it is necessary to extend it’s

definition to encompass the fundamental aspects of quantum information. Some deriva-

tions of the so-called “quantum Fisher information” adopt a geometric interpretation of

the quantum measurement process [53, 62] in which the signal information parametrizes a

path through the space of quantum states and as such, signal detection becomes a matter

of abstract spatial distinguishability. Here we take the approach of Ref. [63] and begin

by introducing the symmetric logarithm derivative (SLD) as the self-adjoint operator Lθ

that satisfies

∂ρθ
∂θ

=
1

2
[Lθρθ + ρθLθ] (4.46)

and recall the Born rule fθ(x) = Tr[Πxρθ] where {Πx},
∫
dxΠx = I are the elements of

a positive operator-valued measure (POVM) and ρθ is the density matrix representation

of the state of interest parametrised by θ. From this we find ∂θfθ(x) = Tr [∂θρθΠx] =

Re{Tr[ρθΠxLθ]}. The Fisher information (4.42) then becomes

F (θ) =

∫ ∞

−∞
dx

Re{Tr[ρθΠxLθ]}2
Tr[ρθΠx]

(4.47)
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then maximising the Fisher information by optimising over the quantum measurements

we find

F (θ) ≤
∫ ∞

−∞
dx

∣∣∣∣∣
Tr[ρθΠxLθ]√

Tr[ρθΠx]

∣∣∣∣∣

2

=

∫ ∞

−∞
dx

∣∣∣∣∣Tr

[ √
ρθ
√

Πx√
Tr[ρθΠx]

√
ΠxLθ

√
ρθ

] ∣∣∣∣∣

2

≤
∫ ∞

−∞
dxTr[ΠxLθρθLθ]

= Tr[LθρθLθ]

= Tr[ρθL
2
θ] (4.48)

where now define FQ(θ) ≡ Tr[ρθL
2
θ] to be the quantum Fisher information. We have thus

shown that the Fisher information of any quantum measurement is bounded below by

the quantum Fisher information (QFI). Clearly the SLD is a comparatively cumbersome

mathematical object to work with hence we aim to derive a more accessible form of the

QFI in terms of the eigenvalues and eigenvectors of ρθ where ρθ |λi〉 = λi |λi〉 so that
(
∂ρθ
∂θ

)

ij

= 〈λi|
(
∂ρθ
∂θ

)
|λj〉

=
1

2
[〈λi|Lθρθ |λj〉+ 〈λi| ρθLθ |λj〉]

=
1

2
[λj(Lθ)ij + λi(Lθ)ij ] (4.49)

which can be solved to reveal the SLD as

(Lθ)ij = 2
〈λi| ∂ρ∂θ |λj〉
λi + λj

(4.50)

then using the fact that

FQ(θ) = Tr[ρθL
2
θ] =

1

2

(
Tr[L2

θρθ] + Tr[LθρθLθ]
)

(4.51)

we find the QFI to be

FQ(θ) =
∑

i,j

2

λi + λj

∣∣∣ 〈λi|
∂ρθ
∂θ
|λj〉

∣∣∣
2
. (4.52)

If we are to consider the pure state ρθ = |ψ〉 〈ψ| = ρ2
θ, then we have

∂ρθ
∂θ

=
∂ρ2

θ

∂θ
= ρθ

∂ρθ
∂θ

+
∂ρθ
∂θ

ρθ (4.53)

so from (4.46) we have Lθ = 2∂ρθ∂θ and

FQ(θ) = 4Tr

[
ρ

(
∂ρθ
∂θ

)2
]

= 4
[
〈ψ′(θ)|ψ′(θ)〉 − | 〈ψ′(θ)|ψ(θ)〉 |2

]
(4.54)
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where |ψ′(θ)〉 = ∂
∂θ |ψ(θ)〉. Note that from (4.48), it immediately follows that

∆2θ̂ ≥ 1

νF (θ)
≥ 1

νFQ(θ)
(4.55)

where the latter most inequality is referred to as the quantum Cramér-Rao bound.

4.4 Mach-Zehnder Interferometer

Interferometry exploits the principle of superposition in order to impart and subsequently

infer information of an external physical field of interest. A renowned and early use of this

experimental technique is the 1887 Michelson and Morley experiment [64] in which the

speed of light was shown to be constant, thus paving the way for special relativity. Our

interests lie in a specific kind of interferometer known as the “Mach-Zehnder” interfero-

meter (MZI) [65, 66] as depicted in Fig.4.1. The aim is to measure the phase shift φ as

precisely as possible which results in the question of what to input into the MZI in order

to do so? This is answered in the following.

Figure 4.1: A Mach-Zehnder interferometer (MZI) consisting of two inputs states of light,

a linear crystal referred to as a beam splitter (BS) which allows the states of light to

interact, a phase shift φ on one arm (relative to the other arm), a second beam splitter

which allows for an interference interaction between the now phase-shifted light and finally

two photodetectors output of the MZI.

4.4.1 Independent Photons

To begin answering this question, it is useful to first note that the effect of each beam

splitter is to transform the input creation operators according to the following


a
†
a

a†b


 −→ 1√

2


1 i

i 1




a
†
a

a†b


 (up to an arbitrary phase) (4.56)
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and the overall effect of the MZI, with a phase shift on path b is thus given by


a
†
a

a†b


 −→ 1√

2


1 i

i 1




e

iφ 0

0 1




1 i

i 1




a
†
c

a†d




=


sin(φ/2) cos(φ/2)

cos(φ/2) − sin(φ/2)




a
†
c

a†d


 (4.57)

where, a†c, a
†
d are the creation operators at the output. To gain some physical insight into

the MZI let us consider sending a single photon into input 1 so that we initially have

|1, 0〉a,b = a†1 |0, 0〉a,b −→ sin(φ/2)a†c |0, 0〉c,d + cos(φ/2)a†d |0, 0〉c,d
= sin(φ/2) |1, 0〉c,d + cos(φ/2) |0, 1〉c,d (4.58)

thus the probabilities of detecting a photon at outputs c and d are respectively given by

Pc = sin2(φ/2), Pd = cos2(φ/2). (4.59)

Generalising this to a beam of N independent photons being sent into input 1 is straight-

forward since the number distribution of the photons at the output port is binomial. The

probability mass function thus gives the joint probability that m and N −m particles are

detected at ports c and d respectively as

P (m,N −m) =


N
m


Pmc P

N−m
d =

N !

m!(N −m)!
sin2m(φ/2) cos2(N−m)(φ/2). (4.60)

We also have for a binomially distributed variable x over r experimental repeats with

probability of success p, the mean (expected) value and the variance of x are respectively

given by

〈x〉 = r · p, (∆x)2 = r · p(1− p) (4.61)

thus the mean number of photons and respective variance at output c are

〈nc〉 = N sin2(φ/2), (∆nc)
2 = N cos2(φ/2) sin2(φ/2) =

sin2(φ)

4
(4.62)

with similar analysis and results for output d. So from (4.62) we are able to infer the phase

shift by simply counting the number of photons at each output. Moreover, considering

the propagation of errors

(∆ni)
2 =

∣∣∣∣
∂ 〈ni〉
∂φ

∣∣∣∣
2

(∆φ)2 (4.63)
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it becomes apparent that we have everything we need to determine the precision to which

we know the measured phase. So, using that ∂〈nc〉
∂φ = N

2 sin(φ), we find

(∆φ)2 =
4

N2 sin2(φ)
·N cos2(φ/2) sin2(φ/2) =

1

N

⇒ ∆φ =
1√
N

(4.64)

this is the expected classical result otherwise known as the “Standard Quantum Limit” or,

as will be referred to hereafter, the “Shot Noise Limit” (SNL). An increase in the number

of resources N yields a greater precision.

4.4.2 Coherent State

Here we investigate the effects of sending a coherent state |α〉 into mode a and not sending

anything (which is equivalent to sending the vacuum state |0〉) into mode b as depicted in

Fig.4.2. We also take this opportunity to analyse the unitary operations that model the

Figure 4.2: An MZI with a coherent state input in mode a and a vacuum state in mode b.

action of the beam splitter and phase shift. We begin with the Hamiltonian of the linear

crystal that constitutes the beam splitter which is given by

H0 = ~ω(a†a+ b†b+ 1). (4.65)

The beam splitter can be described by the interaction Hamiltonian (in the Shcrödinger

picture) given by

V = ~κ(eiϕa†b+ e−iϕab†) (4.66)

from which we can show that [H0, V ] = 0 (which implies total photon number is conserved).

Furthermore, we find

VI(t) = eiH0t/~V e−iH0t/~ = V = ~κ(eiϕa†b+ e−iϕab†) (4.67)
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in other words, there is no time dependence. Hence the interaction picture evolution is

given by

|ψ(t)〉 = e−iκt(e
iϕa†b+e−iϕab†) |ψ(0)〉 . (4.68)

Noting that the parameter κ is dependent on the properties of the dispersive linear crystal,

we can choose the crystal properties to fix this parameter and similarly we can choose the

crystal thickness to fix the interaction time t and as such it is useful to define θ = κt.

With this we define the unitary evolution operator

UBS ≡ e−iθ((e
iϕa†b+e−iϕab†)) (4.69)

then setting θ = π/4 (which in practise amounts to careful arrangement of κ and t) yields

the widely used 50:50 beam splitter. The action of a beam splitter on coherent states |α〉
and |β〉 (one in each mode) is then given by

UBS |α〉 |β〉 = exp

[
α√
2

(a† + b†)− α∗√
2

(a+ b)

]
exp

[
β√
2

(b† − a†)− β∗√
2

(b− a)

]
|0〉a |0〉b

(4.70)

then using the BCH formula (2.33) we find

UBS |α〉 |β〉 = exp

[
α− β√

2
a† − α∗ − β∗√

2
a

]
exp

[
α+ β√

2
b† − α∗ + β∗√

2
b

]
|0〉a |0〉b

= |(α− β)/
√

2〉a |(α+ β)/
√

2〉b . (4.71)

Turning our attention to the phase shift operation, we have in the interaction picture

H0 = ~ω
(
a†a+

1

2

)
(4.72)

which, in the Schrödinger picture, gives the interaction Hamiltonian

V = −~κa†a (4.73)

and since [V,H0] = 0, photon number is preserved and VI = eiH0t/~V e−iH0t/~ = V so that

the unitary action of VI is given by

UPS = e−iVI t/~ = eiφa
†a (4.74)

where φ = κt. Returning to the scheme of sending a coherent state |α〉 into input 1 and

the vacuum state |0〉) into input 2 of the MZI, we now have the initial state |ψi〉 = |α〉a |0〉b
and the final state

|ψf 〉 = UBSUPSUBS |ψi〉

= UBSUPS |α/
√

2〉a |α/
√

2〉b
= UBS |α/

√
2〉a |eiφα/

√
2〉b

= |α(1− eiφ)/2〉a |α(1 + eiφ)/2〉b (4.75)
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noting that here, UPS = eib
†b acts only on mode b. The measured intensities at the outputs

will then be

Ic =
|α|2

2
(1− cos(φ)) = |α|2 sin2(φ/2)

Id =
|α|2

2
(1 + cos(φ)) = |α|2 cos2(φ/2) (4.76)

note that the measured intensity is equivalent to the probability of a detection at the given

output. The mean and variance of the detected photon number are found to be

〈n〉 = |α|2 cos(φ)

∆2n = |α|2 sin2(φ) (4.77)

then from (4.63), we find

∆φ =
|α| sin(φ)

||α|2(− sin(φ))| =
1

|α| =
1√
n̄

(4.78)

where we have used the fact that the average number of photons in a coherent state is

given by n̄ = 〈n̂〉 = |α|2.

4.4.3 Entangled Photons

Since quantum mechanics permits correlations amongst photons we can manipulate and

exploit these effects in order to improve upon the precision given by the SNL, indeed this

is the aim of quantum enhanced metrology. An insightful such example of these techniques

is given by preparing the resources (before the phase shift) in the so-called “NOON state”

- a highly correlated state of the original N resources. More concretely, the NOON state is

a maximally entangled state comprising of a macroscopic superposition of all N photons

on one path of the MZI and all N on the other. The state (before the phase shift) is given

by

|ψNOON 〉 =
1√
2

(|N, 0〉a,b + eiNθ |0, N〉a,b) (4.79)

where the value of the phase θ is determined by the specific preparation of the state (it

is not the phase shift of interest) which is a notoriously difficult process in itself [67] but

has been experimentally achieved [68, 69] for up to and including states of size N = 5. It

then becomes apparent that all N photons will be subject to the phase shift on the one

path or nothing will experience the phase shift (cf. independent resource case where half

would and half would not)

|ψ(φ)NOON 〉 =
1√
2

(eiNφ |N, 0〉a,b + eiNθ |0, N〉a,b). (4.80)
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Choosing θ = π/2 and using (4.57), the overall effect of the MZI on the NOON state is

that all photons will be detected at either output c or output d with probabilities

Pc = sin2(Nφ/2), Pd = cos2(Nφ/2) (4.81)

thus the observed interference fringes vary N times faster than the outcome fringes of

sending N independent (uncorrelated) resources through the MZI. Indeed the average

detected photon number is given by

〈n〉 = cos(Nφ) (4.82)

and the variance is found to be

∆2n = sin2(Nφ) (4.83)

then using the propagation of errors (4.63) the precision is found to be

∆2φ =
sin2(Nφ)

(−N sin(Nφ))2
=

1

N2
(4.84)

hence ∆φ = 1/N . This is the optimal rate at which the accuracy of a measurement

can possibly scale with resources and is known as the Heisenberg limit [70]. This can be

mathematically proven by calculating the QFI of the NOON state (as shown below) since

the QFI implicitly optimizes over all possible measurements.

4.4.4 QFI Example

So far we have been bounding the precision of the parameter estimates by the propagation

of errors given by (4.63). Here we take the NOON state example above and find the

associated quantum Cramér-Rao bound via calculation of the QFI. For convenience eqn.

(4.54) is given again here

FQ(φ) = 4
[
〈ψ′(φ)|ψ′(φ)〉 − | 〈ψ′(φ)|ψ(φ)〉 |2

]
(4.85)

where here we have

|ψ(φ)〉 = |ψ(φ)NOON 〉 =
1√
2

(eiNφ |N, 0〉a,b + eiNθ |0, N〉a,b) (4.86)

and

|ψ′(φ)〉 =
iN√

2
eiNφ |N, 0〉 . (4.87)

The relevant state overlaps are then found to be

〈ψ′(φ)|ψ′(φ)〉 =

(−iN√
2
e−iNφ

)
〈N, 0|N, 0〉

(
iN√

2
eiNφ

)
=
N2

2
(4.88)
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and

〈ψ′(φ)|ψ(φ)〉 =
1√
2

(e−iNφ 〈N, 0| − i 〈0, N |) iN√
2
eiNφ |N, 0〉 =

iN

2
(4.89)

so that the QFI is given by

FQ = 4

(
N2

2
−
∣∣∣∣
iN

2

∣∣∣∣
2
)

= 4 · N
2

4
= N2 (4.90)

and the quantum Cramér-Rao bound becomes

∆φ ≥ 1√
FQ

=
1

N
(4.91)

which is the ultimate precision capabilities of the initial NOON state since the QFI impli-

citly optimises over all possible measurements. At this point we take the opportunity to

give a more concrete definition of the Heisenberg limit in conjunction with the Cramér-Rao

bound. There is some discrepancy in the literature with regards to what is specifically

meant by the Heisenberg limit, the general consensus being that it is the regime in which

the precision scales as the inverse of the resources used. We take the following strict

definition that for a precision given by

∆φ =
k

N q
where, q ≤ 1 (4.92)

for some constant k and where N is the mean number of resources used, the Heisenberg

limit is attained when q saturates its bound. So we cannot achieve a scaling better than q =

1 but can aim to minimise k. As evidenced by the NOON state, a 1/
√
N enhancement in

precision over the SNL is achievable in principle when using the same number of resources

but employing correlations. This seems like a fantastic result but the NOON state has some

drastic drawbacks; as previously mentioned it is very difficult to prepare, but moreover, it

is extremely susceptible to decoherence once prepared. Indeed if we take a rough model of

decoherence to be a measurement made by the environment on the system, the qualitative

effect of decoherence becomes apparent - the superposition of the state must collapse onto

one of its components

|ψ(φ)NOON 〉 =
1√
2

(eiNφ |N, 0〉a,b + eiNθ |0, N〉a,b) −→




eiNφ |N, 0〉 , (1)

eiNθ |0, N〉 , (2)

(4.93)

so if we obtain case (2) we clearly cannot determine any information about the phase of

interest φ. However, if case (1) is obtained it may seem like we can infer some information

about φ but this is now a global phase and thus unmeasurable. Taking the more rigorous



65

quantum jump approach [21] yields a mathematical description of the state given by the

density matrix

ρ =
1

2
e−γt(eiNφ |N, 0〉+ eiNθ |0, N〉)(eiNφ 〈N, 0|+ eiNθ 〈0, N |)

+
1

2
(1− e−γt)

∑

1

Cn(|n, 0〉 〈n, 0|+ |0, n〉 〈0, n|) (4.94)

where, t is the time of evolution and γ is the rate that photons are lost by the field (the

emission rate) which here, is dependent on the number of photons N . Our interest lies in

the first term of (4.94) containing information on the phase shift of interest. This term is

associated with an exponentially decreasing factor dependent on γ hence this term rapidly

falls off leaving the much more probable classical result given by the second term which

contains no information on the phase shift.
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Chapter 5

Quantum Correlations in

Quantum Enhanced Metrology

In this chapter, the role of quantum correlations in the setting of optical quantum en-

hanced metrology protocols are investigated. In particular, two distinct types of quantum

correlations used in probe states are identified and contrasted in terms of the precision

enhancements and the practicalities of implementation.

This chapter is based on the papers:

(1) Practical quantum metrology with large precision gains in the low photon number re-

gime, P A Knott, T J Proctor, A J Hayes, J P Cooling and J A Dunningham, Physical

Review A 93, 033859 (2016)

(2) Local versus global strategies in multiparameter estimation, P A Knott, T J Proctor,

A J Hayes, J F Ralph, P Kok and J A Dunningham, Physical Review A 94, 062312 (2016)

5.1 Quantum Correlations

A quintessential application of quantum enhanced metrology involves the utilisation of

quantum mechanical correlations (i.e correlations present in nature that cannot be un-

derstood through a classical description) among the resources that constitute the probe

state (typically particles such as photons or cold atoms), this can result in higher precision

measurements with lower particle flux. This is especially useful for biological sensing [20]

where radiation incident on the sample could appreciably damage it [71]. Another relev-

ant potential application is that of gravitational wave detection [19] where the mirrors can

suffer from distortion if the photon flux is too high [72, 73]. Here we focus on optical MZI
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schemes where we investigate how to use quantum correlations in order to improve on

the SNL, much like in the NOON state example given in the subsections 4.4.3 and 4.4.4.

Moreover, we pay close attention to the type of correlations we employ and in anticipation

of this we identify two distinct types of correlations:

• Intramode correlations are the interdependence of resources established within a

spatial mode of the MZI.

• Intermode correlations are the interdependence of resources established between

the spatial modes of the MZI.

In the example of the NOON state, entanglement establishes correlations between spatial

modes hence the scheme utilises intermode correlations. The reader is also reminded that

the practicalities of these particular probe states posit severe limitations in the practical

metrological usage of them. A renowned example of the use of intramode correlations is

Figure 5.1: The gravitational wave detection scheme as proposed by C. Caves [74] using

a Michelson interferometer. A squeezed vacuum state |ζ〉 is injected into the previously

unused port thus introducing intramode correlations into the scheme.

the scheme put forward by Caves in 1981 [74] which modified the usual usage of a Michelson

interferometer (essentially a MZI folded in on itself and is in fact mathematically equivalent

in its description). The original scheme involved a coherent state of light being injected

into one of the ports of the interferometer and the other port was left unused (equivalent to

a vacuum state |0〉 input) as displayed in Fig.5.1. A gravitational wave imparts a change in

the path length of only one arm of the interferometer which consequently shifts the position

of the associated mirror and results in a phase difference between the light on different
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arms of the interferometer. Caves introduced intramode correlations to this scheme by

analysing the effects of injecting a squeezed vacuum state into the previously unused arm of

the interferometer. Using this technique with N resource photons and squeezing strength

ζ = reiθ it can be shown that phase estimates can be made, in principle, to the following

precisions

∆φ =





e−r√
N

for N � r

1
N3/4 optimising over r

1
N optimising over measurements

(5.1)

and furthermore, it has been shown [75] that when photon losses are accounted for in the

limit of large photon number N , this scheme is actually optimal which, in stark contrast

to the intermode-correlated probe states, demonstrates the robustness of the intramode

correlations approach. Given that both the NOON state example and the Caves scheme

can in principle achieve the Heisenberg limit and that they rely on inter- and intra-mode

correlations respectively, we investigate the usefulness of each type of correlation and put

our findings to use by introducing previously unexplored probe states that are constructed

based on the following investigation and yield large precision gains.

5.1.1 QFI for Path-Symmetric Pure States

Figure 5.2: The general interferometry scheme used in the following investigation. Path

symmetric states are used to exploit the natural symmetries of the MZI.

The following exploits the natural symmetries of the MZI in that we only consider pure,

path-symmetric states, as depicted in Fig.5.2. It is first useful to note that if the phase is

imprinted onto the probe state through a unitary operator of the form Û(φ) = exp(iφÔ)

we are able to rewrite the QFI (4.85) as

FQ = 4(〈Ô2〉 − 〈Ô〉2) = 4(∆2Ô). (5.2)
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The probe state in Fig.5.2 undergoes a phase shift that affects each mode and is of the

form U = exp[i(φaa
†a+φbb

†b)], then defining Ô± = (a†a± b†b) and φ± = φa±φb we have

U = exp[i(φ+Ô+ + φ−Ô−)] (5.3)

noting that the phase difference φ− = φa − φb is the quantity of interest. There are

some subtleties of phase estimation that must be addressed here and have been detailed

in Ref. [76]; if the phases φa and φb are both defined relative to some reference phases

(independently) then the estimation of φ± is a two parameter problem requiring a two-

parameter form of the QFI (known as the quantum Fisher information matrix). On the

other hand, if no reference phases are available then the sum φ+ is of no relevance and must

be averaged over, however for a path-symmetric pure state it has been shown [76] that the

QFI is unaffected by such phase averaging and is in fact given by FQ = ∆2(a†a − b†b) ≡
var[a†a − b†b] then since the number operators are given by n̂a = a†a and n̂b = b†b, the

QFI can be expressed as

FQ = 2
(
〈n̂2
a〉 − 〈n̂a〉2 − 〈n̂a ⊗ n̂b〉+ 〈n̂a〉 〈n̂b〉

)

= 2 (var[n̂a]− cov[n̂a, n̂b]) . (5.4)

where we can replace n̂a with n̂b in the variance term. Furthermore, we note that it has

been shown [77] that for all path-symmetric pure states the optimal measurement scheme

is to perform mixing of the two modes via a balanced beam splitter and count the photon

number at the outputs. From this we can in fact rewrite the QFI once more in a form that

plainly reveals the role of intra- and inter-mode correlations. To this end, we introduce

the Mandel Q parameter defined as Q = (var[n̂a]− 〈n̂a〉)/ 〈n̂a〉 and the mode correlation

factor J = cov[n̂a, n̂b]/var[n̂a], it is then just a case of simple rearrangement to arrive at

the following form of the QFI

FQ = n̄(1 +Q)(1− J ) (5.5)

where n̄ is the average photon number in each mode and as noted in Ref. [78] the mode

correlation factor is bounded −1 < J < 1 in contrast to the Mandel Q factor which has

no upper bound. Since the Mandel Q parameter is a variance based quantity whereas

the correlation factor is covariance based, this immediately suggests that the intramode

correlations can contribute more to precision gains than the intermode correlations. The

following work looks to investigate and exploit this indicative result.
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5.2 Squeezed-Entangled State

Since it is clear that both intra- and inter-mode correlations can contribute to precision

enhancements, we introduce a state that utilises both types of correlations which we refer

to as the Squeezed-Entangled state (SES) and is of the form

|ψSES〉 = N (|ζ, 0〉+ |0, ζ〉) (5.6)

where the normalisation factor is given by

N =

[
2

(
1 +

1

cosh(|ζ|)

)]−1/2

. (5.7)

In order to find the QFI, as given by (5.4), we first evaluate the term

var[n̂a] = 〈ψSES | (a†a)2 |ψSES〉 − (〈ψSES | a†a |ψSES〉)2

= N 2 〈ζ| (a†a)2 |ζ〉 − N 4 〈ζ| a†a |ζ〉 (5.8)

where we have used a |0〉a = 0, then noting that the last term is simply the average photon

number of the squeezed vacuum state and is well known to be 〈ζ| a†a |ζ〉 = sinh2(r) we are

left with the task of evaluating the first term which, using the shorthand Ŝ(ζ) ≡ S can be

expressed as

〈ζ| (a†a)2 |ζ〉 = 〈0|S†a†SS†aSS†a†SS†aS |0〉 (5.9)

then using the transformations given by (2.49) we are left to deal with a lot of terms but

due to the action of the annihilation operator on the vacuum state many of the terms

vanish and we find

〈ζ| (a†a)2 |ζ〉 = 2 sinh2(r) cosh2(r) + sinh4(r) (5.10)

so that

var[n̂a] = N 2 sinh2(r)
[
2 cosh2(r) + sinh2(r)

]
−N 4 sinh2(r). (5.11)

For the covariance term in (5.4), we immediately note that again from the action of the

annihilation operator on the vacuum state

〈ψSES | n̂an̂b |ψSES〉 = N 2 (〈ζ, 0|+ 〈0, ζ|) a†ab†b (|ζ, 0〉+ |0, ζ〉) = 0 (5.12)

and moreover, since we are dealing with path symmetric states we have 〈n̂a〉 = 〈n̂b〉. The

expression for the covariance is then

cov[n̂a, n̂b] = 〈n̂an̂b〉 − 〈n̂a〉 〈n̂b〉

= −(〈ψSES | a†a |ψSES〉)2

= −N 4 sinh2(r) (5.13)
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FIG. 1. The QFI (plotted against average photon number n̄)
for both the squeezed-entangled state (SES) and the squeezed
cat-state (SCS) shows dramatic improvements over the com-
monly used states for optical quantum metrology, includ-
ing Caves’s state (SVCS), the optimal Gaussian state (SSV),
and the NOON state. Furthermore, the squeezed cat-state
has been made experimentally [14–16], and in this paper we
present a measurement scheme that can be employed to read
out the phase.

cant disadvantage that it is not clear if a simple high-
fidelity preparation procedure can be found. Hence we
introduce a practical alternative, the ‘squeezed cat-state’
(SCS), which has been demonstrated experimentally [14–
16]. The quantum Fisher information (QFI) is a useful
and commonly used measure which quantifies the phase
precision obtainable using a given probe state, and us-
ing this metric the potential for phase estimation of both
states proposed herein is shown in Fig. 1 (the requisite
QFI formalism will be provided in the next section). In-
triguingly, as well as being more practical, the SCS also
outperforms the SES, showing that this state is of great
interest from both a practical and theoretical perspec-
tive. Furthermore, it will be seen that the SCS is robust
enough to exhibit a precision advantage with up to 27%
photon loss. Finally, it is shown that high-precision phase
measurements can be obtained both in the ideal and lossy
cases using a photon-number counting measurement.

CORRELATIONS IN OPTICAL METROLOGY

We begin by reviewing the relevant background ma-
terial. In this work we consider the standard optical

BS

Photon
Count

Photon
Count

Loss

Loss

State
preparation:

FIG. 2. A quantum state |Ψ〉 is prepared as an input into
the arms of an interferometer which contains an unknown
relative phase shift φ ≡ φa−φb, generated by the linear phase
shift unitary operator Û = exp(i(φan̂a + φbn̂b)). For the
states introduced herein the optimal measurement scheme is
mixing the modes on a balanced (50:50) beam splitter (BS),
followed by photon number counting. When photon losses
are considered these can be modelled by ‘fictitious’ variable
transmissivity beam splitters after the phase shift.

phase estimation problem of measuring a phase differ-
ence φ between two optical modes containing unknown
linear phase shifts, as shown in Fig. 2. This is appli-
cable to a wide range of physical scenarios and is the
canonical approach to a very broad range of metrology
schemes. The fundamental limit to the precision with
which a state ρ can measure the phase φ is given by the
quantum Cramér-Rao bound (CRB) [26, 27]:

∆φ ≥ 1√
µFQ(ρ)

, (1)

where µ is the number of independent repeats of the
experiment and FQ(ρ) is the QFI of ρ. For pure and
path-symmetric states (only path-symmetric states will
be considered herein) it is shown in Appendix A that the
relevant QFI is simply given by

FQ(Ψ) = 2 (VarΨ − CovΨ) , (2)

where VarΨ = 〈n̂2
a〉 − 〈n̂a〉2 is the variance of the photon

number in mode a (or mode b) and CovΨ = 〈n̂a ⊗ n̂b〉 −
〈n̂a〉〈n̂b〉 is the covariance of the two modes (the expec-
tation values are taken with respect to the state |Ψ〉).
This explicitly highlights the roles played by inter- and
intra-mode correlations.

We now introduce the relevant states in the quantum
metrology literature. In the following we denote a co-
herent state and a squeezed vacuum by |α〉 ≡ D̂(α)|0〉
and |z〉 ≡ Ŝ(z)|0〉 respectively (α, z ∈ C) where the
displacement operator is D̂(α) = exp (αâ† − α∗â) and

the squeezing operator is Ŝ(z) = exp
[

1
2 (z∗â

2 − zâ†2)
]
.

Caves [5] proposed the use of squeezing to enhance the
phase precision via a probe state obtained from mix-
ing a squeezed vacuum and a coherent state (SVCS)
on a balanced (50:50) beam splitter, which is given by

Figure 5.3: [79] Plots of the quantum Fisher information for the NOON state, the Squeezed

Entangled State (SES), the Separable Squeezed Vacuum (SSV), the Caves’ Squeezed-

Vacuum-Coherent-State (SVCS) and the Squeezed Cat State (SCS).

and the QFI is found to be

FQ = 2 (var[n̂a]− cov[n̂a, n̂b])

= 2N 2 sinh2(r)
[
2 cosh2(r) + sinh2(r)

]
. (5.14)

The mean number of particles in the whole state is given by

n̄ = 2 〈ψSES | a†a |ψSES〉 = 2N 2 〈ζ| a†a |ζ〉 = 2N 2 sinh2(r) (5.15)

where the factor of 2 is due to the symmetry of the modes. The QFI can then be rewritten

as

FQ = n̄

(
2 +

3n̄

2N 2

)
(5.16)

then for r � 1 we have N 2 ≈ 1/2 and thus FQ ≈ n̄(3n̄+2) which, in the asymptotic limit,

is a factor 3 improvement over both the NOON state and the probe state used in the Caves

scheme. In Fig.5.3 we compare the QFI of these probe states in addition to another notable

state — the separable squeezed vacuum state (SSV) — given by |ψSSV 〉 = |ζ〉a ⊗ |ζ〉b
which can be made using only Gaussian operations and is the optimal such state with

FQ = n̄2+2n̄. From the plots in Fig.5.3 it is apparent that in the low photon number regime

n̄ ≈ 1, the precision gains are even more substantial with FQ(ψSES) ≈ 7F (ψNOON ) and

moreover, the potential for precision gains through the use of the SES and in particular,

through the use of the combined intra- and inter-mode correlations, is clearly depicted.
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5.3 Squeezed-Cat State

Although the SES shows great potential for high precision gains, the practicalities of

engineering such a state severely impede it’s metrological use. The underlying reasons

become apparent when considering the fact that the SES is a coherent superposition of

the NOON state and although techniques exist for creating NOON states [67] the non-

linearities required for this are difficult to implement in practise. Furthermore, the result

(5.5) suggests that the largest contribution in sensitivity should come from the Mandel

Q parameter i.e intramode correlations. This motivates the investigation into a more

practically viable, intramode correlated probe state. In order to find such states, we turn

our attention to the non-Gaussian Cat States as given by (2.88) which are superpositions

of coherent states and analyse the effect of squeezing on these state. The squeezed cat

state (SCS) is then given by

|ϕSCS〉 = N Ŝ(ζ)(|α〉+ |−α〉) (5.17)

where the normalisation factor is given by N = (2 + 2e−2α2
)−1/2. For phase estimation as

depicted by Fig.5.2, a two-mode state must be considered so we investigate the state

|ψSCS〉 = |ϕSCS〉a ⊗ |ϕSCS〉b (5.18)

so this probe state does not exhibit any mode entanglement and thus it does not exhibit

any intermode correlations. The QFI is now calculated using (5.4) and noting at once

that cov[n̂a, n̂b] = 0 since the state is mode separable thus FQ = 2var[n̂a]. With this, after

some algebra we find

FQ = 4(s4
1 + s2

1) + 2α2(κc4 − s4) + 2α4
[
c4 − κs4 − (κc2 − s2)2

]
(5.19)

using the shorthand where, sk ≡ sinh(kζ), ck ≡ cosh(kζ) and κ = (2 − 2e−2α2
)(2 +

2e−2α2
)−1. Furthermore, the average total photon number can be found to be

n̄ = 2s2
1 + 2α2(κc2 − s2) (5.20)

from which it is evident that the QFI cannot be expressed directly in terms of n̄. Note

that in the limit of α → 0 the QFI becomes FQ = n̄2 + 2n̄ which is exactly that of

the SSV. Since the SSV is the optimal Gaussian state, it is clear that this non-Gaussian

outperforms all Gaussian states. In Fig.5.3, the QFI is optimised over α and ζ and it

is apparent that the SCS provides vast improvements over the NOON state, the Caves

state and the SSV. Some small gains over the SES are achieved by the SCS but it’s
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Figure 5.4: Plots of the Wigner functions for the Cat State (left), the Squeezed Cat State

(centre) and the phase-shifted Squeezed Cat State (right). It is evident that squeezing the

cat state reduces the overlap of the fringes of the states before and after a phase shift.

crucial advantage over the SES is that it has been experimentally realised [80, 81, 82].

For example, the method of Huang et. al [82] initially prepares two separate squeezed

vacuum states and subjects one to a π/2-phase shift before interacting the states in a

beam splitter of variable transmissivity, finally a photon number counting measurement

is performed on a single mode thus heralding the SCS on the other. The SCSs they are

able to produce are of 67% fidelity and of amplitude |α| =
√

3. In principle, one could

directly apply squeezing [83, 84, 85] to a Cat State since there are a myriad of techniques

to experimentally generate Cat States [86, 87, 88]. In order to gain some intuition on

what is generating these high precision gains we turn to the Wigner function, as defined

in subsection 2.2.1, to help visualize the measurement protocol. The Wigner function and

the QFI are in fact related through a mathematical object known as the fidelity where

for the state |ψ〉 and the infinitesimally phase-shifted state |ψ(δφ)〉 the fidelity is given by

F ≡ | 〈ψ(δφ)|ψ〉 |2 [89]. In turn, the fidelity is given in terms of the Wigner function as

F = π

∫
d2αWψWψ(δφ) (5.21)

thus if the overlap of the Wigner function of the state before the phase shift with the

Wigner function of the state after the phase shift is small, the QFI will be large. Hence it

is desirable for a phase shift to result in as little overlap of the associated Wigner functions

as possible. Indeed from Fig.5.4 it is evident that the precision enhancement comes from

the small overlap of the fringes - which is a manifestation of the quantum interference of the

superposition state - of the state of the probe before and after the phase shift which is given

by a rotation in phase space. Clearly, the greater the squeezing, the smaller the overlap and

consequently, the greater the sensitivity. The detection scheme is a combination of mode

mixing and photon counting; photon resolving detectors are an area of active research

[90] and devices of high resolution in the low photon regime have been demonstrated

[91, 92, 93] which is of particular relevance to this the present work. By considering this
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classical Fisher information, this measurement scheme can be shown to be optimal [79].

This has demonstrated that intramode correlations alone can provide substantial precision

gains and has the advantage that the preparation of these probe states are more practical

than their intermode-correlated counterparts. Furthermore, it was shown in Ref. [79] that

the SCS demonstrates the potential for robust phase measurements up to 27% loss.

5.4 Multiparameter Estimation

Figure 5.5: The general setup of a quantum optical multiparameter estimation scheme in

which the “preparation” stage involves the creation of an M -mode probe state which is

subject the ~θ = (θ1, ..., θM ) linear phase shifts and subsequently the multiple parameters

φi for i ∈ {1, ..., d}, which are functions of ~θ, are read out in the “measurement” stage.

It is often desirable to estimate multiple parameters at once, gravitational wave detec-

tion is one such instance [94] in which knowledge of quantities such as direction and polar-

isation of the wave are desired. Under this generalisation, we once again ask: which type of

quantum correlations can better offer practically attainable, higher precisions? Multimode

entanglement schemes which simultaneously measure all parameters have been shown to

offer substantial precision gains [95], however this scheme only deals with fixed photon

number states (a constraint that is relaxed in the following work) and it has also been

shown that multimode entanglement can be detrimental to quantum metrological proto-

cols [96, 97]. The general problem of multiparameter estimation is depicted in Fig.5.5, the

aim is to estimate d parameters given by the vector ~φ = (φ1, φ2, ..., φd). In order to estab-

lish a precision bound on the ith parameter, the notion of QFI is extended to encompass

multiple parameters. To this end, we introduce the quantum Fisher information matrix

(QFIM) which is defined by [63]

FQlm = 〈ψ(~φ)| (LlLm + LmLl) |ψ(~φ)〉 (5.22)
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where Ll is the symmetric logarithm derivative, given by

Ll = 2
(
|∂lψ(~φ)〉 〈ψ(~φ)|+ |ψ(~φ)〉 〈∂lψ(~φ)|

)
(5.23)

with |∂lψ(~φ)〉 = ∂
∂φl
|ψ(~φ)〉. The imprinting of the phase information of multiple paramet-

ers onto some (~φ independent) multimode probe state |ψ〉 is mathematically modelled by

the unitary operator

U(~φ) = exp

(
i

d∑

i=1

φiÔi

)
(5.24)

where the operators denoted by Ôi are Hermitian and are mutually commutative [Ôi, Ôj ] =

0, ∀i, j. With this, we find the QFIM reduces to

FQlm = cov[Ôi, Ôj ] (5.25)

where the covariance is taken with respect to the initial (~φ independent) state |ψ〉. For

the case of optical M -optical mode phase estimation, as given in Fig.5.5, we take Ôi = n̂i,

the number operator, so the phase shift generator is given by

U(~θ) = exp


i

M∑

j=1

θjn̂j


 (5.26)

where, as will become apparent in the specific examples that follow, d ≤ M and φi is a

function of θj .

5.5 Local vs. Global Strategies

Multiparameter estimation schemes in the context of optical quantum metrology schemes

have been shown to offer precision enhancements [95, 98, 99] but the origin of these

enhancements is not known. This issue is investigated here through considering how the

types of correlations used affect the precision enhancements furthermore, the practicalities

of such schemes are highlighted here. As such we define a “local estimation strategy” as a

scheme in which the input (~φ independent) state is separable and the final measurements

made are attained using exclusively local operations. This means that in a local multimode

estimation strategy, each parameter can be estimated individually. With this we define

a “global estimation strategy” as any strategy that is not local. We now present two

examples of global schemes with local analogues and show that for probe state with unfixed

photon number, a key resource for high precision gains is a large photon number variance.
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Figure 5.6: A network of quantum sensors modelled by a multimode collection of parallel

Mach-Zehnder interferometers, each of which yields a phase difference to be measured.

5.5.1 Parallel Interferometers

The first example considered is essentially a generalisation of the MZI to the multipara-

meter setting, this can be thought of as a network of quantum sensors and has practical

application to gravitational wave detection [94]. Using Fig.5.5 as a starting point, we take

M = 2d, where the ith interferometer is given by the modes 2i−1 and 2i with i ∈ {1, ..., d}
and we re-parametrize the phase shifts to the phase sum and difference within the ith in-

terferometer (the latter quantity being the parameter of interest) i.e φi± = θ2i−1 ± θ2i as

depicted in Fig.5.6. Consequently, the phase shift operator takes the form of

U(~φ) = exp

(
i

d∑

i=1

[
φi−Ôi− + φi+Ôi+

])
(5.27)

where, ~φ = (φ1− , ..., φd− , φ1+ , ..., φd+) and the Hermitian generating operators are given

by

Ôi± =
1

2
(n̂2i−1 ± n̂i) (5.28)

thus the QFIM takes the form FQ
i±j± = 4cov[Ôi± , Ôj± ]. Since we are dealing with a network

of MZIs, we are again able to exploit the natural symmetries and as such we consider states

that are symmetric with respect to swapping interferometer labelling and symmetric with

respect to swapping the modes in each interferometer hence the variances of all the modes

are equal var[n̂i] = var[n̂j ] ≡ V . Furthermore, the covariances of two modes within the

same interferometer are equal for any two interferometers C2i−1,2i = C2j−1,2j ≡ CIntra

where Ci,j ≡ cov[n̂i, n̂j ] and additionally C2i−1,j = C2m−1,n ≡ CInter for j 6= 2i − 1, 2i

and n 6= 2n − 1, 2n. For the case of both parameters taking “±” the QFIM can then be

expressed as

FQ
i±j± = C2i−1,2j−1 + C2i,2j ± C2i,2j−1 ± C2i−1,2j (5.29)
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and for the case of opposite signs we find

FQ
i±j∓ = C2i−1,2j−1 − C2i,2j ± C2i,2j−1 ∓ C2i−1,2j (5.30)

from which it is evident that FQ
i±j∓ = FQ

i−j− = 0, ∀i 6= j and that FQ
i+j+

= 4CIntra, ∀i 6= j.

For the case of i = j we have FQ
i±j∓ = 0 (off-diagonals of the QFIM) and FQ

i±j∓ =

2(V ± CIntra) (diagonals terms of the QFIM). The QFIM can then be expressed as

FQ =


2(V − CIntra)I 0

0 M


 (5.31)

where, I is the d × d dimensional identity matrix and M = λ(I + ωI) with λ = 2(V +

CIntra−2CInter), ω = 2CInter/(V +CIntra−2CInter) and I is the d×d dimensional matrix of

all 1’s. Calculation of the corresponding quantum Cramér-Rao bound requires finding the

inverse of the QFIM and consequently the inverse of M , indeed the inverse of any matrix

of the form M is given by

M−1 =
1

λ

(
I− ω

1 + ωd
I
)

(5.32)

but this term is not of physical consequence as we are interested in the φi− terms only; this

quantity is required only for the calculation of the terms of interest. The inverse QFIM is

then

FQ =


2(V − CIntra)−1I 0

0 M−1


 (5.33)

and the bound on precision for the parameter of interest is found to be

∆2φi− ≥
1

2(V − CIntra)
(5.34)

noting that this is for the individual phases. From this we can conclude that the variance of

the probe state’s photon number and the correlations within an individual interferometer

are the only quantities that affect the precision of the phase estimate and hence entan-

glement between interferometers (sensors) is not necessary. Further understanding can be

attained by rewriting (5.34) in terms of the Mandel Q parameter and the correlation para-

meter which for multimode schemes, are given by Qi = (Vi− n̄i)/n̄i and Jij = Ci,j/
√
ViVj

respectively. Since in this example all modes have the same Qi we denote Qi ≡ Q and we

have for the correlation parameter Jij = CIntra/V ≡ J so that (5.34) becomes

∆2φi− ≥
1

2n̄(1 +Q)(1− J )
(5.35)
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where, n̄ = n̄i = 〈ni〉 is the average photon number in the individual ith mode. Noting

again that Q is not bounded above but the correlation factor is bounded by −1 ≤ J ≤ 1,

it is apparent that correlations between modes within each interferometer can provide a

maximum of a factor 1/
√

2 improvement, so there is far greater potential for precision

gains through increased photon number variance which contributes to the Q parameter.

Generalised Entangled Coherent State

In the established setting of a network of parallel interferometers, we now contrast specific

global and local strategies through the analysis of a multimode entangle state and the

analagous mode separable state. For this, the generalised entangled coherent state (GECS)

is introduced as

|ψGC〉 = Ng
∑

a∈M
D̂a(αg) |~0〉 (5.36)

where D̂a(αg) is the displacement operator (2.32) acting on the ath mode, Ng is the

normalisation factor, M is the set of M = 2d modes and |~0〉 is the vacuum state of the

M = 2d states. The precision bound is found to be

∆2φGC ≥
d

N̄g(|αg|2 + 1)
≈ d

N̄g(N̄g + 1)
(5.37)

where the total average photon number is N̄g = |αg|2/[1+(2d−1)e−|αg |
2
] and for |αg| � 1

it follows that N̄g ≈ |αg|2. Noting that if each interferometer is considered separately, the

standard quantum enhanced precision is the Heisenberg scaling ∆2φ ≥ 1/(2n̄)2 = d2/N̄2

where the total average photon number N̄ = 2dn̄, it is then clear that the GECS yields

an order d improvement over the standard quantum enhancement. Now, consider the

analagous mode-separable unbalanced cat state (UCS) given by

|ψUCS〉 = Nc(|αc〉+ ν |0〉)⊗2d (5.38)

where Nc is a normalisation factor and ν ∈ R is a weighting parameter. The precision

bound is found to be

∆2φUCS ≥
d

N̄c

(
|αc|2 + 1− N̄c

2d

) ≈ d

N̄c

(
ν2

2d N̄c + 1
) (5.39)

where, N̄c = 2d|αc|2/(ν2 + 1 + 2νe−|αc|
2/2) and the approximation holds for |αc| � 1.

For a balanced cat state (ν = 1) the precision bound scales as the standard quantum

enhancement, but when taking ν2 to scale with d the bound scales an order of d better

i.e the mode-separable UCS performs just as well as the GECS. Moreover, holding the
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total photon numbers equal N̄c = N̄g and taking |αc|, |αg| � 1, then for ν2 > 2d we

have ∆2φUCS < ∆2φGC . Not only can the UCS provide higher precision estimates, all

measurement operations are local and can be achieved via two-mode mixing and photon

counting which, as previously mentioned, is the optimal measurement for path-symmetric

pure states [77]. In contrast to this, global measurement strategies generally require much

more practically demanding measurement techniques.

5.5.2 Multimode Quantum Enhanced Imaging

Here we investigate a scheme put forward by Humphreys et. al [95] in which d phase

shifts are measured relative to one reference mode akin to quantum imaging protocol

[100, 101, 102]. Again using Fig.5.5 as a starting point, we take M = d + 1 to be the

number of modes and ~φ = (φ1, ..., φd) where, φi = θi − θd+1. Setting θd+1 = 0 gives the

generator of φi to be n̂i and as such the QFIM becomes FQij = 4cov[n̂i, n̂j ]. Once again

there is a symmetry in the system that can be exploited, thus we take symmetry between

the d modes of the probe state (this does not include the reference mode in general) which

gives Vi = Vj ≡ V, ∀i, j and Ci,j = Cm,n ≡ C, ∀i 6= j,m 6= n so it immediately follows

that FQii = 4V, ∀i and FQij = 4C, ∀i 6= j. The QFIM then takes the form

FQ = 4(V − C)

(
I+

C

V − C I
)
. (5.40)

Again, the inverse of a matrix of this form is given by

(FQ)−1 =
1

4(V − C)

(
I− C

V + (d− 1)C
I
)

(5.41)

so that the bound on the precision estimate is given by

∆2φi ≥
V + (d− 2)C

4(V − C)[V + (d− 1)C]
. (5.42)

Again, further understanding can be gained through expressing this bound in terms of the

Mandel Q parameter and the mode correlation function J = C/V

∆2φi ≥
f(d,J )

4n̄(1 +Q)(1− J )
(5.43)

where n̄ is the average photon number in the individual mode and

f(d,J ) =
1 + (d− 2)J
1 + (d− 1)J ≈ 1 for d� 1. (5.44)

Again, since the correlation factor is bounded and the Mandel Q parameter is not bounded

above, it is clear that multimode correlations can only provide a small constant factor to

the precision enhancements on the estimates.
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Generalised NOON State

Here we build upon the specific example provided by Humphreys et. al which uses the

generalised NOON state which is given by

|ψGN 〉 =
1√
d+ γ2

[|N, 0, ..., 0, 0〉+ |0, N, ..., 0, 0〉+ ...+ |0, 0, ..., N, 0〉+ γ |0, 0, ..., 0, N〉]

(5.45)

where γ ∈ R is a weighting parameter for the reference mode. The precision bound is

given by

∆2φGN ≥
(d+ γ2)(1 + γ2)

4γ2N2
(5.46)

which is minimised at γ = d1/4

∆2φGN ≥
(1 +

√
d)2

4N2
(5.47)

which is an order d improvement over the standard quantum enhancement, note that γ = 1

gives equivalent scaling. This demonstrates the benefits of a global estimation strategy for

states of fixed total photon number, we now consider the larger class of states which have

fixed average photon number. To this end, the mode-separable unbalanced “NO” (UNO)

state is introduced

|ψUNO〉 = NU (|N〉+ ν |0〉)⊗M (5.48)

where NU is the normalisation factor and ν ∈ R is a weighting parameter. Setting ν =

1 gives the same precision bound scaling as M individual NOON states. Setting ν =
√
d+ γ2 − 1 (or indeed just demanding ν ∝

√
d) yields the precision scaling (5.46) given

by the GNS. A multimode measurement is required for the GNS [95] whereas the UNO

state scheme only requires a collection of single mode measurements to be performed

after the phase shifted probes have mixed with the reference mode (the particular mixing

mechanism depends on the particular probe state used).

5.5.3 General Procedure

From the previous analysis, it has become apparent that the key characteristic for the large

precision gains in multimode optical quantum metrology schemes is strong correlations

within each mode and as such, multimode entanglement is not an essential property to

this end. Considering the GNS, the precision enhancements can be attributed to the

scaling of the Mandel Q parameter where, denoting the order of scaling by O(·), we have
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Q = O(dn̄) = O(N̄) as opposed to O(n̄), so for fixed n̄ the global strategy grows with

number of modes d but since the Q is a local property of the individual mode, the same

scaling can be achieved through a judicious choice of a mode-separable state. Indeed, for a

general M -mode path-symmetric state |Ψ〉, it is possible to construct a single-mode state

|ψ(Ψ)〉 =
∞∑

n=0

| 〈n|Ψ〉 | |n〉 (5.49)

so that by construction, the M -mode separable state |ψ(Ψ)〉⊗M and the global state |Ψ〉
both contain the same average number of photons and Q(|Ψ〉) = Q(|ψ〉⊗M ). Therefore,

the separable analogue of any multimode scheme can be tuned to outperform the global

strategy which can only exhibit a factor of
√

2 improvement over the separable state before

any modifications are made to it.

In this chapter, we have shown that local estimation schemes can perform just as well

and even surpass global estimation strategies. Moreover, local strategies offer import-

ant practical advantages such as flexibility in the distribution of resources in the probe

state over the modes, easier probe state preparation as entanglement is not necessary

and robustness to local estimation failure; if estimation fails on one mode, the rest of the

measurements are still valid whereas this is not the case for a global scheme due to the

multimode entanglement.
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Chapter 6

Quantum Metrology with Time as

a Limited Resource: Concurrent

State Preparation and Readout

In this chapter we analyse the traditional quantum metrology protocol under the real-

istic condition of time being a limited resource and propose a more effective use of this

resource. This is achieved through the investigation of an N spin-1/2 system used for

magnetic field sensing. We investigate two distinct protocol; one of which explicitly takes

into account non-negligible state preparation and sensing times while the other also in-

cludes non-negligible readout times. Using the natural transition from the N -spin system

to the optical setting provided by the N →∞ bosonic limit, we are also able to perform a

similar analysis in the optical setting. It is revealed that entanglement does not necessarily

improve upon classical sensing schemes and furthermore, that the time limited resource is

used more effectively if we are to concurrently sense during state preparation and readout.

This chapter is based on the paper:

Making the most of time in quantum metrology: concurrent state preparation and sens-

ing. A J Hayes, S Dooley, W J Munro, K Nemoto and J A Dunningham, 2018 Quantum

Science and Technology, 3(3), 035007.

6.1 Magnetic Field Sensing and Two-Axis Twisting

A quantum metrology protocol is typically ordered into three stages: i) Probe state pre-

paration, in which quantum mechanical correlations are introduced to a system that will
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be used as a probe. Examples include the generation of spin squeezed states [103] or of

Cat States [104, 105]. ii) Sensing, in which the probe is subject to, and consequently

altered by, a parameter of interest. The quantum mechanical correlations introduced in

the preparation stage increase the probe’s susceptibility to alterations caused by this para-

meter beyond classical limits. iii) Readout, in which a final measurement is made on the

altered probe state enabling estimation of the parameter of interest. The three stages of

the protocol take a combined time τ as depicted in Fig.6.1. Usually, the state preparation

and readout times are assumed to be negligible, so that the total time τ can be devoted to

the sensing stage. If the state preparation and readout times are non-negligible, however,

τ should be divided between the three stages [106]. This leads to a trade-off since, for

example, too much time given to state preparation subtracts from the available time for

sensing, while too little time devoted to state preparation may not provide enough time

to generate the most sensitive state. We investigate three schemes A,B and C (as shown
2

FIG. 1: In scheme A, the magnetic field is applied over the
entire time τ , by the operation D̂ω(τ). The spins remain in a
separable state throughout. In scheme B, the two-axis twist-
ing operation Ŝη(t′) generates a sensitive entangled state be-

fore exposure to the magnetic field through D̂ω(t). In scheme

C the spins are subject to the operation Ûω,η(t′) (as defined in
section II) which exposes them to the magnetic field during
the twisting operation. Each scheme ends with a measure-
ment of the final state |ψi〉 (i ∈ {A,B,C}), which we assume
can be done in a negligible time. For a fair comparison, be-
tween the three schemes, each is constrained by the time τ .

II. MAGNETIC FIELD SENSING AND
TWO-AXIS TWISTING

In this section we consider our schemes A, B and C,
illustrated in Fig. 1. Before describing each scheme in
detail, it is useful to introduce the collective spin opera-

tors Ĵµ =
∑N
i=1 σ̂

(µ)
i , where σ

(µ)
i are the Pauli spin op-

erators for the i’th spin-1/2 particle with µ ∈ {x, y, z}.
Eigenstates of the σ̂(z) operator are denoted |↑〉 and |↓〉.
Furthermore, we can define the raising and lowering op-
erators Ĵ± = Ĵx ± iĴy. As shown in Fig. 1, in all three
schemes we assume that the initial “unprepared” probe

state is the coherent spin state |↓〉⊗N and that the final
state is |ψj〉 (j ∈ {A,B,C}). For simplicity, in this sec-
tion we assume that the final readout of the state |ψj〉
takes a negligible amount of time.

To quantify the magnetic field sensitivity of the scheme
j ∈ {A,B,C}, we make use of the quantum Cramer-
Rao inequality [16, 17] δωj ≥ 1/

√
νFj , where we have

used ω to denote the scaled magnetic field; the frequency
ω = γB is proportional to the magnetic field B, so that
the problem of estimating ω is the same as the problem
of estimating B when the gyromagnetic ratio γ is known.
This gives an upper bound on the error δωj of the esti-
mate of the scaled magnetic field ω. The Cramer-Rao
bound holds for sufficiently large number of of repeats of
the measurement scheme ν. The quantity Fj is the quan-
tum Fisher information, which around ω ≈ 0 is given by:

Fj = 4
[
〈∂ωψj |∂ωψj〉+ |〈ψj |∂ωψj〉|2

]
ω=0

(1)

where |∂ωψj〉 = ∂
∂ω |ψj〉. We can quantify the sensitivity

by the dimensionless quantity

(
√
ντδωj)

−1 ≤
√
Fj/τ, (2)

where the upper bound follows from the quantum
Cramer-Rao inequality. Eq. 2 is valid when ν � 1 and
we note that if the final measurement of the state |ψj〉 is
optimised, it is possible to saturate the inequality.

We now describe schemes A, B and C in detail, and
calculate the dimensionless sensitivity Eq. 2 in each case.

Scheme A

In scheme A, the initial state |↓〉⊗N evolves by a scaled
magnetic field ω (in the y-direction) for the total time τ ,
giving the final state:

|ψA〉 = D̂ω(τ) |↓〉⊗N , (3)

where D̂ω(τ) ≡ exp[−iτĤω/~] and Ĥω = ~ωĴy/
√
N .

(Note that for later convenience the Hamiltonian Ĥω has

been scaled by a factor of 1/γ
√
N). The unitary D̂ω(τ)

causes a rotation of the “unprepared” state around the
y-axis by an angle φ = ωτ/

√
N , where ω is to be esti-

mated. Clearly there is no entanglement between spins
at any time in this scheme. Calculating the quantum
Fisher information by Eq. 1 gives:

(
√
ντδωA)−1 ≤

√
FA/τ = 1. (4)

This is the benchmark against which we compare the
sensitivities of schemes B and C.

Scheme B

One of the main results in the field of quantum metrol-
ogy is that we can, in principle, improve on scheme A by
generating an entangled state of the probe before expos-
ing it to the magnetic field during the sensing period.
When the entangled state preparation and readout times
can be neglected, this is known to give a large improve-
ment in the estimate of ω compared to scheme A. How-
ever, the extra time cost of preparing the entangled state
is usually not taken into account. In scheme B we include
the time required for state preparation.

One class of entangled states are two-axis twisted
(TAT) states [14, 18]. In our scheme B, starting from

the initial state |↓〉⊗N , the spins evolve by the TAT op-

eration Ŝη(t′) = exp[−it′Ĥη/~] for a state preparation

time of duration t′. Here Ĥη = i~η(Ĵ2
− − Ĵ2

+)/N is the
two-axis twisting Hamiltonian, which has been scaled
by a factor of 1/N for later convenience, and η is the
twisting strength. For small ηt′, this operation gener-
ates squeezed states with a reduced standard deviation
of the spin observable Ĵx [14, 18]. Such states are highly
sensitive to spin rotations around the y-axis, since only

Figure 6.1: In scheme A, the magnetic field is applied over the entire time τ , by the

operation D̂ω(τ). The spins remain in a separable state throughout. In scheme B, the

two-axis twisting operation Ŝη(t
′) generates a sensitive entangled state before exposure

to the magnetic field through D̂ω(t). In scheme C the spins are subject to the operation

Ûω,η(t
′) (as defined in section 6.1.3) which exposes them to the magnetic field during

the twisting operation. Each scheme ends with a measurement of the final state |ψi〉
(i ∈ {A,B,C}), which we assume can be done in a negligible time. For a fair comparison,

between the three schemes, each is constrained by the time τ

in Fig.6.1) which model a classical, a traditional quantum and a “concurrent” quantum

metrological protocol respectively. The initial “unprepared” state is taken to be the CSS

|↓〉⊗N . In order to quantify the effectiveness of each scheme we use the quantum Cramér-
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Rao inequality,

δωj ≥
1√
νFj

(6.1)

where the frequency ω = γB is proportional to the magnetic field B, so that the problem

of estimating ω is the same as the problem of estimating B when the gyromagnetic ratio

γ is known, furthermore j ∈ {A,B,C}, ν is the number of experimental repeats and Fj is

the quantum Fisher information which, for ω ≈ 0, is given by

Fj = 4
[
〈∂ωψj |∂ωψj〉+ | 〈ψj |∂ωψj〉 |2

]
ω=0

(6.2)

with the final state |ψj〉 and |∂ωψj〉 = ∂
∂ω |ψj〉. To make this measure more succinct, we

quantify the sensitivity by the dimensionless measure which uses the above to give

(
√
ντδωj)

−1 ≤
√
Fj/τ, (6.3)

this bound can be saturated for an optimized measurement of |ψj〉 and ν � 1.

6.1.1 Scheme A

The effect of a magnetic field on the initial CSS is described by a rotation operator as

discussed in section 3.3 hence, for a magnetic field applied in the y-direction for time τ ,

the initial state |↓〉⊗N becomes |ψA〉 = D̂ω(τ) |↓〉⊗N where

D̂ω(τ) = e−iτĤω and Ĥω = ωĴy/
√
N. (6.4)

Note that for later convenience the Hamiltonian Ĥω has been scaled by a factor of 1/
√
N .

The particular effect of this scheme is then to rotate the initial CSS around the y-axis

through the angle φ = ωτ/
√
N . Since no entanglement is introduced into the system at

any time during this scheme’s evolution, this scheme can be regarded as classical. As

such, this scheme sets the benchmark for the subsequent quantum metrological schemes

to surpass and we find that the dimensionless sensitivity is given by

(
√
ντδωj)

−1 ≤
√
Fj/τ = 1 (6.5)

6.1.2 Scheme B

An archetypal aspect of quantum enhanced metrology is the production, and use of, en-

tangled states of a given system in order to improve on schemes that do not exploit this

quantum phenomenon such as scheme A. As we have seen in chapters 4 and 5, entan-

glement can lead to high precision gains but the time taken for preparation of the probe
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state and readout is assumed to be negligible. Here, we regard time as a limited resource

and as such we take into account the time required for entangled state preparation in

scheme B. The particular type of entangled state we investigate is the spin squeezed state

generated by TAT (see section 3.4.2). Thus, beginning with the “unprepared” CSS |↓〉⊗N ,

the system evolves under

Ŝη(t
′) = exp[−it′Ĥη/~], where, Ĥη = i~η(Ĵ2

− − Ĵ2
+)/N (6.6)

which, if preparation and readout times are neglected, can lead to sensitivities of ω at the

Heisenberg limit (
√
ντδω)−1 =

√
N (which has been scaled here by a factor of 1/

√
N due

to the prior scaling introduced in the Hamiltonians). Following the TAT preparation, the

state is exposed to the magnetic field for time t giving the final state

|ψB〉 = D̂ω(t)Ŝη(t
′) |↓〉⊗N (6.7)

where we ensure that the total run time of scheme B is limited to τ by constraining

t′ = τ − t (so that if t′ → 0 then t = τ and scheme B converges to scheme A). A Bloch

sphere representation of these operations on a coherent state are given in Fig.6.2 to aid

understanding of these operations. Note that for ease of visualisation, the z axis of the

Bloch sphere has been inverted so the CSS |↓〉⊗N is pictures at the top of the sphere. An

analytic expression of the QFI, FB, is intractable and as such we calculate it numerically.

Before doing so we note that scheme B can be completely characterised by the number

of spins N , the total run time in units of 1/η given by ητ and the ratio of sensing time

to total run time t/τ ; all three of these parameters are dimensionless. The sensitivities

in relation to these parameters are given in Fig.6.3. It is apparent from these plots that

there exists values of ητ and N for which scheme B gives no advantage over scheme A.

This shows that two-axis twisting is not guaranteed to provide improvements in sensitivity

when state preparation time is taken into account. However, values of ητ and N do exist

for which it is clear that scheme B does give improvements over scheme A, for judicious

choices of sensing time t/τ .
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Figure 6.2: Bloch Sphere representation (with inverted z axis for ease of representation)

of a) a rotation operation around the y axis, as given by equation (6.4), applied to the

CSS |↓〉⊗N and b) a TAT operation as given by equation (6.6).

The size of the parameter space can be reduced by numerically optimizing over t/τ for

each ητ and N as displayed in Fig.6.4 . From this we are able to conclude that since the

optimal sensing time (t/τ)opt = 1, the entire time resource τ should be used for sensing

i.e there should be no TAT and scheme B reduces to schemes A.
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FIG. 2: These plots show that for a sufficiently small value of ητ (e.g. ητ = 0.4 in the upper plots), scheme B gives no
improvement over scheme A. For a sufficiently large value of ητ (e.g. ητ = 4 in the lower plots), both scheme B and scheme
C can give a better sensitivity than scheme A (i.e., the two-axis twisting state preparation is worthwhile), if the sensing time
t/τ is optimised.

a small rotation is necessary to result in a state that is
easily distinguishable from the state prior to the small
rotation. For larger values of ηt′, two-axis twisting gen-
erates “over-squeezed” states, including Schrödinger cat
states. Over-squeezed states are also highly-sensitive to
spin rotations around the y-axis and, if state prepara-
tion and readout times are neglected, can give sensitiv-
ity of the scaled magnetic field at the Heisenberg limit
(
√
ντδω)−1 =

√
N which has been scaled here by a fac-

tor of 1/
√
N due to the prior scaling introduced in the

Hamiltonians.
After the spins are prepared in the two-axis twisted

state, they are exposed to the magnetic field for a time t,
resulting in a rotation of the state around the spin y-axis
by D̂ω(t) = exp[−itĤω/~]. The final state is thus:

|ψB〉 = D̂ω(t)Ŝη(t′) |↓〉⊗N . (5)

To ensure that the total time of scheme B is limited to
τ , we have t′ = τ − t. We note that if t = τ , there is no
two-axis twisting and scheme B reduces to scheme A.

Since an exact analytic expression for the quantum
Fisher information FB is unknown, we calculate it nu-
merically. An examination of the parameters of scheme
B shows that the dynamics are completely determined
by only three independent, dimensionless variables: N
(the number of spins), t/τ (the fraction of the total mea-
surement time given to the sensing stage), and ητ (the
total measurement time τ in units of 1/η). We now ex-
plore the sensitivity in this parameter space. In Fig. 2,
the dashed oragne lines show

√
FB/τ as a function of the

sensing time t/τ for various choices of ητ and N . We no-
tice that there are some values of ητ and N for which
scheme B gives no advantage over scheme A for any
choice of sensing time t/τ [see Figs. 2(a), 2(b), and 2(c)].

In these cases, the sensitivity of scheme B approaches
that of scheme A only as t/τ → 1 (i.e., as scheme B ap-
proaches scheme A). This shows that two-axis twisting
does not always give improvements in sensitivity, when
a non-negligible state preparation time is taken into ac-
count. However, for other values of ητ and N , it is clear
that scheme B does give improvements over scheme A, if
the sensing time t/τ is carefully chosen [see Figs. 2(d),
2(e), and 2(f)].

We can reduce the size of the parameter space and
simplify the analysis by optimising over the sensing time
t/τ for each value of ητ and N . This optimisation is
done numerically and the results are plotted against ητ
in Figs. 3(a) and 3(b), with the corresponding optimal
sensing times (t/τ)opt plotted in Figs. 3(d) and 3(e),
respectively. These plots show that scheme B gives no
advantage over scheme A if ητ . 0.5, i.e., if the sens-
ing time τ is sufficiently short or the twisting strength
η sufficiently weak. This conclusion follows from the ob-
servation that for ητ . 0.5, the optimal sensing time is
(t/τ)opt = 1, i.e., the full time τ is devoted to sensing,
there is no two-axis twisting, and scheme B reduces to
scheme A.

If ητ →∞ (the measurement time is infinitely long or
the twisting is infinitely strong), any squeezed or over-
squeezed state can be prepared in a negligible fraction
of the total available time τ . Indeed, Figs. 3(a) and
3(b) show that for ητ � 1 the sensitivity approaches the
Heisenberg limit, while Figs. 3(d) and 3(e) show that
the state preparation time becomes a small fraction of τ
(since the optimal sensing time (t/τ)opt is close to, but
not equal to, unity).

Although the analytic calculation of the quantum
Fisher information

√
FB/τ is intractable for arbitrary N ,

it is possible to calculate it in the limit N →∞. We find

Figure 6.3: These plots show that for a sufficiently small value of ητ (e.g. ητ = 0.4 in the

upper plots), scheme B gives no improvement over scheme A. For a sufficiently large value

of ητ (e.g. ητ = 4 in the lower plots), both scheme B and scheme C can give a better

sensitivity than scheme A (i.e the two-axis twisting state preparation is worthwhile), if

the sensing time t/τ is optimised.
4

FIG. 3: The upper plots show the optimised sensitivity maxt/τ (
√
Fi/τ) as a function of ητ , and the lower plots show the

corresponding optimal sensing times, (t/τ)opt. Comparison of schemes reveals that scheme B gives no advantage over scheme
A for ητ . 0.5. Scheme C, however, does better than scheme A for all values of ητ , although the advantage vanishes as ητ → 0.

(see Appendix for details) that:

√
FB/τ

N→∞−→ t

τ
e2ητ(1−t/τ). (6)

Optimising Eq. 6 over the sensing time t/τ gives different
answers depending on whether ητ > 0.5 or ητ ≤ 0.5. If
ητ > 0.5 we have:

max
t/τ

(
√
FB/τ)

N→∞−→ e2ητ−1

2ητ
, (7)

(t/τ)opt
N→∞−→ 1

2ητ
. (8)

If, however, ητ ≤ 0.5 we have

max
t/τ

(
√
FB/τ)

N→∞−→ 1, (9)

(t/τ)opt
N→∞−→ 1, (10)

These quantities are plotted in Figs. 3(c) and 3(f).
Comparison with the sensitivity

√
FA/τ = 1 for scheme

A shows that, in the N → ∞ limit, preparation of a
squeezed state via scheme B gives an enhanced sensi-
tivity only if ητ > 0.5. If ητ ≤ 0.5, however, we have

(t/τ)opt
N→∞−→ 1 and the whole of the available time τ

should be used for sensing without any squeezing (i.e.,
scheme B reduces to scheme A), in broad agreement with
the numerical results for finite N .

Scheme C

During the state preparation stage in scheme B, the
probe is not exposed to the magnetic field. This begs
the question: can the limited time resource τ be used
more efficiently by applying the magnetic field during the
spin squeezing operation? This motivates our scheme C,

which is plotted schematically in Fig. 1(C). We note that
scheme C also describes a possibly more realistic scenario
where the measured magnetic field cannot be switched off
during the state preparation stage of the protocol.

First, the TAT and the magnetic field are applied si-
multaneously for a time t′, so that the initial state evolves
by the unitary transformation Ûω,η(t′) ≡ exp[−it′(Ĥω +

Ĥη)/~], where Ĥω + Ĥη = ~ωĴy/
√
N + i~η(Ĵ2

− − Ĵ2
+)/N

is the sum of the TAT Hamiltonian and the magnetic
field Hamiltonian. Following this, we switch off the TAT
Hamiltonian and allow the spins to evolve in the mag-
netic field for a time t, resulting in an evolution operator
D̂ω(t). The final state is thus:

|ψC〉 = D̂ω(t)Ûω,η(t′) |↓〉⊗N . (11)

Again, to ensure that the total time is limited to τ , we
have t′ = τ − t. Also, if t = τ , there is no two-axis
twisting and scheme C reduces to scheme A.

As in scheme B, the analytic calculation of the quan-
tum Fisher information FC is intractable, so we calculate
it numerically. The solid green lines in Fig. 2 show the
dependence of

√
FC/τ on the sensing time t/τ . We see

that scheme C can give better sensitivity than scheme A,
even in parameter regimes where scheme B gives no ad-
vantage over scheme A [see Figs. 2(a), 2(b) and 2(c)]. In
such cases, applying the two-axis twisting and the mag-
netic field simultaneously is a more effective use of the
limited time resource τ then applying them separately
(as in scheme B) or without any twisting at all (as in
scheme A).

We can numerically optimise the sensitivity
√
FC/τ

over the sensing time t/τ . This is plotted in the solid
green lines in Figs. 3(a) and 3(b), with the corresponding
optimal sensing times (t/τ)opt plotted in Figs. 3(d) and
3(e), respectively. It appears that scheme C outperforms
schemes A andB for all values of ητ , with the sensitivities
of all three schemes converging to

√
F/τ → 1 as ητ →

Figure 6.4: The upper plots show the optimised sensitivity bound maxt/τ (
√
Fi/τ) as a

function of ητ , and the lower plots show the corresponding optimal sensing times, (t/τ)opt.

Comparison of schemes reveals that scheme B gives no advantage over scheme A for

ητ . 0.5. Scheme C, however, does better than scheme A for all values of ητ , although

the advantage vanishes as ητ → 0.

For extremely large measurement time or extremely strong squeezing (ητ → ∞) the

preparation time t becomes negligible compared to τ and as previously mentioned, this

results in sensitivities approaching the Heisenberg limit.

As discussed in section 3.5 there exists a natural transition from the fermionic N spin-1/2
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system to the bosonic QHO system. Indeed, in the N →∞ limit it is possible to calculate

an analytic expression for the sensitivity measure
√
FB/τ . Making use of (3.64), (3.65)

and (3.68) we have

lim
N→∞

|ψB〉 = D̃ω(t)S̃η(t
′) |0〉 (6.8)

where we have used “tildes” to distinguish these bosonic operators (as given by (2.32) and

(2.46)) from their spin operator counterparts. Using (2.48) we find

(
√
ντδωB)−1 ≤

√
FB/τ =

t

τ
e2ητ(1−t/τ) (6.9)

which we can optimise over t/τ and find, in the N →∞ limit, that if ητ > 0.5

max
t/τ

[√
FB/τ

]
→ e2ητ−1

2ητ
(6.10)

(t/τ)opt →
1

2ητ
(6.11)

while for ητ ≤ 0.5 we find

max
t/τ

[√
FB/τ

]
→ 1 (6.12)

(t/τ)opt → 1 (6.13)

as depicted in Fig. 6.4. Thus, in the bosonic limit, scheme B improves upon scheme A

only if ητ > 0.5. If this condition is not met then (t/τ)opt → 1 and scheme B reduces to

scheme A. These analytical results for the bosonic system are in broad agreement to the

numerical results for the finite N spin-1/2 system.

6.1.3 Scheme C

In scheme B the probe state’s exposure to the magnetic field is compartmentalised into

probe state preparation and sensing. Here we consider scheme C in which we aim to utilise

the limited time resource τ more effectively by applying the magnetic field and preparation

operations concurrently which is in fact representative of a more realistic sensing scenario

where it is not possible to switch off the magnetic field during the state preparation stage

of the protocol. In order to achieve this, the probe state is first subject to the unitary

transformation

Ûω,η(t
′) ≡ exp

[
−it′(Ĥω + Ĥη)/~

]
(6.14)

where,

Ĥω + Ĥη = ~ωĴy/
√
N + i~η

(
Ĵ2
− − Ĵ2

+

)
/N (6.15)
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is the sum of the TAT and magnetic field Hamiltonians (6.6) and (6.4). This evolution

occurs for a time t′ then the TAT is stopped while the probe state continues to evolve

under the magnetic field for time t so the final state is given by

|ψC〉 = D̂ω(t)Ûω,η(t
′) |↓〉⊗N (6.16)

where again, the total run time is limited to τ by constraining t′ = τ − t so that in the

limit t′ → 0, scheme C reduces to scheme A. The numerical plots for
√
FC/τ are given in

Fig.6.3 from which it is clear that scheme C consistently outperforms scheme A — even

in parameter intervals where scheme B did not. Indeed it is apparent that the concurrent

preparation and sensing scheme C outperforms the sequential scheme B and is a more

efficient use of the resource τ . Moreover, by optimising over t/τ as shown in Fig.6.4, it is

evident that scheme C outperforms both schemes A and B ∀ ητ and the sensitivities for

all three schemes converge to 1 as ητ → 0. Additionally, for scheme C it is clear that for

small ητ we have (t/τ)opt = 0 meaning that in such a case the TAT and magnetic field

should be applied concurrently throughout the protocol.

It is again feasible to find an analytic expression for the sensitivities in the bosonic limit,

we find

lim
N→∞

|ψC〉 = D̃ω(t)Ũω,η(t
′) |0〉 (6.17)

then using the expansion (2.37) we find the bound on the sensitivity to be

(
√
ντδωC)−1 ≤

√
FC/τ =

(
t

τ
+

1

2ητ

)
e2ητ(1−t/τ) − 1

2ητ
(6.18)

which is plotted in Fig.6.3. Optimising over t/τ in the N →∞ limit, gives

max
t/τ

[√
FC/τ

]
→ 1

2ητ

(
e2ητ − 1

)
(6.19)

(t/τ)opt → 0 (6.20)

as demonstrated in Fig.6.4. Furthermore, we can calculate the ratio of these quantities to

reveal

maxt/τ
[√
FC/τ

]

maxt/τ
[√
FB/τ

] =




e(1− e−2ητ ) for ητ > 0.5

1
2ητ (e2ητ − 1) for ητ ≤ 0.5

(6.21)

thus,

maxt/τ
[√
FC/τ

]

maxt/τ
[√
FB/τ

] ≥ 1, ∀ ητ (6.22)
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from which we infer that in the bosonic limit, scheme C performs just as well, or out-

performs scheme B for all values of ητ . Moreover, the optimal strategy is again found

to have the TAT and the magnetic field operating concurrently throughout the protocol

which again, is consistent with our results for finite N. Additionally, the largest possible

improvement (as ητ →∞) is found to be

maxt/τ
[√
FC/τ

]

maxt/τ
[√
FB/τ

] = e ≈ 2.7. (6.23)

This protocol (in the bosonic limit) has been investigated further to include an alternative

method of analytically proving that concurrent state preparation and readout outper-

forms the analagous sequential scheme (see Appendix.B), and furthermore we analyse the

effects of including optical loss for which we find that scheme C persists to yield superior

performance than that of schemes A and B for all varying parameters.

6.2 Magnetic Field Sensing and One-Axis Twisting

In the preceding section we demonstrated how concurrent state preparation via TAT

and sensing of a magnetic field can outperform traditional sequential sensing schemes.

However, as mentioned in section 3.4.2, TAT is challenging to implement in practise and

furthermore, optimal readout strategies were assumed which may also be impractical.

Additionally, the readouts were assumed to be preformed over a negligible time interval.

Here we introduce and investigate modified versions of schemes B and C motivated by

practicality and denote these as schemesB′ and C ′ as represented by Fig.6.5. In schemesB′5

0. Also, we see that for small values of ητ , the optimal
sensing time for scheme C is (t/τ)opt = 0, i.e., the two-
axis twisting and the magnetic field should be applied
simultaneously throughout the protocol. This indicates
that, contrary to scheme B, the twisting dynamics in
scheme C plays a positive role for all possible values of
the total time τ , the twisting strength η, and number of
spins N > 1.

As for scheme B, it is possible to calculate an analytic
expression for the quantum Fisher information

√
FC/τ

in the N →∞ limit. We find (see Appendix for details)
that:

√
FC/τ

N→∞−→
(
t

τ
+

1

2ητ

)
e2ητ(1−t/τ) − 1

2ητ
. (12)

Optimising over the sensing time t/τ gives:

max
t/τ

(
√
FC/τ)

N→∞−→ 1

2ητ

(
e2ητ − 1

)
, (13)

(t/τ)opt
N→∞−→ 0, (14)

as plotted in Figs. 3(c) and 3(f), respectively. Calculat-
ing the ratio

maxt/τ (
√
FC/τ)

maxt/τ (
√
FB/τ)

N→∞−→
{
e
(
1− e−2ητ

)
if ητ > 0.5

1
2ητ

(
e2ητ − 1

)
if ητ ≤ 0.5

}

≥ 1, (15)

shows that, in the N →∞ limit, scheme C performs just
as well as, or outperforms, scheme B for all values of ητ .
Here, the largest enhancement

maxt/τ (
√
FC/τ)

maxt/τ (
√
FB/τ)

N→∞−→ e ≈ 2.7, (16)

is achieved as ητ → ∞. Interestingly, from Eq. 14 we
also see that for all values of ητ the optimal strategy
is to have the twisting and the magnetic field operating
simultaneously throughout the protocol which again, is
consistent with our results for finite N .

III. MAGNETIC FIELD SENSING AND
ONE-AXIS TWISTING

In the previous section we have illustrated the impor-
tance of taking state preparation times into account with
the example of two-axis twisting. In practice, however,
two-axis twisting is difficult to generate. Also, the opti-
mal measurement that was assumed at the readout stage
may be difficult to implement in practice, particularly for
states that are over-squeezed. In this section we consider
two new schemes B′ and C ′ (illustrated in Fig. 4), which
are modifications of schemes B and C of the previous
section and are likely to be more feasible in practice.

The new schemes employ one-axis twisting (OAT) in-
stead of two-axis twisting (TAT) in the state preparation

FIG. 4: In scheme B′, the one-axis twisting operation T̂χ(t′)
generates a spin squeezed state before exposure to the mag-
netic field through D̂ω(t). The “echo” (anti-squeezing) opera-

tion T̂ †χ(t′) = T̂−χ(t′) is applied before the final measurement.
In scheme C′ the spins are exposed to the magnetic field dur-
ing the OAT and echo operations. For a fair comparison, each
protocol is constrained by the time τ .

stage [18]. OAT has been implemented experimentally in
cold atoms [19], atomic vapor-cells [20] and Bose-Einstein
condensates [21, 22], for example. For readout, motivated
by the recent work of Davis and co-workers [15], we use
an “echo” readout protocol. In general, an echo read-
out applies the inverse of the state preparation operation
after the sensing stage, in order to simplify the final mea-
surement [23] and to overcome strict requirements on the
resolution of the final measurement [15, 24]. Such mea-
surements have been implemented in several recent ex-
periments [24, 25]. However, going beyond previous stud-
ies of echo measurements in quantum metrology, we in-
vestigate the tradeoffs in sensitivity when a limited time
resource must be divided between non-negligible state
preparation and readout times and the sensing.

Scheme B′

In our scheme B′, starting from the initial state |↓〉⊗N ,
the spins are squeezed by the one-axis twisting (OAT) op-

eration T̂χ(t′) ≡ exp[−it′Ĥχ/~], where Ĥχ = ~χĴ2
x/N is

the OAT Hamiltonian, χ is the spin squeezing strength,
and t′ is the state preparation time. Similar to TAT, OAT
generates spin squeezed states for short state preparation
times and over-squeezed states (such as Schrödinger cat
states) for longer state preparation times. After the spins
are prepared in the twisted state, they are exposed to the
magnetic field for a time t, resulting in a rotation of the
state around the spin y-axis by D̂ω(t) = exp[−itĤω/~].
For readout, we use an echo measurement. An echo mea-
surement applies the inverse of the state preparation op-
eration after the sensing stage, in order to simplify the
final measurement. Since, in our case, the state prepa-
ration is the OAT operation T̂χ(t′), we apply the inverse

operation T̂ †χ(t′) = T̂−χ(t′), after the sensing stage. The
final state is thus:

|ψB′〉 = T̂−χ (t′) D̂ω(t)T̂χ (t′) |↓〉⊗N . (17)

Figure 6.5: In scheme B′, the one-axis twisting operation T̂χ(t′) generates a spin squeezed

state before exposure to the magnetic field through D̂ω(t). The “echo” (anti-squeezing)

operation T̂ †χ(t′) = T̂−χ(t′) (as introduced in section 6.2.1) is applied before the final

measurement. In scheme C ′ the spins are exposed to the magnetic field during the OAT

and echo operations. For a fair comparison, each protocol is constrained by the time τ .

and C ′, OAT is used to generate entanglement in the probe state and as discussed in section
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3.4.1 this is a practically viable approach. Moreover, a readout stage is incorporated

which is motivated by the work of Davis et.al [107] which uses an “echo” readout method.

An echo readout is the time reversed (inverse) of the entangling preparation operation

which can simplify the final measurement [108], can overcome strict requirements on the

resolution of the final measurement [109, 110] and have been demonstrated in recent

experiments [107, 111]. We further these echo measurement studies by investigating how

sensitivity gains are affected when a limited time resource must be divided between non-

negligible state preparation and readout times and the sensing. Restrictions on time as

a limited resource could be enforced, for example, by decoherence, by the stability of our

equipment or by the fact that the quantity we want to measure is rapidly changing.

6.2.1 Scheme B′

The initial “unprepared” state is again taken to be the CSS |↓〉⊗N which is subject to an

OAT operation (as introduced in section 3.4.1) for time t′

T̂χ(t′) = exp
[
−it′Ĥχ/~

]
, where Ĥχ = ~χĴ2

x/N (6.24)

resulting in a spin squeezed state. A Bloch sphere representation of the OAT operation

is given in Fig.6.6. The state is then exposed to the magnetic field for time t which

amounts to a rotation of the state about the y-axis by D̂ω(t) = exp
[
−itĤω/~

]
. Finally,

the inverse of the state preparation OAT operation is applied for time t′, i.e the operator

T̂ †χ(t′) = T̂χ(t′) is applied for readout. The Final state is then given by

|ψB′〉 = T̂−χ(t′)D̂ω(t)T̂χ(t′) |↓〉⊗N (6.25)

where we impose the constraint t′ = (τ − t)/2 in order to limit the run time of this scheme

to time τ . After the echo operation the (collective) observable Ĵy is measured then by the

propagation of error formula, the error in the estimate of the small scaled magnetic field

ω is

δωB′ =
1√
ν

∣∣∣∣∣
∆Ĵy

∂ω 〈Ĵy〉

∣∣∣∣∣
ω=0

(6.26)

where, the standard deviation of Ĵy in the state |ψB′〉 is |∆Ĵy|ω=0 =
√
N/2. In order to

calculate the denominator of (6.26), following the derivation given in [107], we first rewrite

the expression in the form

|∂ω 〈Ĵy〉 |ω=0 =

∣∣∣∣∣
it√
N
〈↓|⊗N

[
T̂−χ(t′)ĴyT̂χ(t′), Ĵy

]
|↓〉⊗N

∣∣∣∣∣ (6.27)
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Figure 6.6: Bloch Sphere representation (with inverted z axis for ease of representation) of

a OAT operation, as given by equation (6.24), on the CSS |↓〉⊗N . In contrast to TAT, the

resulting reduction in quantum fluctuations is not in line with any of the primary axes.

and express the operator in the commutator of (6.27) in the form

T̂−χ(t′)ĴyT̂χ(t′) = eit
′χĴ2

x/N

(
− i

2
Ĵ+ +

i

2
Ĵ−

)
e−it

′χĴ2
x/N

= e−iπĴy/2
(
− i

2
eit
′χ(2Ĵz−1)/N Ĵ+ +

i

2
Ĵ−e

it′χ(−2Ĵz−1)/N

)
eiπĴy/2 (6.28)

then upon substitution of (6.28) into (6.27) we obtain a lengthy expression comprised of

eight expectation values such as

〈+|⊗N Ĵ2
−e
−2it′χĴz |+〉⊗N (6.29)

where |+〉⊗N = eiπĴy/2 |↓〉⊗N . In order to evaluate this type of expectation value, we follow

the method given in the appendix of [32] which takes the approach of differentiating the

generating function. Indeed, with the intention of evaluating the example expectation

value (6.29), it is shown that

XA(α, β, γ) ≡ 〈+|⊗N eγĴ−eβĴzeαĴ+ |+〉⊗N

=

[
1

2
e−β/2 +

1

2
eβ/2(α+ 1)(γ + 1)

]N
(6.30)
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with which we find

〈+|⊗N Ĵ2
−e
−2it′χĴz |+〉⊗N =

[
∂2

∂γ2
XA

] ∣∣∣∣∣ α=γ=0
β=−2it′χ/N

=
N(N − 1)

4

[
cos

(
t′χ

N

)]N−2

e−2it′χ/N . (6.31)

Applying this method to all eight terms reveals that

|∂ω 〈Ĵy〉 |ω=0 =
t
√
N(N − 1)

2
| sin (θ(t)) cosN−2 (θ(t)) | (6.32)

where θ = χτ(1− t/τ)/(2N). Finally, the sensitivity is found to be

(
√
ντδωB′)

−1 = (t/τ)(N − 1)| sin (θ(t)) cosN−2 (θ(t)) | (6.33)

which, similarly to the TAT schemes, depends only on three dimensionless variables N, t/τ

and χτ . Thus, plots of the sensitivity (6.33) against these parameters are given in Fig. 6.7.

Furthermore, a numerical optimisation is over t/τ is performed and plotted in Fig.6.8 from

which we infer similar behaviour to that of the TAT scheme B; for small χτ , OAT does

not ensure sensitivity gains over the classical scheme A. In such cases, the limited time

resource is best used in the sensing stage. However, it is also evident from Fig.6.8 that as N

increases, the threshold value of χτ for precision gains over the classical scheme decreases;

for N = 10, scheme B′ outperforms scheme A for χτ & 11.5 whereas for N = 100 this

value decreases to χτ & 8.2 from which we can extrapolate that for larger N , scheme B′

can outperform scheme A for weaker squeezing strengths or for shorter run times. In the

bosonic limit N →∞, using (6.33) it is straightforward to find that the sensitivity is

lim
N→∞

(
√
ντδωB′)

−1 =
χτ(τ − t)

2τ
(6.34)

which we can analytically optimise over t/τ and find

max
t/τ

[
(
√
ντδωB′)

−1
]
→ χτ

8
(6.35)

(t/τ)opt →
1

2
(6.36)

which reveals that in order for scheme B′ to outperform the classical scheme A (which

has sensitivity (
√
ντδωB′)

−1 = 1 ) in the bosonic limit, we require χτ > 8 otherwise OAT

is not worthwhile. Furthermore, from equation (6.36) we can conclude that it is optimal

to use half of the run time τ for sensing and a quarter each for preparation and readout

i.e it is optimal to use half the run time τ distributed evenly over the echo measurement

protocol.
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FIG. 5: These plots show that for a sufficiently small value of χτ (e.g. χτ = 4 and N = 10), scheme A gives a better sensitivity
than scheme B′ and scheme C′. For a sufficiently large value of χτ (e.g. χτ = 50 and N = 10 or N = 100), both scheme B′

and scheme C′ give a better sensitvity than scheme A, i.e., the spin squeezing is worthwhile.

FIG. 6: The upper plots show the optimised sensitivity maxt/τ (
√
ντδω)−1 as a function of χτ . These plots are optimised over

time but not over measurements in contrast to Fig.2 and Fig.3 which are optimised over both. Comparison of schemes reveals
that when N = 10 scheme A outperforms scheme B for χτ . 11.5 and scheme C for χτ . 5. These threshold values decrease
for larger N . For very large χτ , the sensitivities of schemes B and C converge. The lower plots show the optimal sensing time
(t/τ)opt as a function of χτ .

We now analyse scheme C ′ in the N → ∞ limit. For
finite-N , due to the difficulty of analytic calculation we
found the sensitivity numerically (as shown in the solid
green lines of Figs. 5 and 6). However, in the N → ∞
limit it is possible to derive the analytic expression (see
Appendix for details):

(
√
ντδωC′)

−1 N→∞−→ χτ

4

(
1− t2/τ2

)
. (25)

Optimising over the sensing time t/τ gives:

max
t/τ

(
√
ντδωC̃)−1

N→∞−→ χτ

4
, (t/τ)opt

N→∞−→ 0, (26)

a factor of 2 improvement on the sensitivity over the cor-
responding N →∞ version of scheme B′. Squeezing via
scheme C̃ gives a better sensitivity than scheme A pro-
vided that χτ > 4, but a worse sensitivity if χτ < 4.
Also, we note that in agreement with the N → ∞ limit
of the TAT scheme C in the previous section, the optimal

sensitivity for scheme C ′ is achieved for (t/τ)opt
N→∞−→ 0,

Figure 6.7: These plots show that for a sufficiently small value of χτ (e.g. χτ = 4 and

N = 10), scheme A gives a better sensitivity than scheme B′ and scheme C ′. For a

sufficiently large value of χτ (e.g. χτ = 50 and N = 10 or N = 100), both scheme B′ and

scheme C ′ give a better sensitivity than scheme A, i.e the spin squeezing is worthwhile.

7

FIG. 5: These plots show that for a sufficiently small value of χτ (e.g. χτ = 4 and N = 10), scheme A gives a better sensitivity
than scheme B′ and scheme C′. For a sufficiently large value of χτ (e.g. χτ = 50 and N = 10 or N = 100), both scheme B′

and scheme C′ give a better sensitvity than scheme A, i.e., the spin squeezing is worthwhile.

FIG. 6: The upper plots show the optimised sensitivity maxt/τ (
√
ντδω)−1 as a function of χτ . These plots are optimised over

time but not over measurements in contrast to Fig.2 and Fig.3 which are optimised over both. Comparison of schemes reveals
that when N = 10 scheme A outperforms scheme B for χτ . 11.5 and scheme C for χτ . 5. These threshold values decrease
for larger N . For very large χτ , the sensitivities of schemes B and C converge. The lower plots show the optimal sensing time
(t/τ)opt as a function of χτ .

We now analyse scheme C ′ in the N → ∞ limit. For
finite-N , due to the difficulty of analytic calculation we
found the sensitivity numerically (as shown in the solid
green lines of Figs. 5 and 6). However, in the N → ∞
limit it is possible to derive the analytic expression (see
Appendix for details):

(
√
ντδωC′)

−1 N→∞−→ χτ

4

(
1− t2/τ2

)
. (25)

Optimising over the sensing time t/τ gives:

max
t/τ

(
√
ντδωC̃)−1

N→∞−→ χτ

4
, (t/τ)opt

N→∞−→ 0, (26)

a factor of 2 improvement on the sensitivity over the cor-
responding N →∞ version of scheme B′. Squeezing via
scheme C̃ gives a better sensitivity than scheme A pro-
vided that χτ > 4, but a worse sensitivity if χτ < 4.
Also, we note that in agreement with the N → ∞ limit
of the TAT scheme C in the previous section, the optimal

sensitivity for scheme C ′ is achieved for (t/τ)opt
N→∞−→ 0,

Figure 6.8: The upper plots show the optimised sensitivity bound maxt/τ
[
(
√
ντδω)−1

]

as a function of χτ . These plots are optimised over time, but not over measurements, in

contrast to Fig.6.3 and Fig.6.4 which are optimised over both. We choose the measurement

in line with the scheme of Davis et.al [107]. Comparison of schemes reveals that when

N = 10 scheme A outperforms scheme B′ for χτ . 11.5 and scheme C ′ for χτ . 5. These

threshold values decrease for larger N . For very large χτ , the sensitivities of schemes B′

and C ′ converge. The lower plots show the optimal sensing time (t/τ)opt as a function of

χτ .
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6.2.2 Scheme C ′

Analogously to scheme C in which TAT is applied concurrently with sensing, we investigate

the effects of extending the sensing time of schemes B′ to be concurrent with the echo

measurement protocol using OAT. The initial state evolves for time t′ by the operation

V̂ω,χ(t′) ≡ exp
[
−it′(Ĥω + Ĥχ)/~

]
(6.37)

where,

Ĥω + Ĥχ = ~ωĴy/
√
N + ~χĴ2

x/N (6.38)

after which the OAT is turned off and the squeezed spin state evolves under the magnetic

field for a time t. Lastly, the echo readout is carried out by reversing the OAT component

of the evolution but importantly the magnetic field component is not reversed. The final

state is then given by

|ψC′〉 = V̂ω,−χ(t′)D̂ω(t)V̂ω,χ(t′) |↓〉⊗N (6.39)

where, once again the run time τ is constrained by t′ = (τ − t)/2. The sensitivity is again

quantified by the propagation of error formula, as given by (6.26), however due to the

complexities of calculating the numerator, the sensitivities for varying t/τ are calculated

numerically and plotted in Fig.6.7. Optimising over t/τ , as given in Fig.6.8, reveals that

scheme C ′ always outperforms scheme B′. Furthermore, it is evident from Fig.6.8 that

scheme C ′ outperforms the classical scheme A for a wider range of χτ than scheme B′ e.g

for N = 10, scheme C ′ outperforms scheme A for χτ & 5 compared to χτ & 11.5 for that

of scheme B′.

We now derive an analytic expression for the sensitivity in the bosonic limit. Firstly,

we take the N → ∞ of preparation operator (6.37) using the Holstein-Primakoff trans-

formations

Ṽω,χ(t′) ≡ lim
N→∞

V̂ω,χ(t′)

= exp
[
t′ω(ã− ã†)− it′χ(ã+ ã†)2

]
(6.40)

where we have used “tilde” to distinguish this bosonic operator from the spin operator

(6.37). The final state of scheme C ′ in the bosonic limit is thus

lim
N→∞

|ψC′〉 = Ṽω,−χ(t′)D̃(t)Ṽω,χ(t′) |0〉 . (6.41)
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Defining P̂ = −ia† + ia, it is straightforward to find that the standard deviation of P̂ in

the state (6.41) is |∆P̂ |ω=0 = 1. Then by iterative use of (2.37) the expectation value is

found to be

〈P̂ 〉 =
χω

4
(τ2 − t2) (6.42)

and since we have

lim
N→∞

δωC′ =
1√
ν

∣∣∣∣∣
∆P̂

∂ω 〈P̂ 〉

∣∣∣∣∣
ω=0

(6.43)

it becomes apparent that

lim
N→∞

(
√
ντδωC′)

−1 =
χτ

4
(1− t2/τ2) (6.44)

then by optimising over t/τ we find

max
t/τ

[
(
√
ντδωC′)

−1
]
→ χτ

4
(6.45)

(t/τ)opt → 0. (6.46)

Thus in the bosonic limit, scheme C ′ provides an advantage over scheme A for χτ > 4.

Furthermore, comparing this to (6.35), we see that in the bosonic limit, scheme C ′ provides

a factor 2 improvement over scheme B′. Additionally, equation (6.46) implies that optimal

sensitivity is attained when OAT is applied concurrently with the magnetic field for the

entire run time τ .
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Chapter 7

Entropy in Information Theory

In ordinary discourse, information is often equated with knowledge or meaning and is thus

a property of a single message (or single event or single measurement outcome etc.). In

information theory, information is not concerned with the individual messages and their

associated content; the focus is on all messages a source can possibly send. The informative

aspect of a single message is not its content or meaning, it is the fact that of all the possible

messages that could have been sent, that particular message was received [112]. Entropy,

in the context of information theory, is a measure of the unpredictability of information

content. More formally, the entropy of a random variable X measures the amount of

uncertainty about X before we learn its value. Equivalently, we can take the reverse view;

the entropy of a random variable X quantifies how much information we gain about X, on

average, after we learn its value. In this chapter we shall explore the notion of entropy in

the aforementioned context, along with various types of entropy measures and how such

measures can be applied in a physical framework.

7.1 Hartley and Shannon Entropy

7.1.1 Hartley Entropy

Entropy in information theory becomes a probabilistic concept. The first to introduce an

entropic measure of information was Hartley (1928) [113] who posited that measurement

of an element of a set of size N requires log2(N) bits of information where one “bit” (the

unit of information) is the information needed to distinguish an element of a pair. A

simple example of this is the state of a coin, of which there are two possibilities - heads or

tails, so to fully describe this system we need log2(2) = 1 bit of information. A key feature

of this measure is the additivity property. Indeed, we demand that the information gained
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from independent events (elements) must be the sum of the partial information of each

event. If we consider the set E comprising the disjoint union of M lots of the N -tuples

E1, E2, ..., EM we then need log2(M) bits of information to determine which of the Eith

sets the element belongs to and a further log2(N) bits to determine which element of the

Ei set is the considered one. This is encapsulated by Hartley’s measure since

log2(NM) = log2(N) + log2(M). (7.1)

This measure holds if the events we wish to describe are equiprobable, but if we have

information on the probabilities of the events i.e if we have knowledge about the likelihood

of specific outcomes, then an adjustment can be made to incorporate this into a more

accurate model for prediction.

7.1.2 Shannon Entropy

Shannon’s aim was to characterize the information gained from an event based on the

probability of the event occurring [114, 115]. To see how this was achieved, let E be the

disjoint union of the sets E1, ..., En with N1, ..., Nn elements respectively. Suppose that

each element of E is equiprobable and we are only interested in finding the Ekth subset

in which a given element of E belongs. The information needed to specify a particular

element of E is given in two parts; we must first identify the subset Ek which contains

the element and second, locate the element within the subset which, by Hartley, requires

log2(Nk) bits of information. Taking
∑n

k=1Nk = N we also have (again by Hartley) that

log2(N) bits of information are needed to specify an element of E. Thus by the additivity

principle, we have

log2(N) = Ik + log2(Nk) (7.2)

where Ik is the amount of information needed to specify the Ekth subset. Hence,

Ik = log2

(
N

Nk

)
(7.3)

and with this, it is plausible to define the information needed to specify the Ekth set which

the element belongs to as the weighted average of Ik

I =

n∑

k=1

Nk

N
Ik (7.4)

where Nk
N ≡ pk is the probability that the element belongs to the subset Ek. Thus we have

I =

n∑

k=1

pk log2

(
1

pk

)
(7.5)
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which is the entropy of the probability distribution P = (p1, ..., pn) or as it’s better known,

Shannon’s entropy. So according to Shannon, to characterise an element of the set E where

the associated probabilities of its elements are (p1, ..., pn) (under the condition
∑
pk = 1)

we need I =
∑n

k=1 pk log2

(
1
pk

)
bits of information. Further understanding of this measure

can be gained by applying it to physical quantum mechanical measurements of a random

observable where the probability of the kth measurement outcome is given by pk, this will

be our avenue of investigation (predominantly for continuous random variables, for which

the notion of Shannon entropy is generalised as given in the following section).

Formally, Shannon’s entropy is given for n ∈ N and Vm the set of all probability distri-

butions P = (p1, ..., pn) ≡ (p(m1), ..., p(mn)) on (m1, ...,mn) as a measure of information

given by a function I(P ) : Vm 7→ R which satisfies the following axioms

1. Continuity: I(P ) is continuous in all of its arguments

2. Additivity: The information gained from two independent experiments is the sum

of the information from the experiments

3. Monotonicity: For uniform distributions the information increases with n i.e. for

PU = (1/n, ..., 1/n) and QU = (1/k, ..., 1/k) with k, n ∈ N we have k > n ⇒
I(QU ) > I(PU )

4. Branching: The measure of information is independent of how the process is di-

vided into parts. That is, for (p1, ..., pn), n > 3, divide m = {m1, ..,mn} into

two blocks A = (m1, ...,ms) and B = (ms+1, ...,mn), and let pA =
∑s

k=1 pk and

pB =
∑n

k=s+1 pk. Then I(P ) = I(pA, pB) + pAI
(
p1
pA
, ..., pspA

)
+ pBI

(
ps+1

pB
, ..., pnpB

)

5. Bit Normalisation (Convention): The average information gain for two equally likely

messages is one “bit” i.e I(1/2, 1/2) = 1.

It is apparent that any change towards the equalisation of the probabilities p1, ..., pk leads

to an increase in the entropy I(P ), reaching a maximum for the uniform distribution

p1 = ... = pn = 1/n. Shannon went further and asked: what is the minimal amount of

physical resources required to store the information being produced by the source on the

condition that the information can be reconstructed at a later time? The result, known as

Shannon’s noiseless coding theorem [114], turns out to be the entropy I(P ), that is I(P )

bits of information are required per message from the source - a much celebrated result of

notable importance. We now introduce an useful entropic measure that will be elaborated
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upon in the following section. For now, let pi and qi be two probability distributions of

the same index i, then the relative entropy of the distributions is given by

I(pi||qi) =
∑

i

pi log2

(
pi
qi

)

= −I(X)−
∑

i

log2(qi). (7.6)

This gives an entropy-like measure of the closeness of the two probability distributions. It

can be shown that I(pi||qi) ≥ 0 with equality iff pi = qi [116]. The relative entropy provides

a fundamental building block for other entropic quantities e.g by the non-negativity of

the relative entropy it can be shown that for a random variable X with d outcomes,

I(X) ≤ log2(d) which yields the subadditivity of the Shannon entropy;

I(X,Y ) ≤ I(X) + I(Y ) (7.7)

where

I(X,Y ) = −
∑

i,j

pi,j log2(pi,j) (7.8)

is the joint entropy which is a measure of our total uncertainty about the pair of random

variable (X,Y ) and pi,j = pipj is the joint probability distribution. Considering the two

random variables X and Y , we ask how the information content of X is related to the

information content of Y ? To answer this we turn to two entropic quantities referred to

as the conditional entropy and the mutual entropy. Suppose we have acquired I(Y ) bits

of information about the pair (X,Y ), the uncertainty we are left with about this pair is

associated with a lack of knowledge of X given that we know Y (which, in general, shares

some information with X). The entropy of X, conditional on knowing Y , is given by

I(X|Y ) = I(X,Y )− I(Y ). (7.9)

The mutual information of X and Y provides a measure of the amount of information X

and Y have in common and is intuitively defined by

I(X : Y ) = I(X) + I(Y )− I(X,Y )

(7.10)

there are a myriad of relationships between Shannon’s entropic quantities that give insight

into overall functionality of entropy and a lot of this understanding can be heuristically

encapsulated by the “entropy Venn diagram” (see Fig.7.1). Some final results on these

entropic measures:
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Figure 7.1: [116] The “entropy Venn diagram”, with the discrete Shannon entropy of

the random variable X denoted by H(X), allows the heuristic deduction of many of the

entropy inequalities but is not a completely reliable guide.

• The chaining rule for conditional entropies states for any set of random variables

X1, ..., Xn and Y , then I(X1, ..., Xn|Y ) =
∑n

i=1 I(Xi|Y,X1, ..., Xi−1)

• Mutual information is not always subadditive: I(X,Y : Z) � I(X : Z) + I(Y : Z)

• Mutual information is not always superadditive: I(X1 : Y1)+I(X2 : Y2) � I(X1, X2 :

Y1, Y2)

7.2 Differential Entropy

The differential entropy is a generalisation of the discrete Shannon entropy to what one

can consider to be the continuous Shannon entropy; the (linear) entropy of a continuous

random variable [117]. We must first clarify what it means for a random variable to be

continuous. Let χ be a random variable with a cumulative distribution function F (x) =
∫ x
−∞ p(u)du = Pr(χ ≤ x). If F (x) is continuous, the random variable is said to be

continuous. If
∫∞
−∞ p(x) = 1, then p(x) is called the probability density function (PDF)

for χ. The set where p(x) > 0 is called the support set of χ. With this, the differential

entropy H(χ) of a continuous random variable χ with a PDF p(x) is defined as

H(χ) = −
∫

S
p(x) log2 (p(x)) dx (7.11)

where S is the support set of the random variable χ. It is noted that as with every defini-

tion involving integrals, we implicitly include the statement “if it exists”. This applies to
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both the density function and the entropy integral itself. H(χ) is often written as H(p(x)),

a function of probability density since that is where the dependency of the function lies

(rather than the random variable). H(p(x)) reaches its maximum for a given support set,

log2(b − a), for the uniform distribution p(x) = 1/(b − a) in [a, b] an zero elsewhere. So,

intuitively, every change towards the equalisation of the PDFs p(x) yields an increase in

the differential entropy. Note that for b−a < 1⇒ log2(b−a) < 0 thus, unlike the discrete

Shannon entropy, the continuous Shannon entropy can be negative. The volume of the

support set (i.e the continuous analogue of cardinality for the discrete support set) is given

by 2H(p(x)) = 2log2(b−a) = b−a > 0 as expected. One can interpret the differential entropy

as the logarithm of the equivalent side length of the smallest set that contains most of the

probability. Hence, a low entropy implies that the random variable is confined to a small

effective volume and a high entropy indicates a widely dispersed random variable.

There is an important difference between the discrete and continuous Shannon entrop-

ies; the discrete Shannon entropy is uniquely determined by the probability measure over

the message, whereas the continuous Shannon entropy’s value is relative to the coordinate

system. In other words, the continuous Shannon entropy is coordinate dependent and

since information measures should not depend on the way we choose to describe a situ-

ation [112], extra care must be taken when using the differential entropy. Indeed, if we

change from (x1, ..., xn) to (y1, ..., yn) the new entropy is given by

H(y) =

∫
...

∫
p(x1...xn)J

(
x

y

)
log2

(
p(x1...xn)J

(
x

y

))
dy1...dyn (7.12)

where J
(
x
y

)
is the Jacobian of the coordinate transformation. Then changing variables

to (x1...xn) we find

H(y) = H(x)−
∫
...

∫
p(x1, ...xn) log2

(
J

(
x

y

))
dx1...dxn. (7.13)

In the continuous case the entropy can be considered a measure of randomness relative

to an assumed standard, namely the coordinate system chosen with each small element

dx1, ..., dxn given equal weight. However, entropy differences are coordinate independent

in the continuous case and thus provide a measure for differences in information. For

random variables χ,Y with joint PDF p(x, y), we can define the conditional differential

entropy H(χ|Y) to be

H(χ|Y) = −
∫
p(x, y) log2 (p(x|y)) dxdy

= H(χ,Y)−H(Y) (7.14)
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as p(x|y) = p(x, y)/p(y). The relative entropy D(p||q) between the two PDFs p and q is

defined by

D(p||q) =

∫
p log2

(
p

q

)
(7.15)

noting that D(p||q) is finite iff the support set of p is contained within q. The mutual

information I(χ;Y) between two random variables with joint PDF p(x, y) is defined by

I(χ;Y) =

∫
p(x, y) log2

(
p(x, y)

p(x)p(y)
dxdy

)

= D(p(x, y)||p(x)p(y))

= H(χ)−H(χ|Y)

= H(Y)−H(Y|χ). (7.16)

It can be shown that the properties of the relative and mutual information for the continu-

ous case are the same as for the discrete case. The relationship between continuous and

discrete entropy can be established via the following; consider a random variable χ with a

range divided into increments of length ∆ and with a PDF p(x) (see Fig.7.2). Assuming

the PDF is continuous within each increment, the mean value theorem yields a value xi

within each increment such that

p(xi)∆ =

∫ (i+1)∆

i∆
p(x)dx. (7.17)

Introducing the quantised random variable

Figure 7.2: [117] Quantisation of a continuous random variable.

χ∆ ≡ xi, if i∆ ≤ χ < (i+ 1)∆ (7.18)
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then the probability that χ∆ = xi is

Pi =

∫ (i+1)∆

i∆
p(x)dx = p(xi)∆. (7.19)

The entropy of the quantised version is given by

I(χ∆) = −
∞∑

−∞
Pi log2(Pi)

= −
∑

∆p(xi) log2(p(xi))−
∑

p(xi)∆ log2(∆)

= −
∑

∆p(xi) log2(p(xi))− log2(∆)

(7.20)

noting that
∑
p(xi)∆ =

∫
p(x) = 1. The first term in 7.20 then approaches−

∫
p(x) log2(p(x))

as ∆ → 0 by the definition of Riemann integrability (iff the integral is well defined). It

then follows that

I(χ∆) + log2(∆)→ H(P ), as ∆→ 0 (7.21)

i.e the entropy of an n-bit quantisation of a continuous random variable is approximately

H(χ) + n.

7.3 Rényi Entropy

7.3.1 Discrete Rényi Entropy

Rényi’s view of the formulation was slightly distilled in the sense that he considered

(7.5) attainable through two (main) postulates; additivity and linear averaging of the

information measure [118]. Additivity demands the total information received from the

outcomes of two independent events is equal to the sum of the two partial events thus an

information measure must satisfy

I(pq) = I(p) + I(q) (7.22)

assuming further that I(1/2) = 1 and I(p) is monotonic then it follows that

I(p) = log2

(
1

p

)
. (7.23)

The postulate of linear averaging implies that the total amount of information received will

be the average of the individual pieces of information received, weighted by the probabilit-

ies of their occurrences. More formally, for the possible measurement outcomes A1, ..., An
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with the respective probabilities P = (p1, .., pn) where outcome Ak yields Ik bits of in-

formation then, on average, we receive

I(P, I) =
n∑

k=1

pkIk (7.24)

bits of information, where I = (I1, .., Ik). Note that (7.24) is independent of any outcome

Ak. It is then obvious that (7.5) is a consequence of these two postulates. It is well

known that the linear mean is a widely used way of averaging but not the only way.

Rényi’s insight was to employ the general theory of means to the information measure.

The general theory of means [119] states that a mean of the real numbers with weights

p1, ..., pn (such that pk > 0,
∑n

k=1 pk = 1) is an expression of the form

ϕ−1

(
n∑

k=1

ϕ(xk)pk

)
(7.25)

where, ϕ(x) is an arbitrary, strictly monotone function on the reals. Following the formu-

lation of the Shannon entropy but using (7.25) as opposed to the linear mean then the

amount of information associated with the probability distribution P = (p1, .., pn) is then

I(pk) = ϕ−1

(
n∑

k=1

ϕ

(
log2

(
1

pk

))
pk

)
(7.26)

and similarly

I(P, I) = ϕ−1

(
n∑

k=1

ϕ(Ik)pk
)

(7.27)

This gives rise to the question; does an arbitrary choice of ϕ(x) actually produce a reas-

onable measure of information that adheres to the postulate of additivity? Indeed, the

postulate places a critical restriction on the choice of ϕ. If ϕ(x) is linear then (7.26) and

(7.27) reduce to (7.5) and (7.24) respectively. The only other functions satisfying this are

the exponential functions. To gain some insight on this we consider E to be the union of

the two independent events E1, E2 from which we obtain Ih and Jk bits of information with

probabilities ph ans qk respectively. Thus the total information received is Ih + Jk with

probability phqk (h = 1, ...,m ; k = 1, .., n). Taking the average amount of information

obtained from the union of the two events E to be the sum of the average amounts of

information received from the two independent events, then (7.27) yields

ϕ−1

(
m∑

h=1

n∑

k=1

phqkϕ(Ih + Jk)
)

= ϕ−1

(
m∑

h=1

phϕ(Ih)

)
+ ϕ−1

(
n∑

k=1

qkϕ(Jk)
)
. (7.28)

This must hold for arbitrary, finite, discrete probability distributions P = {ph} and Q =

{qk} with arbitrary associated numbers Ih and Jk. If we choose Jk = J independently of
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k then from (7.25) we have

ϕ−1

(
m∑

h=1

phϕ(Ih + J )

)
= ϕ−1

(
m∑

h=1

phϕ(Ih)

)
+ J . (7.29)

Then from the theory of means [119] we have that (7.29) can hold only for linear or

exponential functions, where the former results in Shannon’s entropy. Let us then take

ϕ(x) to be an exponential function of the form ϕ(x) = 21−αx where α 6= 1. From this we

obtain

Iα(P ) =
1

1− α log2

(
n∑

k=1

pαk

)
. (7.30)

This can be considered a measure of information for α 6= 1. However, for α < 0 this

measure will become infinite as p1 → 0 i.e. this measure becomes overly sensitive to small

probabilities. Furthermore, the α = 0 case must be excluded as it yields an expression

that is independent of the probability distribution (I0(P ) = log2(n), dependent only on

the number of events). Thus for α ∈ R+ \ {0, 1}, Iα(P ) is a measure of information of

order α with the probability distribution P = (p1, .., pn). This is how Rényi referred to

the measure (7.30), now it is more commonly referred to as the Rényi entropy. Note that

lim
α→1
Iα(P ) = lim

α→1

d
dα log2 (

∑n
k=1 p

α
k )

d
dα(1− α)

=

(
n∑

k=1

log2(pk)p
α
k

)(
n∑

k=1

pαk

)−1 ∣∣∣∣
α=1

· (−1)−1

=

n∑

k=1

pk log2

(
1

pk

)

= I (7.31)

hence, Rényi’s entropy is a generalisation of Shannon’s entropy (7.5).

7.3.2 Geometric Interpretation of the Discrete Rényi Entropy

Probability mass functions (PMFs) can be visualized geometrically as points in a vector

space known as the simplex with the axis given by the normalised probabilities [120].

For an n-dimensional random variable, the simplex ∆n consists of all possible probability

distributions;

∆n =

{
p = (p1, ..., pn)T ∈ Rn, pi ≥ 0,

∑

i

pi = 1,∀i
}
. (7.32)

To illustrate this, consider the 3-dimensional simplex for the variables (x, y, z). The space

of all such distributions is a tetrahedron with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1). This is



107

Figure 7.3: [120] The 2- and 3-dimensional representations of the probability simplex with

the entropy α-norm of arbitrary point (or PMF) p.

demonstrated in Fig.7.3 along side the n = 2-dimensional case. Any point in the simplex

represents a different PMF and thus each PMF can be characterised by it’s distance to

the origin. Then defining

||p(x)||α =

(
n∑

k=1

pαk

) 1
α

= α
√
Vα(X) (7.33)

which implies

Vα(X) = ||p(x)||αα. (7.34)

Recalling that the p-norm of an m-dimensional vector ~x is given by

||~x||p =

(
m∑

i=1

|xi|p
) 1

p

. (7.35)

we have that the α-information potential Vα(x) can be interpreted as the α power of the

PMF α-norm. More formally, the discrete Rényi entropy takes the α − 1 root of Vα(x)

and rescales it by the logarithm. From this is becomes apparent that the role of α is to

specify the norm to measure the distance of p(x) to the origin within the simplex. Then

from the theory of norms [121] it is evident that α is in fact altering the importance of the

small values versus the large values in the set. With this we can interpret the Shannon

entropy (α→ 1) as the functional value of the 1-norm of the probability density. In fact,

the 1-norm of any probability density is, by definition, always 1. As Rényi’s entropy is a

scalar that characterises densities, it is useful, in order to gain further insight, to display

the contours of equal Rényi entropy in the simplex for several α. In Fig.7.4 the isoentropy
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contours are plotted as a function of α. Notice that as α get closer to zero, the values

inside the simplex exhibit little change. For higher values of α we see that the contours

have rotated by 180 degrees and as α increases the changes with respect to the origin are

emphasised. For α > 1, the Rényi entropies are monotonically decreasing functions of the

information potential Vα and for α ≤ 1, Renyi’s entropies are monotonically increasing

functions of Vα. In other words, the entropy maximisation is equivalent to maximisation of

the information potential and entropy minimisation is equivalent to information potential

minimisation.

Figure 7.4: [120] The 3-dimensional probability simplex isoentropy contours (contours of

equal Rényi entropy) for various values of α.

7.3.3 Continuous Rényi Entropy

Similarly to the Shannon entropy, it is possible to define the information measure of order

α for the case of continuous distributions confined to a finite interval on R. Let f(x)

be an arbitrary positive density function on the interval [a, b], let Fnk =
∫ (k+1)/n
k/n f(x)dx

and furthermore, let us denote the information quantity of order p for the corresponding

discrete distribution Fn = {Fnk} by I(Fn) then it follows that

Ip(Fn) =
1

1− p log2

(
n∑

k=1

F pnk

)
. (7.36)
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Just as for p = 1 [118], it can be easily shown that if the integral
∫ b
a f(x)dx exists (as it

does for 0 < p < 1) then for p > 0

Ip(f(x)) ≡ lim
n→∞

(Ip(Fn)− log2(n)) =
1

1− p log2

(∫ b

a
f(x)pdx

)
(7.37)

the proof of which can be found in Ref.[118]. Since log2(n) represents the entropy of

the uniform distribution, we can interpret the continuous Rényi entropy as the gain in

information provided by the experimental results Fn relative to the uniform distribution.

The right hand sight of (7.37) is formally referred to as the information quantity of order p

assigned to the PDF f(x). We refer to this quantity as the continuous Rényi entropy. The

continuous Rényi entropy has properties similar to the corresponding differential entropy

(p→ 1) e.g for p = 1, Ip(f(x)) can be negative as well.
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Chapter 8

A One-Parameter Class of

Uncertainty Relations

In this chapter we explore the notion of uncertainty relations within quantum mechanics.

In particular we take an information-theoretic approach to the investigation of applica-

tions of entropic measures within this setting. This culminates in a novel derivation and

application of an infinite family of uncertainty relations which are in fact a generalisation

of the familiar uncertainty relations derived and used in quantum theory.

This chapter is based on the papers:

(1) New class of entropy-power-based uncertainty relations, P Jizba, A Hayes and J A

Dunningham, 2017 J. Phys.: Conf. Ser. 880 012054

(2) One-parameter class of uncertainty relations based on entropy power, Petr Jizba, Yue

Ma, Anthony Hayes and Jacob A Dunningham, Physical Review E 93, 060104(R) (2016)

8.1 Uncertainty Relations

8.1.1 Variance-Based Uncertainty Relations

In section 2.1 the uncertainty relation (2.17) (in units of ~)

∆2X̂λ∆2X̂λ+π/2 ≥
1

4
(8.1)

was introduced as a mathematical consequence of the non-commutativity of the operators

involved. Historically, this concept was first introduced in a quantum mechanical context

by Heisenberg (1927) [122] and is famously known as the Heisenberg uncertainty principle

however this often conflates two subtly different ideas; the concept of quantum mechan-
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ical uncertainty relations and the idea that a measurement of a physical system must

necessarily disturb the system itself. While the latter is true, and indeed the notion that

Heisenberg posited, this is not the underlying concept of uncertainty relations that we in-

vestigate in the following. Uncertainty relations emerge as a consequence of fundamental

properties of quantum mechanics and they impose a trade-off on the precision between

position and momentum when a simultaneous measurement is performed. The underlying

reasoning can be interpreted via wave mechanics in that a function and its Fourier trans-

form cannot both be sharply localised or it can be interpreted through matrix mechanics

in that non-commutative observables cannot have simultaneous eigenstates. These ideas

were developed independently by Kennard (1927) [123] within the mathematical formal-

ism of quantum mechanics, this initial result states that for the pair of conjugate variables

position x and momentum p, the amount of information we have on one of the variables

places a fundamental limit on the information attainable on the other and reads

σxσp ≥
~
2

(8.2)

where, σx and σp are the standard deviations of the position and momentum respectively.

We now refer to Heisenberg’s original result as the “error-disturbance” relation [124] in

order to distinguish it from Kennard’s result. A pivotal development was the generalisation

of Kennard’s relation by Robertson (1929) [125] to encompass arbitrary conjugate variables

σ(Â)σ(B̂) ≥ 1

2

∣∣∣∣ 〈[Â, B̂]〉
∣∣∣∣ (8.3)

which was in turn generalised by Schrödinger (1930) [126] to include statistical correlations

captured by non-zero covariance terms between the observables

∆2Â∆2B̂ ≥
(

1

2
〈[Â, B̂]〉 − 〈Â〉 〈B̂〉

)2

−
∣∣∣∣
1

2
〈{Â, B̂}〉

∣∣∣∣
2

(8.4)

where {Â, B̂} = ÂB̂ + B̂Â is the anti-commutator. The next major development con-

cerning this type of uncertainty relations came from Arthurs and Kelly (1965) [127] who

incorporated a quantum mechanical apparatus as discussed in section 4.1.4 into the meas-

urement scheme and Arthurs and Goodman who generalised the measurement scheme for

arbitrary complementary observables. This analysis included the condition of unbiased-

ness, that is to say that the expectation values of the system of interest can be directly

estimated from the outcomes of measurements performed on the apparatus. With this, it

was found that the measurement outcome is composed of two distinct types of uncertainty;

the inherent quantum mechanical fluctuations and the error in the measurement, this is
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encapsulated in the following

σ′(Â′)σ′(B̂′) ≥ σ(Â)σ(B̂) + ε(Â)ε(B̂) ≥ | 〈[Â, B̂]〉 | (8.5)

where σ′(Â′) and σ′(B̂′) denote the standard deviation of the apparatus for the arbitrary

complementary observables and ε(·) is the error in the measurement. The unbiasedness

condition was later removed by Ozawa (2003) [128]. This allowed Ozawa to claim that the

original Heisenberg error-disturbance relation can be violated but it can be shown [129]

that this is a result of the definition of the error and disturbance having no correspondence

to the accuracy of estimation.

8.1.2 Entropic Uncertainty Relations

Prompted by the shared properties of the Fisher information and the Shannon entropy,

Stam (1965) conjectured that the Shannon entropy could be used to form an uncertainty

relation. This was confirmed independently by Hirschman (1957) [130] by proving that

the sum of the Shannon entropies of the absolute value squared of any function f(x) ∈ L2

and its Fourier transform is non-negative, i.e for

f(x) =

∫ ∞

−∞
exp(i2πxy)g(y)dy (8.6)

with a convergent integral in L2, it follows that

H(|f |2) +H(|g|2) ≥ 0. (8.7)

Additionally, Hirschman conjectured a tighter bound (as did Everret [131])

H(|f |2) +H(|g|2) ≥ ln
(e

2

)
(8.8)

which was later proven by Beckner (1975) [132]. This was adapted to a quantum mech-

anical uncertainty relation by Bialynicki-Birula [133] which showed that the Shrödinger

(8.4) and Robertson VURs (8.3) can be derived from this entropic uncertainty relation.

8.1.3 Entropy Power Uncertainty Relations

Here, with the aim of constructing a generalised uncertainty relation, we introduce another

mathematical object related to entropy that was first introduced by Shannon [114] in the

context of communication theory, it is known as entropy power (EP). For the differential

entropy, as given by (7.11), the entropy power N(χ) of the random variable χ ∈ RD is

defined by the quantity that satisfies

H(χ) = H
(√

N(χ) · ZG
)

(8.9)
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where ZG is the Gaussian vector with zero mean and unit covariance matrix. That is to

say, the EP is the variance of what would be a Gaussian random variable that has the

equivalent differential entropy as the random variable of interest. Hence if the variable of

interest is in fact Gaussian, the EP is simply the variance of that Gaussian. However we

are not limited to the analysis random variables which submit Gaussian PDFs as we shall

see in the following and to facilitate this we first generalise the notion of EP using the

Rényi entropy. In units of bits, the pth Rényi entropy power (REP) Np(χ) of the random

variable χ ∈ RD is found to be [114, 134]

Np(χ) =
1

2π
p−p

′/p2
2
D
Ip(χ) (8.10)

where 1/p+ 1/p′ = 1 with p ∈ R+. This is the solution of

Ip(χ) = Ip
(√

Np(χ) · ZG
)

(8.11)

where Ip is the continuous Rényi entropy as defined by (7.37). This also has the property

that Np(χ) → N(χ) as p → 1. With the aim of deriving an uncertainty relation we now

introduce the Beckner-Babenko theorem [132, 135]: let

f (2)(~x) =

∫

RD
e2πi~x~yf (1)(~y)d~y (8.12)

then for p ∈ [1, 2] the following inequality holds

|(p′)D/2|1/p′‖f (2)‖p′ ≤ |pD/2|1/p‖f (1)‖p (8.13)

where, p and p′ are Hölder conjugates and

‖F‖p ≡
(∫

RD
|F (~y)|pd~y

)1/p

(8.14)

for any F ∈ Lp(RD) where Lp is the function space defined using the p-norm for finite

dimensional vector spaces. Choosing
√
F(~y) ≡ |f(~y)| we can rewrite inequality (8.13) as

(∫

RD
|F (2)(~y)|1+td~y

)1/t(∫

RD
|F (1)(~y)|1+rd~y

)1/r

≤ [2(1 + t)]D|t/r|D/2r (8.15)

where r = p/2 − 1, t = p′/2 − 1 and since 1/p + 1/p′ = 1 we have that t = −r/(2r + 1).

Furthermore, given that p ∈ [1, 2] we have r ∈ [−1/2, 0] and t ∈ [0,∞). Taking the

logarithm (in base 2) of each side of the inequality and multiplying through by -1 gives

I1+t(F (2)) + I1+r(F (1)) ≥ 1

r
log2 [2(1 + r)]D/2 +

1

t
log2 [2(1 + t)]D/2 (8.16)

which, in the limit of t → 0+ and r → 0−, reduces to the Hirschman conjecture for the

differential Shannon entropy [130]

H(F (2)) +H(F (1)) ≥ log2

(e
2

)D
. (8.17)
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The semidefiniteness of the RE (Iα(χ) ≥ 0,∀α, χ) renders (8.16) impractical. Inequality

(8.16) can be rewritten in terms of REPs to give

N1+t(F (2))N1+r(F (1)) ≥ 1

16π2
(8.18)

and since t = −r/(2r + 1), this constitutes a family of inequalities that are characterised

by a single parameter. The right hand side of (8.18) constitutes a universal lower bound

since it is not dependent on any parameter, this is not the case for (8.16). We now consider

this bound in a quantum mechanical setting by taking the position and momentum wave-

functions ψ(~x) and ψ̂(~p), these are state vectors that are related to each other through

the fact that they are Fourier transform duals

ψ(~x) =

∫

RD
ei~x·~p/~ψ̂(~p)

d~p

(2π~)D/2
(8.19)

for which [119] ‖ψ‖2 = ‖ψ̂‖2 = 1. Defining

f (2)(~x) = (2π~)D/4ψ(
√

2π~~x), f (1)(~p) = (2π~)D/4 ~ψ(
√

2π~~p) (8.20)

where the factors of (2π~)D/4 are included so the wavefunctions adhere to the form of the

Fourier transform as given in the Beckner-Babenko theorem. Then using the fact that

Ip(|f (1)|2) = Ip(|ψ̂|2)− D

2
log2(2π~), (8.21)

inequality (8.16) then becomes

I1+t(|ψ|2) + I1+r(|ψ̂|2) ≥ 1

r
log2

(
1 + r

π~

)D/2
+

1

t
log2

(
1 + t

π~

)D/2
(8.22)

which in terms of REPs gives

N1+t(|ψ|2)N1+r(|ψ̂|2) ≥ ~
2

4
(8.23)

which resembles the familiar Robertson-Shcrödinger VUR with the crucial difference of

being a family of uncertainty relations characterised by a single parameter (since t and r

are dependent on each other).

8.2 REPUR for Gaussian States

In the following, we intend to investigate the uncertainty relation (8.23). The inspection

of the bound (8.23) for the various Gaussian states requires the PDFs of the general

quadrature variable xλ i.e the eigenvalue of the relation X̂λ |xλ〉 = xλ |xλ〉 where the

quadrature operator is given by (2.15). Consider a general Gaussian function

f(x) = a exp

(−(x− b)2

2c2

)
(8.24)



115

where a is the amplitude of the distribution, b is the mean value at which the distribution

is centred and c is the standard deviation. The entropy power of (8.24) is then given by

N1+t(f(x)) =
1

2π
(1 + t)−

1
t 2
− 2
t

log2

[∫ ∞
−∞

dx

(
a exp

(
−(x−b)2

2c2

))(1+t)
]

(8.25)

then let y = x− b ⇒ dy = dx, (and integration limits remain unchanged), thus

N1+t(f(x)) =
(1 + t)−

1
t

2π
2
− 2
t

log2

[
a(1+t)

∫ ∞
−∞

dy exp

(
−y2(1+t)

2c2

)]
. (8.26)

We have

∫ ∞

−∞
e−kx

2
dx =

√
π

k
for Re(k) > 0 (8.27)

so with k = 1+t
2c2

(and hence Re(k) > 0 as t, r ∈ [−1
2 ,∞) and c > 0 by definition) we have

N1+t(f(x)) =
(1 + t)−

1
t

2π
2
− 2
t

log2

[
a(1+t)π

1
2 (1+t)−

1
2 2

1
2 c
]

=
(1 + t)−

1
t

2π
a−

2
t a−2(2π)−

1
t (1 + t)

1
t c−

2
t

=
1

2π
(c22πa2)−

1
t a−2 (8.28)

thus N1+t(f(x)) is independent of the parameter t iff c22πa2 = 1 as c, a ∈ R. To inspect

the conjugate variable, we must take the entropy power of the Fourier transform of the

probability amplitude of f(x) to give f̂(p) however, we have that the Fourier transform of

a Gaussian distribution is also a Gaussian distribution. The above argument then holds

exactly for the entropy power of the conjugate variable’s PDF (trivially replacing “t” with

“r”). Then we find for a general Gaussian PDF

N1+t(f(x))N1+r(f̂(p)) =
1

4π2
(c22πa2)−

1
t (ĉ22πâ2)−

1
r a−2â−2 ≥ 1

4
(8.29)

where, f̂(p) is the Fourier transform with amplitude â and standard deviation ĉ. So for

general Gaussian PDFs the bound is saturated under the condition (c22πa2)−
2
t (πa2)−2 =

1. Furthermore, for Gaussian states the PDF must be normalised i.e.

∫ ∞

−∞
f(x)dx = a

∫ ∞

−∞
dx exp

(−(x− b)2

2c2

)
= 1 (8.30)

so, making the usual substitution y = x− b and using (8.27), we see

a
√

2πc = 1 (8.31)

thus for Gaussian states the entropy power is given by

N1+t(f(x)) =
1

2π
a−2 (8.32)
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independent of the parameter t. The bound (8.23) becomes

N1+t(f(x))N1+r(f̂(p)) =
1

4π2
a−2â−2

=
1

4π2
(2πc2)(2πĉ2)

= (cĉ)2

≥ 1

4
. (8.33)

Considering a probability amplitude of the PDF described by (8.24) we have for general

quadrature variable

ψ(xλ) =
√
a exp

(
(xλ − b)2

4c2

)
(8.34)

with the conjugate probability amplitude given by the Fourier transform which we define

as

ψ̂(xλ+π/2) =
√
â exp

(
(xλ+π/2 − b)2

4ĉ2

)
(8.35)

which, due to the Gaussian nature of the probability amplitudes of the conjugate quad-

rature variables satisfies the relation σλσλ+π/2 = 1 where σλ =
√

2c and σλ+π/2 =
√

2ĉ.

This is equivalent to cĉ = 1/2, so substituting this into (8.33) then enables us to conclude

N1+t(FGN (xλ))N1+r(FGN (xλ+π/2)) =
1

4
(8.36)

i.e all Gaussian states saturate the bound (8.23) independent of the family of parameters t

and r. In the following, we shall demonstrate this result by applying it to Gaussian states

prominent in quantum metrology.

Coherent State

From equation (2.76) which is restated here for convenience, the overlap of the general

quadrature state with a coherent state is given by

〈xλ|eiφβ〉 = π−
1
4 e−

1
2

(x2λ+β2)e−
1
2
e2i(λ+φ)β2+

√
2ei(λ+φ)βxλ . (8.37)

Setting φ = 0, the PDFs of a coherent state for the conjugate quadrature variables x0 and

xπ/2 are given by

F(x0) = |〈x0|β〉|2 = π−
1
2 e−(x0−

√
2β)2 (8.38)

F(xπ/2) = |〈xπ/2|β〉|2 = π−
1
2 e
−x2

π/2 (8.39)

as illustrated in Fig.8.1. The Shannon entropy, which corresponds to r = t = 0, is found
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Figure 8.1: Plots of position and momentum probability distributions for a coherent state

with β = 2. Both are Gaussian PDFs.

to be

I1(x0) = −
∫ +∞

−∞
|〈x0|β〉|2 log2

(
|〈x0|β〉|2

)
dx0

= −
∫ +∞

−∞

∣∣∣∣π−
1
4 e−

1
2

(x20+β2)e−
1
2
β2+
√

2βx0

∣∣∣∣
2

log2

(∣∣∣∣π−
1
4 e−

1
2

(x20+β2)e−
1
2
β2+
√

2βx0

∣∣∣∣
2
)
dx0

= −
∫ +∞

−∞
π−

1
2 e−(x0−

√
2β)2 log2

(
π−

1
2 e−(x0−

√
2β)2

)
dx0. (8.40)

Then making the change of variable x0 = x̃0 −
√

2β ⇒ dx0 = dx̃0, we have

I1(x̃0) = −
∫ +∞

−∞
π−

1
2 e−x̃

2
0 log2

(
π−

1
2 e−x̃

2
0

)
dx̃0

=
1

2
π−

1
2 log2(π)

∫ +∞

−∞
e−x̃

2
0dx̃0 + (log2 e)π

− 1
2

∫ +∞

−∞
e−x̃

2
0 x̃2

0dx̃0

=
1

2
√
π

(log2(π))
√
π + (log2(e))

1√
π

√
π

2

=
1

2
log2(eπ) (8.41)
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where we have made use of the Gaussian integral results
∫ +∞
−∞ e−x

2
dx =

√
π and

∫ +∞
−∞ e−x

2
x2dx =

√
π

2 . Similarly, we find for the conjugate variable

I1(xπ/2) = −
∫ +∞

−∞
|〈xπ/2|β〉|2 log2 |〈xπ/2|β〉|2dxπ/2

= −
∫ +∞

−∞

∣∣∣∣π−
1
4 e
− 1

2
(x2
π/2

+β2)
e−

1
2
eiπβ2+

√
2ei

π
2 βxπ/2

∣∣∣∣
2

·

· log2

(∣∣∣∣π−
1
4 e
− 1

2
(x2
π/2

+β2)
e−

1
2
eiπβ2+

√
2ei

π
2 βxπ/2

∣∣∣∣
2
)
dxπ/2

= −
∫ +∞

−∞
π−

1
2 e
−x2

π/2 log2(π−
1
2 e
−x2

π/2)dxπ/2

=
1

2
log2(eπ) (8.42)

thus the entropy powers for both conjugate variables are given by

N1(x0) = N1(xπ/2) =
1

2πe
22( 1

2
log2(eπ)) =

1

2
(8.43)

so that N1(x0)N1(xπ/2) = 1
4 saturating the bound as expected.

We now calculate the so called “min-entropy” with respect to the momentum-like quad-

rature variable (r →∞, which forces t = −1/2):

I∞(xπ/2) = lim
α→∞

1

1− α log2

(∫ +∞

−∞
dxπ/2(F(xπ/2))α

)

= lim
α→∞

1

1− α log2

(
dxπ/2 ·max[F(xπ/2)α]

)

= lim
α→∞

1

1− α
(
log2(dxπ/2) + α log2(max[F(xπ/2)])

)

= − log2(max[F(xπ/2)]) (8.44)

where, from (8.37), F(xπ/2) = |〈xπ/2|β〉|2 = π−
1
2 e
−x2

π/2 and hence, max[F(xπ/2)] = π−
1
2 .

With this, equation (8.44) yields

I∞(xπ/2) =
1

2
log2(π). (8.45)

For the conjugate variable we find

I1/2(x0) =
1

1− 1
2

log2

(∫ +∞

−∞
dx0(|〈x0|β〉|2)

1
2

)

= 2 log2

(∫ +∞

−∞
dx0(π−

1
2 e−(x0−

√
2β)2)

1
2

)

= log2(2π
1
2 ) (8.46)

and the according entropy powers are found to be

N 1
2
(x0) =

1

2
, N∞(xπ/2) =

1

2
(8.47)
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thus

N 1
2
(x0)N∞(xπ/2) =

1

4
. (8.48)

again saturating the bound (8.23) as expected. For the min-entropy with respect to the

position-like quadrature variable (t→∞, which forces r = −1/2), we find

I∞(x0) = − log2(max[F(x0)])

=
1

2
log2(π) (8.49)

I1/2(xπ/2) = 2 log2

(∫ +∞

−∞
dxπ/2(|〈xπ/2|β〉|2)

1
2

)

= log2(2π
1
2 ) (8.50)

hence the entropy powers are given by

N 1
2
(xπ/2) =

1

2
N∞(x0) =

1

2
(8.51)

thus

N 1
2
(xπ/2)N∞(x0) =

1

4
(8.52)

once again, saturating the bound (8.23).

Squeezed State

From equation (2.56), the squeezed vacuum state |ζ〉 with ζ = zeiφ has the following Fock

basis representation

|ζ〉 =

∞∑

m=0

(−1)m
√

(2m)!

2mm!

(tanh(z))m√
cosh(z)

ei2mφ|2m〉 (8.53)

and from [22] we have

〈xλ|ζ〉 = (2π∆2X̂λ)−
1
4 exp

(
− x2

λ

4∆2X̂λ

[1− i sin(2λ− φ) sinh(2z)]

)
(8.54)

where the variance is given by

∆2X̂λ =
1

2

[
e2z sin2

(
λ− φ

2

)
+ e−2z cos2

(
λ− φ

2

)]
(8.55)

hence the PDFs for the squeezed state for the conjugate quadrature variables x0 and xπ/2

are given by

F(x0) = π−1/2 exp
(
−x2

0e
2z + z

)
(8.56)

F(xπ/2) = π−1/2e
−x2

π/2 (8.57)
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Figure 8.2: Plots of position and momentum probability distributions for a squeezed

vacuum state with z = 1/2 and φ = 0. Both are Gaussian PDFs.

as displayed in Fig.8.2. The Shannon entropy is evaluated via the following

I1(x0) = −
∫ +∞

−∞
|〈x0|ζ〉|2 log2 |〈x0|ζ〉|2dx0

= −
∫ +∞

−∞

∣∣∣∣π−
1
4 e

z
2 e−

x20e
2z

2

∣∣∣∣
2

log2

(∣∣∣∣π−
1
4 e

z
2 e−

x20e
2z

2

∣∣∣∣
2
)
dx0

= −
∫ +∞

−∞
π−

1
2 eze−x

2
0e

2z
log2(π−

1
2 eze−x

2
0e

2z
)dx0

= −π− 1
2 ez
∫ +∞

−∞
e−x

2
0e

2z
(

log2(π−
1
2 ez) + log2(e−x

2
0e

2z
)
)
dx0

= −π− 1
2

(
log2(π−

1
2 ez)

∫ +∞

−∞
e−(x0ez)2d(x0e

z)− log2 e

∫ +∞

−∞
e−(x0ez)2(x0e

z)2d(x0e
z)

)

= −π− 1
2 log2(π−

1
2 ez)

∫ +∞

−∞
e−x

2
0dx0 + π−

1
2 (log2 e)

∫ +∞

−∞
e−x

2
0x2

0dx0

= log2

(
(eπ)

1
2 e−z

)
(8.58)

and similarly for the conjugate variable

I1(xπ/2) = −
∫ +∞

−∞
|〈xπ/2|ζ〉|2 log2 |〈xπ/2|ζ〉|2dxπ/2

= −
∫ +∞

−∞

∣∣∣∣π−
1
4 e−

z
2 e−

x2
π/2

e−2z

2

∣∣∣∣
2

log2

(∣∣∣∣π−
1
4 e−

z
2 e−

x2
π/2

e−2z

2 |2
)
dxπ/2

= log2

(
(eπ)

1
2 ez
)
. (8.59)

Hence, the entropy powers are found to be

N1(x0) =
e−2z

2
N1(xπ/2) =

e2z

2
(8.60)
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so that

N1(x0)N(xπ/2) =
1

4
(8.61)

saturating the bound (8.23) as predicted.

The min-entropy with respect to the momentum-like quadrature variable (r →∞, which

forces t = −1/2) is found to be

I∞(xπ/2) = − log2

(
max

[
|〈xπ/2|ζ〉|2

])

= − log2

(
max

[
π−

1
2 e−ze

−x2π
2 e−2z

])

= − log2

(
π−

1
2 e−z

)

= log2

(
π

1
2 ez
)

(8.62)

and for the conjugate variable

I1/2(x0) = 2 log2

(∫ +∞

−∞
dx0(|〈x0|ζ〉|2)

1
2

)

= 2 log2

(∫ +∞

−∞
dx0π

− 1
4 e

z
2 e−

x20e
2z

2

)

= log2

(
2π

1
2 e−z

)
(8.63)

where we have used the result
∫∞
−∞ e

−kx2
2 dx =

√
2π
k .

N1/2(x0) =
e−2z

2
, N∞(xπ/2) =

e2z

2
(8.64)

thus

N1/2(x0)N∞(xπ/2) =
1

4
(8.65)

again saturating the bound (8.23). The min-entropy with respect to the position-like

quadrature variable (t→∞, which forces r = −1/2) is given by

I1/2(xπ/2) = 2 log2

(∫ +∞

−∞
(|〈xπ/2|ζ〉|2)

1
2dxπ/2

)

= 2 log2

(∫ +∞

−∞
π−

1
4 e−

z
2 e−

x2
π/2

e−2z

2 dxπ/2

)

= log2

(
2π

1
2 ez
)

(8.66)

I∞(x0) = − log2

(
max

[
|〈x0|ζ〉|2

])

= − log2

(
max

[
π−

1
2 eze−x

2
0e

2z
])

= − log2

(
π−

1
2 ez
)

= log2

(
π

1
2 e−z

)
(8.67)
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yielding the entropy powers

N1/2(xπ/2) =
e2z

2
N∞(x0) =

e−2z

2
(8.68)

hence

N1/2(xπ/2)N∞(x0) =
1

4
(8.69)

saturating the bound (8.23) once again.

8.3 REPUR for Non-Gaussian States

8.3.1 Cat States

The first non-Gaussian state we inspect is the Cat State; a macroscopic superposition of

coherent states with opposite phases as given by (2.95) and restated here for convenience

|ψC〉 = NC(|iβ〉+ |−iβ〉). (8.70)

From (2.97) and (2.98), the PDFs in the conjugate quadratures x0 and xπ/2 are given by

F+(x0, π/2,−π/2) = 4π−
1
2 (N+

β )2e−x
2
0 cos2(

√
2βx0) (8.71)

F+(xπ/2, π/2,−π/2) = 4π−
1
2 (N+

β )2e
−x2

π/2
−2β2

cosh2(
√

2βxπ/2). (8.72)

With this we can now calculate the min-entropies with respect to the position variable.

This requires integrating the quantity lim
p→∞

(F(x))p, the maximum value of the probability

density function will dominate in this limit so we need only concern ourselves with the

value

lim
p→∞

∫

M
dx(F(x))p = lim

p→∞
dxmax [F(x)]p . (8.73)

This in turn requires evaluating the maximum values of (2.97) and (2.98) for which we have

F+(x0, π/2,−π/2) ≡ F(x0) = Ce−x
2
0 cos2(

√
2βx0) where, C = 4π−

1
2 (N+

β )2 is constant (for

fixed β). We have max[e−x0 ] = 1 at x0 = 0 and max[cos2(x0)] = 1 at x0 = 0. Therefore,

max[F(x0)] = C = 4π−
1
2 (N+

β )2 at x0 = 0. The maximum of the probability density

function for the conjugate variable F+(xπ/2, π/2,−π/2) ≡ F(xπ/2) can be determined by



123

arranging (2.98) in the following suggestive form

F(xπ/2) = 4π−
1
2 (N+

β )2e
−x2

π/2
−2β2

cosh2(
√

2βxπ/2)

= 4π−
1
2 (N+

β )2

(
e−

x2
π/2
2
−β2

cosh(
√

2βxπ/2)

)2

= π−
1
2 (N+

β )2

[
e−

x2
π/2
2
−β2

(
e
√

2βxπ/2 + e−
√

2βxπ/2
)2
]

= π−
1
2 (N+

β )2

(
e
−
(xπ/2√

2
−β
)2

+ e
−
(xπ/2√

2
+β
)2)2

(8.74)

from which it is apparent that F(xπ/2) is the sum of two Gaussian distributions. Max-

imising F(xπ/2) over xπ/2 will yield a function dependent on β: the maximum at small

β (when the two Gaussians overlap and “interfere”), due to the symmetry of Gaussian

functions, will clearly be located at xπ/2 = 0. For large β (when the two Gaussians are

completely separated, roughly 3 standard deviations from the β = 0 case) we see the

common maximum of the distribution will be located at the means of the constituent

Gaussians i.e at xπ/2 = ±
√

2β. Using this we find

max[F(xπ/2)] =





2π−
1
2 (N+

β )2e−2β2
at x = 0, for small β

π−
1
2 (N+

β )2
(

1 + e−4β2
)2

at |x̄π/2| =
√

2β, for large β.

(8.75)

The entropies for the p→∞ cases are in general given by

I∞(F(x)) = lim
p→∞

1

1− p log2

(∫ ∞

−∞
dx(F(x))p

)

= lim
p→∞

1

1− p log2 (dx [max[F(x)]]p)

= lim
p→∞

1

1− p [log2(dx) + log2 (max[F(x)]p)]

= lim
p→∞

[
log2(dx)

1− p +
p

1− p log2 (F(x))

]

= − log2 (max[F(x)]) (8.76)

thus

I∞(F(x0)) = lim
p→∞

1

1− p log2

(∫ ∞

−∞
dx0(F(x0))p

)

= lim
p→∞

1

1− p log2

(
dx0

[
4π−

1
2 (N+

β )2
]p)

= − log2

(
4π−

1
2 (N+

β )2
)

(8.77)
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and similarly

I∞(F(xπ/2)) =





− log2

(
2π

1
2 (N+

β )2e−2β2
)

at x = 0, for small β

− log2

[
π−

1
2 (N+

β )2
(

1 + e−4β2
)2
]

at |x̄π/2| =
√

2β, for large β.

(8.78)

We now calculate the Rényi entropy for the probability density functions (2.97) and (2.98)

for the case p = 1/2

I1/2(F(xπ/2)) =
1

1− 1
2

log2

(∫ ∞

−∞
dxπ/2[4π−

1
2 (N+

β )2e−x
2
0−2β2

cosh2(
√

2βxπ/2)]
1
2

)

= 2 log2

(
2π−

1
4N+

β e
−β2

∫ ∞

−∞
e−

x2
π/2
2 cosh(

√
2βxπ/2)dxπ/2

)
(8.79)

we have

∫ ∞

−∞
e−

x2

2 cosh(kx)dx = e
k2

2

√
2π (8.80)

thus,

I1/2(F(xπ/2)) = 2 log2

(
2π−

1
4N+

β e
−β2

eβ
2√

2π
)

= log2

(
23π

1
2 (N+

β )2
)
. (8.81)

Now for the remaining Rényi entropy we have

I1/2(F(x0)) =
1

1− 1
2

log2

(∫ ∞

−∞
dx0[4π−

1
2 (N+

β )2e−x
2
0 cos2(

√
2βx0)]

1
2

)

= 2 log2

(
2π−

1
4N+

β

∫ ∞

−∞
e
−x20
2

∣∣∣cos(
√

2βx0)
∣∣∣ dx0

)
. (8.82)

Due to the complex nature of this integral, we use numerical methods to evaluate this.

The general expressions for the REPs can be written as

N 1
2
(xπ/2) =

1

8π
22I1/2(F(xπ/2)), N∞(x0) =

1

2π
22I∞(F(x0)) (8.83)

which gives the REPUR

N 1
2
(xπ/2)N∞(x0) =

1

16π2

(
2I1/2(F(xπ/2))+I∞(F(x0))

)2

=
1

4
(8.84)

thus saturating the bound. On the other side, we find

N 1
2
(x0) =

1

8π
22I1/2(F(x0)), N∞(xπ/2) =

1

2π
22I∞(F(xπ/2)) (8.85)
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hence the REPUR becomes

N 1
2
(x0)N∞(xπ/2) =

1

16π2

(
2I1/2(F(x0))+I∞(F(xπ/2))

)2
(8.86)

for which, due to the complicated nature of (8.82), we numerically plot against the Rényi

parameter in Fig.8.3 which confirms equation (8.84) and suggests that (8.86) plateaus for

Figure 8.3: Plot of REPUR against the Rényi parameter r for the Cat State. It is evident

that the bound is saturated for r = −1/2, begins to diverge as r increases then plateaus

for large r.

increasing r with constant β.

8.3.2 Superstition State of Vacuum and Squeezed Vacuum

Here we investigate the REPUR for the superposition of a vacuum state with a squeezed

vacuum (VSV) state

|ψV 〉 = NV (|0〉+ |ζ〉) (8.87)

where, |ζ〉 is given by (8.53) and

NV =
[
2 + 2 cosh(r)−

1
2

]− 1
2
. (8.88)

As before, we must first find the probability density functions

F(x0) = | 〈x0|ψV 〉 |2, F(xπ/2) = | 〈xπ/2|ψV 〉 |2. (8.89)

The general quadrature eigenstate overlap with (8.87) is given by

〈xλ|ψV 〉 = NV (〈xλ|0〉+ 〈xλ|ζ〉) (8.90)
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where, from equation (2.76), it is straight forward to find

〈xλ|0〉 = π−
1
4 e−

x2λ
2 (8.91)

and from equations (8.54) and (8.55) we find

〈x0|0〉 = π−
1
4 e−

x20
2 (8.92)

and

〈x0|ζ〉 =

(
2π · 1

2
e−2z

)− 1
4

exp

(
− x2

0

4 · 1
2e
−2z

)

= π−
1
4 e

z
2 exp

(
−x

2
0e

2z

2

)
. (8.93)

Similarly, we find

〈xπ/2|0〉 = π−
1
4 e−

x2
π/2
2 (8.94)

and

〈xπ/2|ζ〉 =

(
2π · 1

2
e2z

)− 1
4

exp

(
−

x2
π/2

4 · 1
2e

2z

)

= π−
1
4 e−

z
2 exp

(
−
x2
π/2e

−2z

2

)
(8.95)

thus we find the probability density functions to be

F(x0) =

∣∣∣∣∣NV π
− 1

4

[
e−

x20
2 + e

z
2 exp

(
−x

2
0e

2z

2

)] ∣∣∣∣∣

2

(8.96)

and

F(xπ/2) =

∣∣∣∣∣NV π
− 1

4

[
e−

x2
π/2
2 + e−

z
2 exp

(
−
x2
π/2e

−2z

2

)] ∣∣∣∣∣

2

. (8.97)

These PDFs are plotted in Fig.8.4 which depict the overall non-Gaussian structure. With

(8.96) and (8.97) the REPs can be numerically calculated and plotted as shown in Fig.

8.5, from which it becomes clear that the bound is saturated for both N1/2(x0)N∞(xπ/2)

and N∞(x0)N1/2(xπ/2) independent of the value of the squeezing parameter. Furthermore

we see that the Shannon entropy power uncertainty relation is the furthest from saturating

the bound. These results can be understood by the fact that the non-linear nature of the

RE emphasizes different parts of the PDF depending on the RE-parameter i.e for p > 1

the more probable parts of the PDF are emphasized while for p < 1, the less probable

parts are emphasized - this corresponds to the peak and tails respectively. This result is

a manifestation of the extra information supplied by the higher order statical moments

provided through the Rényi entropy, this point will be expanded upon in the discussion

of this section.
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Figure 8.4: Plots of the position and momentum PDFs for the superposition state con-

sisting of the vacuum and squeezed vacuum with z = 2.

4

these correspond to r = −1/2 and r → ∞ respectively).
From our foregoing analysis of REPURs this is easy
to understand because the infinite and half indices
of the EPs focus on the peak and tails of the PDF,
respectively and from (27) we see that both the x and p
PDFs are Gaussian in the tails as well as at the peaks
(i.e., at x = p = 0). A REPUR is saturated only when
the RE-accentuated sectors in both dual PDFs are
Gaussian [31]. On the other hand, it is also clear that
both PDFs (27) as a whole are highly non-Gaussian.
We would therefore not expect REPURs with different
indices to saturate the bound. This is clearly illustrated
in Fig. 1. In passing, we note that for any ζ 6= 0
the Shannon entropy power UR is the furthest from
saturating the bound, and so is the least informative of
all the family of REPURs.

By way of comparison, we can also calculate the VUR
for the state |ψζ〉. The variances involved are

〈(∆X)2〉ζ = N 2 ~
ω

[
1
2 (1 + e−2ζ) +

√
sechζ(1− tanh ζ)

]
,

〈(∆P )2〉ζ = N 2~ω
[
1
2 (1 + e2ζ) +

√
sechζ(1 + tanh ζ)

]
.

For ζ = 0, we have 〈(∆X)2〉0〈(∆P )2〉0 = ~2/4, i.e. the
VUR is saturated. This is no surprise because, in this
case, the vacuum |ψ0〉 = |0〉 is the usual (Glauber) co-
herent state. However, as the squeezing parameter ζ is
increased the product blows up rapidly, which makes the
VUR uninformative. So the set of REPURs outperform
both the Shannon EPUR and the VUR by providing
more information on the structural features of |ψζ〉 via
the related PDFs (e.g., Gaussian peaks and tails in p-x
quadratures). Similar type of behavior can be also seen

log10(1+r)
-0.5 0 0.5 1 1.5 2

N
1+

t(x
)N

1+
r(p

)

0.25

0.3

0.35

0.4
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0.5

0.55

0.6

0.65

ζ = 3

ζ = 1

ζ = 2

FIG. 1: Plot of N1+t(x)N1+r(p) (in units of ~2) for the state
|ψζ〉 as a function of log10(1 + r) and different values of the
squeezing parameter, ζ. The lower bound ~2/4 is saturated
for both N∞(x)N1/2(p) and N1/2(x)N∞(p). For other
indices, REPURs deviate from the bound with the max-
imum deviation at r = 0, which corresponds to Shannon’s EP.

in a particular class of Schrödinger cat states represented
by two superposed Glauber coherent states with the vari-
able amplitude parameter [18]. In the aforesaid case the

Fourier transform duals were chosen to be two orthog-
onal phase quadratures (x0 and xπ/2). Specifically for
r = −1/2 and r → ∞ it was observed that the entropic
inequality (10) (and hence also the associated REPUR)
were saturated for the amplitude parameter β < 1/2,
which according to [31] implies Gaussianity of the respec-
tive tails and peaks in state PDFs. Since the REPUR is
not saturated for β ≥ 1/2 either peaks or tails cannot be
Gaussian. Closer analysis indeed revealed that the state
PDF’s for β ≥ 1/2 start to develop two separated peaks
corresponding to the separation of two overlapping Gaus-
sian wave packets. In addition, for any r the REPURs
are for large β independent of the value of β. This is a
consequence of two facts: a) for large β the two Gaussian
wave packets no longer overlap and b) REPs are immune
to piecewise rearrangements of the PDF [18, 31].

We note that the conventional VUR does not pose any
restriction on the variance of the observable whose con-
jugate observable has a PDF with infinite covariance ma-
trix. So, such a state is maximally uncertain. In contrast
to this, the set of related REPURs brings considerably
more information about the structure of these states. To
illustrate this we discuss in our second example a power-
law tail wave packet (PLTWP). PTLWPs are archetypal
examples of quantum states with anomalous (scaling) be-
havior during their temporal evolution [34]. For definite-
ness we will consider the PLTWP of the form

ψ(x) =

√
γ

π

√
1

γ2 + (x−m)2
, (28)

which entails the Cauchy PDF with a scale parameter γ
and median m. The Fourier transform reads

ψ̂(p) = e−imp/~
√

2γ

π2~
K0(γ|p|/~) , (29)

(K0 is the modified Bessel function). With these results
we can immediately write two representative REPURs

N1(|ψ̂|2)N1(|ψ|2) = 0.0052 ~2π4 > ~2/4 , (30)

N1/2(|ψ̂|2)N∞(|ψ|2) =
~2

4
. (31)

Note also that 〈(∆p)2〉ψ = ~2π/16c2 and 〈(∆x)2〉ψ →∞
(the latter behavior is symptomatic of many PLTWPs),
and so the Schrödinger–Robertson’s VUR is completely
uninformative. What can we conclude from (30)–(31)?
First, the REPUR (31) is saturated. This implies that

the peak part of |ψ|2 and the tail part of |ψ̂|2 are Gaus-
sian (as can be directly checked). Shannon’s EPUR (30)
implies: a) the involved PDFs are not Gaussian, b) in
contrast to other REPURs it quantifies only shape struc-
tures of PDFs but is γ insensitive [31], c) from (11) [cf.
also (21)] the lower bound of Hirschman’s UR is log2(π~e)
while (30) gives log2(π~e)+0.5141, so one could still gain
0.5141 bits of information should the system by prepared

Figure 8.5: Plots of the REPUR (in units of ~) for the superposition state consisting

of the vacuum and squeezed vacuum against log10(1 + r) for squeezing parameters ζ ∈
{1, 2, 3}. The REPUR bound is saturated in both N∞(x)N1/2(p) and N1/2(x)N∞(p) cases.

Deviation from this bound saturation is observed for all other values of r with maximal

deviation at r = 0 corresponding to the Shannon EP.
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8.3.3 Uninformative VUR

The superior nature of the entropic uncertainty relations over variance based counterparts

is evidenced here. To do so, we evaluate the variance

∆2X̂λ = 〈X̂2
λ〉 − 〈X̂λ〉

2
(8.98)

for λ = 0 and λ = π/2 where

X̂2
0 =

1

2
(a†a† + 2a†a+ 1 + aa), X̂2

π/2 =
1

2
(2a†a+ 1− a†a† − aa) (8.99)

thus

〈X̂2
0 〉ψV = N 2

V (〈0|+ 〈ζ|) X̂2
0 (|0〉+ |ζ〉)

= N 2
V

(
〈0| X̂2

0 |0〉+ 〈0| X̂2
0 |ζ〉+ 〈ζ| X̂2

0 |0〉+ 〈ζ| X̂2
0 |ζ〉

)
. (8.100)

Considering each term in (8.100) separately and recalling that a |n〉 =
√
n |n− 1〉 and

a† |n〉 =
√
n+ 1 |n+ 1〉, we find

〈0| X̂2
0 |0〉 =

1

2
〈0| (a†a† + 2a†a+ 1 + aa) |0〉

=
1

2
(8.101)

along with

〈0| X̂2
0 |ζ〉 =

1

2
〈0| (a†a† + 2a†a+ 1 + aa) |ζ〉

=
1

2
(〈0|ζ〉+ 〈0| aa |ζ〉)

=
1

2

(
〈0|ζ〉+

√
2 〈2|ζ〉

)

=
1

2

√
sech(z) (1− tanh(z)) (8.102)

where we have used (2.56) to evaluate the individual overlaps. Next we see that

〈ζ| X̂2
0 |0〉 =

1

2
〈ζ| (a†a† + 2a†a+ 1 + aa) |0〉

=
1

2

(
〈ζ| a†a† |0〉+ 〈ζ|0〉

)

=
1

2

(
〈0|ζ〉+

√
2 〈2|ζ〉

)†

=
1

2

√
sech(z) (1− tanh(z)) (8.103)

and finally, we have from [22] that in general

〈ζ| X̂2
λ |ζ〉 =

1

2

(
e2z sin2

(
λ− φ

2

)
+ e−2z cos2

(
λ− φ

2

))
(8.104)
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so setting φ = λ = 0 we have

〈ζ| X̂2
0 |ζ〉 =

1

2
e−2z. (8.105)

We now have all the parts needed to evaluate (8.100), yielding

〈X̂2
0 〉ψV = N 2

V

(
1

2
(1 + e−2z) +

√
sech(z)(1− tanh(z))

)
. (8.106)

Through similar working we find

〈X̂2
π/2〉ψV = N 2

V

(
1

2
(1 + e2z) +

√
sech(z)(1 + tanh(z))

)
. (8.107)

Now we consider the second term in (8.98), we have

〈X̂0〉ψV = N 2
V (〈0|+ 〈ζ|) X̂0 (|0〉+ |ζ〉)

= N 2
V

(
〈0| X̂0 |0〉+ 〈0| X̂0 |ζ〉+ 〈ζ| X̂0 |0〉+ 〈ζ| X̂0 |ζ〉

)
. (8.108)

Again, we shall consider each term separately while noting that we have, from [22],

〈ζ| X̂λ |ζ〉 = 0⇒ 〈ζ| X̂0 |ζ〉 = 〈0| X̂0 |0〉 = 0 along with

〈0| X̂0 |ζ〉 =
1√
2
〈0| a |ζ〉

=
1√
2
〈1|ζ〉

= 0, as m ∈ N (8.109)

and similarly

〈ζ| X̂0 |0〉 = 0 (8.110)

from which we conclude

〈X̂0〉ψV = 0. (8.111)

Now considering the case where λ = π/2, we again have 〈ζ| X̂π/2 |ζ〉 = 〈0| X̂π/2 |0〉 = 0

and

〈0| X̂π/2 |ζ〉 = 〈ζ| X̂π/2 |0〉 = 0 (8.112)

thus

〈X̂π/2〉ψV = 0. (8.113)
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So from (8.106), (8.107), (8.111) and (8.113) we are able to determine the variances of

interest

∆2X̂0 = 〈X̂2
0 〉ψV − 〈X̂0〉

2

ψV

= N 2
V

(
1

2
(1 + e−2z) +

√
sech(z)(1− tanh(z))

)
(8.114)

and

∆2X̂π/2 = 〈X̂2
π/2〉ψV − 〈X̂π/2〉

2

ψV

= N 2
V

(
1

2
(1 + e2z) +

√
sech(z)(1 + tanh(z))

)
. (8.115)

With these expressions the product of the variances of the conjugate quadrature variables

are plotted against the squeezing parameter in Fig.8.6 and it is clear that the bound is

saturated for z = 0 as expected (since the vacuum state is Gaussian) but blows up rapidly

as the squeezing parameter increases rendering the VUR uninformative.
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Figure 8.6: Plot of the variance based uncertainty relation for the superposition state of

a vacuum and squeezed vacuum. The bound is saturated for z = 0 as this corresponds to

the Gaussian vacuum state but blows up rapidly as z increases.

8.3.4 Discussion

From the preceding analysis it is evident that the REPURs supply far more information on

the underlying PDFs than VURs and Shannon-based entropy power uncertainty relations
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alone. Indeed the REPURs are a generalisation of these relations, the non-linear nature of

the RE emphasises the more probable parts of a distribution for p > 1 and emphasises the

less probable parts of a distribution for p < 1. Furthermore, it has been shown that the

only class of distribution that saturates the REPUR for all values of p are the Gaussian

distributions. With these two aspects of the REPUR established, the results displayed in

Fig.8.5 can be better understood; for this superposition state of the vacuum and squeezed

vacuum, the peak and the tails in both the position and momentum quadrature are close

to Gaussian thus the REPUR approaches its lower bound. Moreover, the overall structure

is non-Gaussian and it is apparent that for the Shannon entropy the bound is maximally

divergent, this is due to the Shannon entropy providing no particular emphasis on any

specific part of the PDF. Thus from the REPURs displayed in Fig.8.5 we can glean that

the underlying distribution and its Fourier transform is Gaussian in both the peaks and

tails but has an overall non-Gaussian Structure which is readily confirmed by inspection

of (8.96) and (8.97) and displayed in Fig.8.4.

This interpretation is bolstered by the REPURs of the Cat State depicted in Fig.8.3 we

see bound saturation for r = −1/2 implying that the peak in the momentum quadrature

and the tails in the position quadrature behave as a Gaussian but the divergence of the

bound for increasing r implies that the peak in the position quadrature and the tails in the

momentum are non-Gaussian. This is easily confirmed by inspection of equations (8.71)

and (8.72) along with Fig.2.8 in which the latter case displays a clear non-Gaussian beha-

viour via the multi-peaked distribution while the former case does indeed exhibit Gaussian

behaviour. The overall non-Gaussian structure is also captured here by the SEP being far

from the lower bound. This notion of inferring information on quantum mechanical state

distributions through the REPs is expanded upon in the following chapter.
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Chapter 9

Information Scan and

Reconstruction of Quantum States

In the previous chapter, we saw that variance-based uncertainty measures can be rendered

uninformative for some quantum states. Furthermore, it became evident that Rényi-based

entropic measures can provide far more information on the underlying state of the system

under investigation. In this chapter we elaborate on these points and introduce a method

of reconstructing the underlying probability distribution of the quantum mechanical state

through knowledge of the Rényi entropy powers. The underlying features of this “in-

formation scan” are detailed and the method of reconstruction is demonstrated on the

associated probability distributions of specific quantum mechanical states.

This chapter is based on the paper:

Information scan of quantum states based on entropy-power uncertainty relations. P Jizba,

A J Hayes and J A Dunningham (2018). Submitted to Physical Rev. A.

9.1 Variance is a Deceptive Measure of Uncertainty

In this section we investigate two emblematic situations which exemplify the failings of

variance as a measure of uncertainty. We then further this discussion by applying similar

reasoning to Cat States which displays features analogous to the heuristic examples.

9.1.1 Example 1

Following the work of [136] we consider a particle whose position is constrained to the

x dimension and four boxes of equal size situated along the x axis but not necessarily
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Figure 9.1: A heuristic example depicting the failings of variance as a measure of uncer-

tainty in which a particle in state A can be found over length L and in state B it can be

found over a length L/2. Clearly we know more about position in state B but the variance

suggests otherwise.

constrained to it (i.e the boxes can be stacked on top of each other). Imposing the

condition that the particle must be localised to be within one of the boxes, we consider the

two arrangements given in Fig.9.1. The wave functions of each of these state configurations

are given by

ψA =





1/
√
L x ∈ [0, L]

0 otherwise
ψB =





√
2/L x ∈ [0, L/4]

√
2/L x ∈ [3L/4, L]

0 otherwise

then, by using

∆2x =

∫
ψ∗(x, t)x2ψ(x, t)dx−

(∫
ψ∗(x, t)xψ(x, t)dx

)2

we can find that the variance for each state is given by

∆2xA =
L2

12
, ∆2xB =

7

4
· L

2

12
.

Clearly the uncertainty of the particle’s location should be greater in state A than it is in

state B yet we have ∆2xA < ∆2xB. In connection with this, we introduce the Balanced

Cat State (BCS)

|ψB〉 =
1√
2

(|0〉+ |α〉), (9.1)

the PDF of this state can be found by (2.94) and in the position-like quadrature the PDF

mimics that of the example Fig.9.1 as demonstrated in Fig.9.2.
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Figure 9.2: Plot of the PDF of the Balanced Cat state in the x-quadrature with α = 4.

This is a physical analogue of State B.

9.1.2 Example 2

An extremised example that highlights the defects of variance as a measure of uncertainty

is depicted in Fig.9.3 in which the position of a particle in the x dimension is again

constrained but this time to be within a wide box and a narrow strip. The probability

Figure 9.3: An alternative example depicting the failings of variance as a measure of

uncertainty.

distribution of this configuration is given by

|ψC(x)|2 =





1/L x ∈ the wide box

1/L x ∈ the narrow strip

0 elsewhere
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then using (9.1) we find

∆2xC = L2

(
N − 1

N
+

1

12

)
(9.2)

thus the variance tends to infinity with increasing N while the probability of finding the

particle in the wide box should tend toward certainty or in other words, the variance

increases as the uncertainty should decrease! In connection with this we introduce the

unbalanced cat state (UCS)

|ψUCS〉 = NUCS (|0〉+ ν |α/ν〉) . (9.3)

The PDF of this state can also be found using (2.94) and as displayed in Fig.9.4, the

position quadrature PDF is analogous to that of the example illustrated in Fig.9.3. The

−10 −5 0 5 10 15 20 25 30 35
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Figure 9.4: Plot of the PDF for the unbalanced cat state in the x-quadrature with α = 1

and ν = 0.2. This is a physical analogue of State C.

UCS is a superposition of the vacuum state and a small coherent state (displaced vacuum).

The coherent state is weighted by a factor of ν so choosing this such that ν2 << 1 we are

far more likely to observe the UCS positioned around its constituent vacuum state than

its coherent state. Here the vacuum state is analogous to the wide box in Fig.9.3 and

the coherent state, with almost negligible weighting, is analogous to the narrow strip and

the parameter N is the inverse analogue of the weighting ν in that decreasing ν results in

∆2x→∞ as the peaks separate (both vertically and horizontally).
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9.1.3 Entropies of Heuristic Examples

Since the information entropy of a random variable tells us the number of binary question

(in base 2) needed to fully determine the random variable, the lack of information, i.e

uncertainty, can be depicted by simply reversing the sign of the information entropy.

Taking the“coarse-grained” approach of Bialynicki-Birula [136] in which the region of

interest is divided into bins of size δx (this bin size can be regarded as the experimental

error), the probability of finding the particle in the i-the bin is given by

qi =

∫ (i+1/2)δx

(i−1/2)δx
|ψ(x)|2dx (9.4)

and the corresponding Shannon entropy is given by

H(x) = −
∑

i

qi ln(qi). (9.5)

Clearly in Example 1 the bin size is δx = L/4 and the probability distribution of State A

is given by |ψA(x)|2 = 1/L while that of State B is given by |ψB(x)|2 = 2/L. Applying

(9.4) to State A yields

qAi =

∫ (i+1/2)L/4

(i−1/2)L/4

1

L
dx

=
1

L
· L

4

(
i+

1

2
− i+

1

2

)

=
1

4
(9.6)

where i ∈ {1, 2, 3, 4}. Then the Shannon Entropy for State A is given by

H
(x)
A = −

4∑

i=1

1

4
ln

(
1

4

)

= −4 · 1

4
ln

(
1

4

)
= − ln

(
1

4

)
= ln(22) = 2 ln(2) (9.7)

while the probability of finding the particle in the i-th bin for State B is given by

qBi =

∫ (i+1/2)L/4

(i−1/2)L/4

2

L
dx

=
2

L
· L

4

(
i+

1

2
− i+

1

2

)

=
1

2
(9.8)

where i ∈ {1, 2}. The Shannon entropy is then found to be

H
(x)
B = −

2∑

i=1

1

2
ln

(
1

2

)

= −2 · 1

2
ln

1

2
= ln(2). (9.9)
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It is evident that H
(x)
A = 2 · H(x)

B i.e the uncertainty of the particles position in state A

is twice that of State B - a much more intuitive result than that of the variance-based

measure! The foundation of this result is the invariance of entropies under piecewise

rearrangements of the probability distributions, a useful property which we investigate

further and utilize in the following.

9.2 The Information Scan

Here we show that knowledge of the family of Rényi entropies allows for the reconstruction

of the underlying PDFs. For this, it is helpful to use the following form of the continuous

Rényi entropy

Ip(χ) =
1

(1− p) log2 E
[
2(1−p)iχ

]
(9.10)

where, E [·] is the expectation value and iχ(~y) = − log2 (F(~y)) is the information in ~y with

respect to the PDF F(~y). From this it is clear that the continuous Rényi entropy can be

viewed as a reparametrized version of the cumulant generating function of the information

random variable iχ(~y). We can draw the connection between the familiar PDF F (~y) and

the information random variable’s PDF, which we shall denote as g(x), by first considering

the cumulative distribution function (CDF) of iχ(~y)

f(x) =

∫ x

−∞
df(iχ) =

∫

RD
F(~y)θ [log2(F(~y)) + x] d~y (9.11)

where θ [·] is the Heaviside step function. It then becomes apparent that the CDF (9.11)

is effectively a discontinuous function given by

f(x) =





∫
RD F(~y) if F(~y) ≥ 2−x

0 otherwise.

Upon inspection of this we have that (9.2) in fact requires us to integrate the PDF F(~y)

between the solutions of

log2(F(~ylimits)) + x = 0

=⇒ ~ylimits = F−1(2−x). (9.12)

This is shown pictorially (with D = 1) in Fig.9.5. The interpretation of (9.11) can be

alternatively rephrased as the probability that the random variable iχ(~y) is less than or

equal to x with df(iχ) denoting the probability measure. The Laplace transform of a

function F (t) is given by

L{F (t)}(s) ≡
∫ ∞

0
F (t)e−stdt (9.13)
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Figure 9.5: Information scan of F(y) and the equimeasurably rearranged PDF F̃(y).

Cumulative distribution function f(x) measures the area of F(y) within the limits dictated

by the intercept line F(y) = 2−x with F(y) (shaded area). For the entropy measured in

nats 2−x → e−x. The information PDF g(x) represents the rate of change of the area of the

cumulative distribution f(x). Note that f(x) and g(x) are identical for the equimeasurably

rearranged PDFs F(y) and F̃(y). The 3-peak structure of g(x) is one of the invariant

characteristics of the equimeasurable family of PDFs.

thus taking the Laplace transform of (9.11), we have

L{f}(s) =

∫

RD
F(~y)

1

s
exp(s log2(F(~y)))d~y

=
1

s
E [exp(s log2(F))] . (9.14)

The PDF of the random variable is then given by

g(x) =
df(x)

dx
= L−1{E [exp(s log2(F))]}(x) (9.15)

and thus

L{g}(s = (p− 1) ln(2)) = E
[
2(1−p)iχ

]
(9.16)

then comparing equation (9.16) with (9.10) and the usual expression for the Rényi entropy

Ip(χ) =
1

1− p log2

(∫

M
d~yFp(~y)

)
(9.17)

it is clear that (9.16) can be equivalently expressed as

∫

R
g(x)2(1−p)xdx =

∫

RD
Fp(~y)d~y. (9.18)
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Now, since L{g}(s) is the moment-generating function of the random variable iχ(~y) with

the associated PDF g(x) one can find all moments (assuming they exist) by taking the

derivatives of L{g} w.r.t s and furthermore, we can find all cumulants for the random

variable iχ(~y) and the associated PDF g(x) by taking the binary logarithm of both sides

of (9.16) and the subsequent derivatives. From (9.16) it is then clear that these cumulants

can be rephrased in terms of E [(log2F)m] which is in close relation to the continuous

Rényi entropy, as displayed by (9.10). Lastly, using the identity

Ip(χ) = Ip
(√

Np(χ) · ZG
)

=
D

2
log2

[
2πp−1/(p+1)Np(χ)

]
(9.19)

it is inferred that the continuous Rényi entropy can be phrased in terms of the entropy

powers Np of F . Hence, the right hand side of (9.16) provides the means to obtain

the PDF F(~y) through rephrasing in terms of the entropy powers moreover, it is clearly

related to the PDF g(x) - all the statistical information of which is available through

the moments, or equivalently, the cumulants. In Fig.9.6 we plot f(x) and g(x) for the

state |ψV 〉 = NV (|0〉+ |ζ〉) as introduced in section 8.3.2. From the multi-peak structure

of g(x) one can determine the number and height of the stationary points. These are

invariant characteristics of a given family of equimeasurable PDFs where the notion of

equimeasurably rearranged PDFs F(y) and F̃(y) is depicted in Fig.9.5; f(x) and g(x) are

identical for such distributions. With this relationship between g(x) and F(~y) established,

it is evident that complete knowledge of g(x) gives an information scan of the PDF F(~y).

Our aim is now to construct the information PDF g(x) from knowledge of the Rényi

entropy powers.

9.3 Reconstruction of Quantum States

Here we show that given measured Rényi Entropy powers (REPs) we are able to find the

cumulants of the PDF of the information random variable iχ(~y). Using these cumulants,

the information PDF can be reconstructed through the Gram-Charlier A series expansion

[137]. Furthermore, a direct link has been established between the information PDF and

the class of equimeasurable PDFs, in which the PDF of interest F(y) exists. We use the

following equation to reconstruct the information PDF

g(x) = exp

[ ∞∑

k=2

(κk − γk)(−1)k
dk/dxk

k!

]
G(x) (9.20)
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FIG. 2: (a) Cumulative distributions fζ(x) and information PDFs gζ(x) for the three representative squeezed states ψζ(y) from the main
text and (b) the logarithmic scaling of fζ(x) and gζ(x) for respective values of ζ which depicts the tail behaviour (corresponding to x > 1)
of the PDF F(y) = |ψζ(y)|2. From (a) we can clearly see that the larger value of ζ the higher peak of F(y). Then the peaks have heights

2
−a+

ζ for the respective values of ζ. For ζ = 2 and ζ = 3 we may observe that a new peak is formed around x = 3. This corresponds to an
abrupt change in the shape of the PDF which happens at the height F(y) = |ψζ(y)|2 = 2−x. From (b) we can read off the tail behavior
of |ψζ(y)|2. The best-fit analysis reveals that |ψζ(y)|2 has the Gaussian tail (a = 2) [cf. (24)].

b)

a)

As mentioned, a given g(x) characterizes a class of equimeasurable PDFs. An important universal characteristic of
equimeasurable PDFs is their tail behavior. In the following section we will illustrate how the tail behavior of F(y)
can be directly deduced from the form of g(x).

Examples

An explicit example may help illuminate the reconstruction theorem. Consider F(y) to be a Gaussian PDF with
zero mean, variance σ2 and y ∈ R. The corresponding information PDF g(x) is [cf. (7) and (9)]

g(x) =
df(x)

dx
=

2σ2

log2 e

∫

R

exp(−y2/2σ2)√
2πσ2

[
δ(y − σ

√
z(x)) + δ(y + σ

√
z(x))

]

2σ
√
z(x)

dy =
2

log2 e

exp[−z(x)/2]√
2πz(x)

. (16)

Figure 9.6: (a) Cumulative distribution functions fζ(x) and information PDFs gζ(x) for

the superposition state of a vacuum with a squeezed vacuum. (b) The logarithmic scaling

depicting the tail behaviour (corresponding to x > 1) of F(y) = |ψV (y)|2. From (a) it is

apparent that the larger the value of ζ, the higher the peak of F(y), and the peaks have

heights 2−a
+
ζ . For ζ = 2 and ζ = 3 we see a second peak near x = 3 which is due to a

sharp change in the overall shape of the PDF at height F(y) = 2−x. From (b) the tail

behaviour is displayed and the best-fit analysis reveals the tails to be Gaussian.

where, G(x) is a known “reference” PDF whose cumulants are given by γk, the quantities

κn are the cumulants of the g(x). Expanding the exponential of (9.20) gives

g(x) =

[
1 +

( ∞∑

k=2

(κk − γk)(−1)k
dk/dxk

k!

)
+

1

2!

( ∞∑

k=2

(κk − γk)(−1)k
dk/dxk

k!

)2

+
1

3!

( ∞∑

k=2

(κk − γk)(−1)k
dk/dxk

k!

)3

+ . . .

]
G(x) (9.21)
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and going a step further by expanding the sum in each of the terms of order greater than

or equal to 2 gives

g(x) =

[
1 +

(
(κ2 − γ2)(−1)2 1

2

d2

dx2
+ (κ3 − γ3)(−1)3 1

3!

d3

dx3
+ . . .

)

+
1

2

(
(κ2 − γ2)(−1)2 1

2

d2

dx2
+ (κ3 − γ3)(−1)3 1

3!

d3

dx3
+ . . .

)2

+
1

3!

(
(κ2 − γ2)(−1)2 1

2

d2

dx2
+ (κ3 − γ3)(−1)3 1

3!

d3

dx3
+ . . .

)3

+ . . .

]
G(x) (9.22)

then by labelling

t2 = (κ2 − γ2)(−1)2 1

2

d2

dx2

t3 = (κ3 − γ3)(−1)3 1

3!

d3

dx3

...

tm = (κm − γm)(−1)m
1

m!

dm

dxm
(9.23)

it is apparent that g(x) approximated to mth order in the sum and Nth order in the

exponential is given by

g(x) ≈
[

1 + (t2 + t3 + . . . tm) +
1

2!
(t2 + t3 + . . . tm)2 +

1

3!
(t2 + t3 + . . . tm)3 + . . .

· · ·+ 1

N !
(t2 + t3 + . . . tm)N

]
G(x). (9.24)

The multinomial theorem states

(t2 + t3 + · · ·+ tm)n =
∑

l2,l3,...,lm

n!

l2!l3! . . . lm!
tl22 t

l3
3 . . . t

lm
m (9.25)

where, l2 + l3 + · · ·+ lm = n. Then g(x) can be approximated by

g(x) ≈
[

1+
1∑

n1=0

1−n2∑

n3=0

· · ·
1−n2−...−nm−1∑

nm=0

1!tn2
2 tn3

3 . . . t
nm−1

m−1 t
1−n2−n3−...−nm−1
m

n2!n3! . . . nm−1!(1− n2 − n3 − ...− nm−1)!
+

+
1

2

2∑

n2=0

2−n2∑

n3=0

· · ·
2−n2−...−nm−1∑

nm=0

2!tn2
2 tn3

3 . . . t
nm−1

m−1 t
2−n2−n3−...−nm−1
m

n2!n3! . . . nm−1!(2− n2 − n3 − ...− nm−1)!
+

...

+
1

N !

N∑

n2=0

N−n2∑

n3=0

· · ·
N−n2−...−nm−1∑

nm=0

N !tn2
2 tn3

3 . . . t
nm−1

m−1 t
N−n2−n3−...−nm−1
m

n2!n3! . . . nm−1!(N − n2 − n3 − ...− nm−1)!

]
G(x)

(9.26)
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and by using (9.23) to rewrite in terms of cumulants, g(x) is finally approximated by

g(x) ≈
[

1 +

1∑

n2=0

1−n2∑

n3=0

· · ·
1−n2−...−nm−1∑

nm=0

1!
[
(κ2 − γ2)(−1)2 1

2!

]n2 · ... ·
[
(κm − γm)(−1)m 1

m!

]1−n2−...−nm−1

n2! . . . nm−1!(1− n2 − ...− nm−1)!

× d(2n2+3n3+...+m(1−n2−...−nm−1))

dx(2n2+...+m(1−n2−...−nm−1))

+
1

2

2∑

n2=0

2−n2∑

n3=0

· · ·
2−n2−...−nm−1∑

nm=0

2!
[
(κ2 − γ2)(−1)2 1

2!

]n2 · ... ·
[
(κm − γm)(−1)m 1

m!

]2−n2−...−nm−1

n2! . . . nm−1!(2− n2 − ...− nm−1)!

× d(2n2+3n3+...+m(2−n2−...−nm−1))

dx(2n2+...+m(2−n2−...−nm−1))

...

+
1

N !

N∑

n2=0

N−n2∑

n3=0

· · ·
N−...−nm−1∑

nm=0

N !
[
(κ2 − γ2)(−1)2 1

2!

]n2 · ... ·
[
(κm − γm)(−1)m 1

m!

]N−...−nm−1

n2! . . . nm−1!(N − n2 − ...− nm−1)!

× d(2n2+3n3+...+m(N−n2−...−nm−1))

dx(2n2+...+m(N−n2−...−nm−1))

]
G(x) (9.27)

in other words, this is the expanded form of g(x) approximated up to the mth cumulant

and the Nth order term of the exponential.

9.3.1 Relating REPs to Cumulants

To relate κn to the REPs we begin with the cumulant expansion of the RE

pI1−p = log2(e)

∞∑

n=1

κn(χ)

n!

(
p

log2(e)

)n
(9.28)

and use the identity that relates the RE to the REP

I1−p(χ) =
D

2
log2

[
2π(1− p)−1/pN1−p(χ)

]

⇒ D

2
log2(N1−p(χ)) = I1−p(χ)− D

2
log2

[
2π

(1− p)1/p

]

⇒ log2(N1−p(χ)) =
2

pD
log2(e)

∞∑

n=1

κn(χ)

n!

(
p

log2(e)

)n
+ log2

[
(1− p)1/p

2π

]
(9.29)

then taking the (n− 1)th derivative with respect to p, at p = 0 of both sides

dn−1

dpn−1

∣∣∣∣∣
p=0

{log2(N1−p(χ))} =

=
dn−1

dpn−1

∣∣∣∣∣
p=0

{
log2

[
(1− p)1/p

2π

]}
+

dn−1

dpn−1

∣∣∣∣∣
p=0

{
2

D

∞∑

n=1

κn(χ)

n!

(
p

log2(e)

)n−1
}

=
dn−1

dpn−1

∣∣∣∣∣
p=0

{
log2

[
(1− p)1/p

2π

]}
+

2

D

dn−1

dpn−1

∣∣∣∣∣
p=0

{
κ1(χ) +

κ2(χ)

2

(
p

log2(e)

)

+
κ3(χ)

3!

(
p

log2(e)

)2

+ ...+
κn(χ)

n!

(
p

log2(e)

)n−1

+
κn+1(χ)

(n+ 1)!

(
p

log2(e)

)n
+ ...

}

(9.30)
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where we have for the first term in (9.30)

dn−1

dpn−1

∣∣∣∣∣
p=0

{
log2

[
(1− p)1/p

2π

]}
=

dn−1

dpn−1

∣∣∣∣∣
p=0

log2

[
(1− p)1/p

]
− dn−1

dpn−1

∣∣∣∣∣
p=0

log2(2π)

= −(n− 1)!

n
log2(e)− δ1,n log2(2π)

= − log2(e)

(
(n− 1)!

n
+ δ1,n ln(2π)

)
(9.31)

and for the second term

dn−1

dpn−1

∣∣∣∣∣
p=0

(pn−1) = (n− 1)!

⇒ dn−1

dpn−1

∣∣∣∣∣
p=0

(pn) = (n− 1)!p = 0

⇒ dn−1

dpn−1

∣∣∣∣∣
p=0

(pn+1) = (n− 1)!p2 = 0... (9.32)

and of course

dn−1

dpn−1

∣∣∣∣∣
p=0

(pk) = 0 ∀k < n− 1 (9.33)

which gives

dn−1

dpn−1

∣∣∣∣∣
p=0

{
2

D

∞∑

n=1

κn(χ)

n!

(
p

log2(e)

)n−1
}

=
2

D

κn(χ)

n!

1

(log2(e))n−1
(n− 1)!

=
2

nD

κn(χ)

(log2(e))n−1
(9.34)

thus

dn−1

dpn−1

∣∣∣∣∣
p=0

{log2(N1−p(χ))} = − log2(e)

(
(n− 1)!

n
+ δ1,n ln(2π)

)
+

2

nD

κn(χ)

(log2(e))n−1

(9.35)

and rearranging for κn(χ) (and noting that δ1,n(log2(e))n = δ1,n log2(e)) gives

κn(χ) =
nD

2
(log2(e))n−1 d

n−1

dpn−1

∣∣∣∣∣
p=0

{log2(N1−p(χ))}+
nD

2
(log2(e))n

(
(n− 1)!

n
+ δ1,n ln(2π)

)
.

(9.36)

Due to the complexity of taking a direct analytic derivative in first term of (9.36) we turn

to Newton’s difference quotient to obtain a more manageable expression for the cumulants

f(a+ h)− f(a)

h
(9.37)



144

which in the limit of h→ 0 represents the derivative of f at a. From this we extrapolate

that the second derivative is given by

f ′′(x) = lim
h2→0

lim
h1→0

f(x+h1+h2)
h1

− lim
h1→0

f(x+h1)
h1

h2

= lim
h→0

f(x+ 2h)− 2f(x+ h) + f(x)

h2
(9.38)

where, we have assumed h1 and h2 converge synchronously. Extrapolating further, we

have for the nth derivative

f (n)(x) = lim
h→0

1

hn

n∑

m=0

(−1)m
(
n

m

)
f(x+ (n−m)h). (9.39)

Equation (9.39) is known as the Grünwald-Letnikov derivative formula which, applied to

(9.36) and noting nδ1,n = δ1,n yields the form of the cumulants used in the following to

relate them to REPs

κn(χ) = lim
∆→0

nD

2

(log2 e)
n

hn−1

n−1∑

k=0

(−1)k
(
n− 1

k

)
ln
[
N1−(n−1−k)h(χ)

]
+
D

2
(log2 e)

n[(n− 1)! + δ1,n ln(2π)].

(9.40)

An alternative method for obtaining accurate numerical approximations of higher order

derivatives is given in Appendix.A which can be applied directly to equation 9.36.

So far we have shown how the PDF of interest F(y) relates to the information PDF g(x)

and that it’s associated cumulants κn(χ) can be expressed in terms of the REPs Np(χ).

Thus in principle, given a set of REPs, one can approximate the information PDF asso-

ciated with the equimeasurable set in which the underlying PDF of interest exists. This

is demonstrated in the following section by applying this method to the states introduced

in section 9.1.

9.4 BCS (Equimeasurable to Gaussian) Example

To gain further insight into the working of this information scan technique we consider

an example where F(y) is taken to be that of the BCS. This is in fact a piecewise re-

arrangement of a Gaussian PDF yet has an overall, double peaked non-Gaussian structure,

as depicted in Fig.9.2, thus N1−p(χ) = σ2, ∀p, where σ2 is the variance of the ‘would be

Gaussian’. It is the sufficient to analyse a Gaussian PDF of zero mean and variance σ2.
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Firstly, the analytic form of the information PDF is found by using

g(x) =
df(x)

dx
=

2σ2

log2(e)

∫

R

e−
y2

2σ2√
2πσ2

[
δ(y − σ

√
z(x)) + δ(y + σ

√
z(x))

]

2σ
√
z(x)

dy =
2e−z(x)/2

log2(e)
√

2πz(x)

(9.41)

where z(x) = 2x/ log2(e) − log(2πσ2). This is known as the shifted gamma distribution.

The cumulants of the shifted gamma distribution are [138]

κn =





1
2 log2(e) + 1

2 log2(2πσ2) for n = 1

1
2(log2(e))nΓ(n) for n ≥ 2.

We now use the Gram-Charlier A series (9.20) to reconstruct the information PDF and

demonstrate the tail convergence of the reconstructed PDF to the analytic solution. Taking

the reference PDF to be a shifted gamma distribution

G(x) = G(x|a, α, β) =
e−(x−a)/β(x− a)α−1

βαΓ(α)
(9.42)

with a = log2(2πσ̃2), α = 1/2 and β = log2(e) where σ̃ 6= σ, we can use the fact that

dk

dxk
G(x|a, 1/2, β) =

k!√
β(x− a)k

L
(−1/2−k)
k

(
x− a
β

)
G(x|a, 1/2, β) (9.43)

where Lqp is an associated Laguerre polynomial of order p with parameter q. To first order

in the exponential function in the expression for the Gram Charlier A series (9.20), the

expression for the information PDF becomes

g(x) = G(x|a, 1/2, β)

[
1 +

(κ2 − γ2)√
β(x− a)2

L
−5/2
2

(
x− a
β

)
− (κ3 − γ3)√

β(x− a)3
L
−7/2
3

(
x− a
β

)
+ · · ·

]
.

(9.44)

Adding higher order terms in the expansion of the exponential function gives a tighter

convergence of the reconstructed PDF and since only the first order cumulants contains

non-trivial information on the shape of the Gaussian, the reconstructed PDF can be

rewritten as

g(x) =

[ ∞∑

m=0

1

m!

(
−(κ1 − γ1)

d

dx

)m]
G(x). (9.45)

The affect of adding higher order terms in the expansion of the exponential function is

shown in Fig.9.7. Note that in practise we approximate the information PDF, to first

order, by a Gaussian so that the first cumulant of the reference PDF G(x) is exactly that

of the information PDF.
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Figure 9.7: Tail convergence of the reconstructed information distribution of a Gaussian

for higher order terms of the exponential expansion denoted by m. Only the first cumulant

contributes to the reconstruction of a Gaussian PDF.

9.5 Analytic Expressions for the Cumulants of the UCS

The PDF of the general Cat State is given by (2.94), by taking θ = 0, relabelling x0 = y

and α ∈ R, we find the PDF of the UCS to be

F(y) =
N 2

√
π

(
e−y

2
+ ν2e−(y−√yα/ν)2 + 2νe−y

2/2e−
1
2

(y−
√

2α/ν)2
)

(9.46)

then by completing the square of the argument of the last term in (9.46)

−y2

2
− 1

2

(
y −
√

2α

ν

)2

= −y2 +
√

2y
α

ν
− α2

ν2

= −
(
y − α√

2ν

)2

− α2

2ν2
(9.47)

thus (9.46) can be expressed as

F(y) =
N 2

√
π

(
e−y

2
+ ν2e−(y−√yα/ν)2 + 2νe−

α2

2ν2 e

(
y− α√

2ν

)2)
(9.48)

which is evidently a weighted sum of three Gaussian’s. As we have seen in section 9.4,

for Gaussian PDFs the analytic form of it’s reconstructed information PDF g(x) is the

shifted gamma distribution. Similarly, the reconstructed information PDF of (9.48) is a

weighted sum of three shifted gamma distributions

g(x) =
N 2

√
π

(
G(x|a1, α̃, β) + ν2G(x|a2, α̃, β) + 2νe−α

2/2ν2G(x|a3, α̃, β)
)
. (9.49)

The kth moment of the unshifted gamma distribution G(x|0, α̃, β) is known to be

E[xk] =
Γ(α̃+ k)

Γ(α̃)
= (log2)k

Γ(k + 1/2)√
π

(9.50)
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which can be transformed to give the moments of the shifted gamma distribution G(x|a, α̃, β)

via

Es[x
k] =

∫ ∞

a
xkG(x|0, α̃, β)dx

=

∫ ∞

0
(x̃+ a)kG(x̃|0, α̃, β)dx̃

=
k∑

l=0

(
k

l

)
ak−lE[xk] (9.51)

where we have used x̃ = x − a, the binomial theorem and
∫∞

0 x̃kG(x̃|0, α̃, β)dx̃ = E[xk].

The moments of (9.49) are then found to be

Eg[x
k] =

k∑

l=0

(
k

l

)
E[xk]

(
ak−l1 + ν2ak−l2 + 2ν2e−

α2

2ν2 ak−l3

)
. (9.52)

Finally, we are able to obtain expressions for the cumulants via the standard formulae

κ1 = µ1

κ2 = µ2 − µ2
1

κ3 = µ3 − 3µ2µ1 + 2µ3
1

... (9.53)

which can be neatly expressed by the recursive formula

κk = µk −
k−1∑

m=1

(
k − 1

m− 1

)
κmµk−m (9.54)

where µk are the moments found using (9.52). Using this method bypasses the unstable

numerical differentiation and in fact reveals the desired cumulants directly while bypassing

the evaluation of all integrals and derivatives. Practically speaking, the cumulants can be

obtained through measurements of REP’s as described in (9.3.1).

9.5.1 Reconstruction

Given the cumulants of the information PDF the Gram Charlier A series (9.20) can be

used to reconstruct the desired result. Here we demonstrate how another expansion known

as the Edgeworth series [139] can be used to accomplish this. The Edgeworth series

provides an additional advantage by being error controlled so the expansion is guaranteed

to asymptote. This expansion takes the form

g(x) = exp


n

n∑

j=2

(κj − γj)
(−1)j

j!

dj

dxj
n−j/2


G(x). (9.55)
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With the Edgeworth series the expansion is grouped by orders of the power of n i.e for

nk we group terms of equal k. It is useful to note that for j = 2 there are an infinite

number of such terms which come about from the expansion of the exponential function

however, for j ≥ 3 there is always a finite number of terms for each k. As such, it is useful

to rewrite (9.55) as

g(x) = exp


n

n∑

j=3

(κj − γj)
(−1)j

j!

dj

dxj
n−j/2


 exp

(
(κ2 − γ2)

1

2

d2

dx2

)
G(x) (9.56)

and truncate the j = 2 by matching the order of magnitude of the smallest term to

the smallest terms of the j ≥ 3 expansion truncated to a desired order k. In Fig.9.8,

the reference PDF is again taken to be a shifted Gamma distribution with α̃ = 1
2 , β =

log2(e) and a = κ1 − 1
2 log2(e), the expansion is taken to n−3/2 and as demonstrated, the

reconstructed information PDF displays convergence to the analytic information PDF.
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Figure 9.8: Convergence of the reconstructed information distribution of an Unbalanced

Cat State (UCS) with ν = 0.97 and α = 10. The value a+
2 corresponds to the value of x

at the point of intersection with the second (lower) peak of the F(y) for the UCS. The

Edgeworth expansion has been used here to order n−3/2 requiring control of the first 5

cumulants.
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Chapter 10

Conclusion

In this thesis we have shown that the statistical correlations employed in quantum met-

rology protocols can be identified as intra- and inter-mode correlations which can con-

tribute to the sensitivity in different amounts. In particular we have explored the ef-

fects of combining the two types of correlation in the Squeezed-Entangled state |ψSES〉 =

N (|ζ, 0〉+ |0, ζ〉), this was shown to provide high precision gains over previously con-

sidered probe states however, this state is not easily produced in practise. Moreover,

by analysing the quantum Fisher information as a metric for measurement precision we

found that intramode correlations can contribute far more to the sensing capabilities of a

scheme than intermode correlations. These findings motivated the investigation into the

practically viable, intramode correlated Squeezed Cat State |ϕSCS〉 = N Ŝ(ζ)(|α〉+ |−α〉)
which was also shown to outperform previously considered states such as the NOON state

and separable two-mode squeezed vacuum state. Further work includes applications of

sensitivity metrics other than the Fisher information, such as entropic measures, to these

probe states. Moreover, the Fisher information, and consequently Cramé-Rao bound, is

not guaranteed to be a reliable measure of sensitivity in the low particle number regime

hence the use of more robust bounds, such as the Ziv-Zakai bound [140] which takes into

account prior information, would be a natural extension of this work. We also explored

multiparameter estimation for which we identified local and global estimation strategies.

Through the investigation of two distinct measurement schemes, one consisting of par-

allel interferometers and the other consisting of multi-mode quantum enhanced imaging,

we demonstrated that the global strategies can be matched and even outperformed by

local estimation strategies which have the additional benefit of being more practical than

the previously proposed global strategy analogues. Nonetheless, in practise the precision

scaling with photon number may not be the most relevant measure whereas the absolute
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precision that can be obtained for a given total photon number is [19, 71], in this thesis we

have exhibited probe states that improve on the absolute precision of NOON states and

thus present candidates for further investigation in the multiparameter local estimation

strategies considered.

We also addressed the usual approach of considering quantum metrological protocol to

be comprised of three stages: probe preparation, sensing and readout, in which the time

taken to perform the first and last stages is often neglected. By regarding time as a non-

negligible, limited resource in the protocol of magnetic field sensing with an N spin-1/2

system, we introduced two measurement schemes which employ concurrent sensing during

state preparation and readout, one of which used Two-Axis Twisting as state prepara-

tion and another which used One-Axis Twisting as an echo measurement scheme. Our

investigation of these schemes revealed that the traditional quantum metrological prepare-

sense-readout protocol can yield measurement precisions that are worse than even classical

schemes and moreover, the concurrent sensing schemes always outperform their sequential

counterparts. Future work would include the effects of decoherence in the state prepara-

tion, sensing and readout stages and some preliminary results are given in Appendix.B.

Another related avenue of investigation would build upon the work of Refs [110, 141]

which considers echo measurements in the presence of detection noise and finds that in

the absence of detection noise the optimal sensitivities come about by devoting no time

to the echo unitary i.e the echo does not give any theoretical advantage over a projection

measurement but in the presence of detection noise the echo measurement scheme makes

the sensitivity much more robust to noise. Further work could also include the application

of concurrent sensing during preparation and readout to the experiment demonstrated by

M. Penasa et.al [142] in which an echo measurement protocol is employed to estimate the

amplitude of a small displacement acting on a cavity field. The notable difference in the

scheme of Penasa and the schemes that were analysed here is that execution of preparation

and readout takes the form of atom-cavity interactions in order to create, and undo the

creation of, optical cat states.

In the latter part of this thesis we took an information theoretic approach to quantum

mechanical states and uncertainty relations, in particular we introduced the Rényi en-

tropy from which we derived a generalised uncertainty relation, this was given in terms

of the associated entropy power and constitutes an infinite class of uncertainty relations.
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We applied this Rényi entropy power uncertainty relation (REPUR) to two non-Gaussian

states; a Cat State |ψC〉 = NC(|iβ〉 + |−iβ〉) and the superposition state of the vacuum

and squeezed vacuum |ψV 〉 = NV (|0〉+ |ζ〉). From this we were able to infer that the extra

information provided by the REPUR gives a measure of “Gaussianity” of the PDFs of

quantum states. Furthermore, we were able show that where variance based uncertainty

measures breakdown the REPURs are still informative. A scheme for the direct meas-

urement of Rényi entropies using existing AMO and solid state platforms has recently

been proposed by the group of P. Zoller [143], motivating future collaborative work with

experimentalists. Building upon the REPUR result, we then gave explicit examples of

known entropy measures yielding informative results where variance based measure of un-

certainty breakdown. The result is based upon the invariance of entropies under piecewise

rearrangements of the underlying probability distributions. We further this notion to in-

clude equimeasureable PDFs through which we introduce key properties of a technique

akin to quantum tomography which we refer to as an “information scan”. Moreover, we

gave a numerical simulation of this information scan being performed on the superposition

state of a vacuum and a squeezed vacuum |ψV 〉. We then provided a detailed derivation

of how this information scan depends on the Rényi entropy powers and in turn how the

Rényi entropy powers relate to the cumulants of the information PDF of the quantum

states. We followed this by presenting an analytical application of this reconstruction

theorem to two distinct types of cat state and showed that the analytical and numerical

results converge. This work can be extended to designing quantum states through their

associated PDFs via this reconstruction theorem, this would provide crucial insight into

the structure of quantum states enabling them to be tailored for specific metrology tasks.
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Appendix A

Accurate Numerical Higher Order

Derivatives

Clearly the cumulants can also be obtained through taking the (n − 1)th derivative of

the Rényi Entropy power with respect to p directly as depicted by (9.36). However, as

previously mentioned, the analytical form of such derivatives are extremely cumbersome

to work with. As such, a method for accurate numerical derivatives is presented here -

the “method of undetermined coefficients”. Starting with the difference approximation

Dnu(~x) =

n∑

k=0

cku(~x− kh) (A.1)

so that

D0u(~x) = c0u(~x)

D1u(~x) = c0u(~x) + c1u(~x− h)

D2u(~x) = c0u(~x) + c1u(~x− h) + c2u(~x− 2h)

D3u(~x) = c0u(~x) + c1u(~x− h) + c2u(~x− 2h) + c3u(~x− 3h)

...

Dnu(~x) = c0u(~x) + c1u(~x− h) . . . cnu(~x− nh) (A.2)

and the nth derivative is given by

u(n)(~x) = lim
h→0

Dnu(~x)

hn
. (A.3)

The aim is then to find the n + 1 coefficients c0, c1, . . . cn which requires at least n + 1

equations. To acquire these equations, the Taylor expansion of u(~x− kh) can be taken to
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nth order at h = 0

u(~x− kh) =
n∑

m=0

(−1)m
(kh)m

m!
um(~x)

= u(~x)− khu′(~x) +
1

2
(kh)2u′′(~x)− 1

3!
(kh)3u′′′(~x) + . . . (A.4)

which gives

D0u(~x) = c0u(~x)

D1u(~x) = c0u(~x) + c1

[
u(~x)− hu′(~x) +

1

2
(h)2u′′(~x)− · · ·+ (−1)nh

hn

n!
u(n)(~x)

]

D2u(~x) = c0u(~x) + c1

[
u(~x)− hu′(~x) +

1

2
(h)2u′′(~x)− · · ·+ (−1)n

hn

n!
u(n)(~x)

]

+ c2

[
u(~x)− 2hu′(~x) +

1

2
(2h)2u′′(~x)− · · ·+ (−1)nh

(2h)n

n!
u(n)(~x)

]

...

Dnu(~x) = Dn−1u(~x) + cn

[
u(~x)− nhu′(~x) +

1

2
(nh)2u′′(~x)− · · ·+ (−1)n

(nh)n

n!
u(n)(~x)

]

(A.5)

then grouping coefficients of similar order in h (or equivalently of the same order derivative

of u(~x)) it becomes apparent that the nth order difference approximation is given by

Dnu(~x) =(c0 + c1 + c2 + · · ·+ cn)− (c1 + c2 + c3 + · · ·+ cn)hu′(~x)

+
1

2
(c1 + 22c2 + 32c3 + . . . n2cn)h2u′′(~x)

− 1

3!
(c1 + 23c2 + 33c3 + . . . n3cn)h3u′′′(~x)

...

(−1)n

n!
(c1 + 2nc2 + 3nc3 + . . . nncn)hnu(n)(~x) (A.6)

now only the nth term should contribute to the nth derivative of u(~x) so for k < n all of

the coefficients of hku(k)(~x) = 0 in (A.6) and the coefficient of hnu(n)(~x) = 1
hn thus

0 = c0 + c1 + c2 + · · ·+ cn)

0 = −(c1 + c2 + c3 + · · ·+ cn)

0 =
1

2
(c1 + 22c2 + 32c3 + . . . n2cn)

0 = − 1

3!
(c1 + 23c2 + 33c3 + . . . n3cn)

...

1

hn
=

(−1)n

n!
(c1 + 2nc2 + 3nc3 + . . . nncn) (A.7)
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Then solving this system of equations for ck in terms of h and substituting these values

back into the original expression for Dnu(~x) we have an accurate approximation for the

nth derivative. Note that in practice, setting h ≈ 10−2 is sufficient for accurate results.
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Appendix B

Optical System

Here we present an alternative method which demonstrates of the sensing capabilities in

the bosonic limit of the TAT schemes introduced in section 3.4.2. This entails considering

the more realistic case of the run time of the quantum metrology protocol being a limited

resource, with this we show that concurrent state preparation and sensing outperforms the

usual approach of sequential state preparation and readout. Furthermore, we shall include

and analyse the effects of loss and show that concurrent state preparation and readout

outperforms the analagous sequential scheme. We demonstrate this alternative approach

in the absence of optical loss.

B.1 Lossless

In the optical setting, non-classical states of light can be used to achieve high precision

gains for the detection of a weak classical force F (t) [105] which acts for time t. The

effect of this force on a harmonic oscillator is a displacement of the complex amplitude

of the oscillator in phase space, indeed the result of this force acting on the harmonic

oscillator can be modelled in the interaction picture as the displacement operator (2.32)

[144]. In the following all displacements are taken to be along the position axis of phase

space x0 which allows us to take advantage of the relation (2.40). The preparation of

the non-classical state is performed by the bosonic squeezing operation (2.46) where the

squeezing parameter is taken to be real ξ ∈ R+ ⇒ ξ = r. The aim here is to produce

a unitary time evolution operator that simultaneously mimics the action of both of the

aforementioned operators i.e concurrent state preparation and sensing. With this the

following Hamiltonian is introduced

H = i~η(a2 − (a†)2)± i~ω(a† − a) (B.1)
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where the ”±” dictates the direction of the displacement along the position axis and ω is

the parameter we wish to estimate. This gives the following unitary

U(t) = exp
(r

2
[a2 − (a†)2]∓ ωt(a† − a)

)

= exp

[
r

2
a2 ∓ aωt+

1

2r
ω2t2 −

(
r

2
(a†)2 ∓ a†ωt+

1

2r
ω2t2

)]

= exp



(√

r

2
a∓ 1

2

√
2

r
ωt

)2

−
(√

r

2
a† ∓ 1

2

√
2

r
ωt

)2



= exp

(
r

2

[(
a∓ ωt

r

)2

−
(
a† ∓ ωt

r

)2
])

(B.2)

expanding the exponential then gives

U(t) = 1 +
r

2

[(
a∓ ωt

r

)2

−
(
a† ∓ ωt

r

)2
]

+
1

2

r2

4

[(
a∓ ωt

r

)2

−
(
a† ∓ ωt

r

)2
]2

+ ...

= 1 +
r

2

[
D†(∓ωt/r)a2D(∓ωt/r)−D†(∓ωt/r)(a†)2D(∓ωt/r)

]
+

+
1

2

r2

4

[
D†(∓ωt/r)a2D(∓ωt/r)−D†(∓ωt/r)(a†)2D(∓ωt/r)

]2
+ ...

= D†(∓ωt/r)
[
1 +

r

2
[a2 − (a†)2] +

1

2

r2

4
[a2 − (a†)2]2 + ...

]
D(∓ωt/r)

= D†(∓ωt/r) exp
[r

2
(a2 − (a†)2)

]
D(∓ωt/r)

= D†(∓ωt/r)S(r)D(∓ωt/r). (B.3)

Allowing this evolution for time t1 followed by the usual sensing via a displacement oper-

ation acting for time t2 gives the final state

|ψf 〉 = D(±ωt2)U(t1) |0〉

= D(±ωt2)D†(∓ωt1/r)S(r)D(∓ωt1/r) |0〉 (B.4)

noting that r = 2ηt1. Recalling that the squeezing and displacement operators are non-

commutative, we use result (2.61) to find

|ψf 〉 = D(±ωt2)D†(∓ωt1/r)D [(∓ωt1/r) cosh(r)− (∓ωt1/r) sinh(r)]S(r) |0〉

= D(±ωt2)D†(∓ωt1/r)D[(∓ωt1/r)(cosh(r)− sinh(r))]S(r) |0〉

= D(±ωt2)D(±ωt1/r)D
[
(∓ωt1/r)e−r

]
S(r) |0〉

= D

[
±ω(T − t1)± ω

2η
(1− e−2ηt1)

]
S(r) |0〉 (B.5)

where T = t1 + t2 is a fixed total time. We note that taking magnitude of the squeezing

to zero should be equivalent to taking t1 → 0 and thus t2 = T . We find

lim
t1→0
|ψf 〉 = D(±ωT ) |0〉 (B.6)
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so if there is no squeezing (no preparation) we are indeed displacing (sensing) for the total

time. Furthermore, we note that

(1− e−2ηt1) ∈ [0, 1) (B.7)

thus an extra displacement, in the desired direction for enhanced sensitivity, is guaranteed

by this scheme. As a measure of sensitivity of the displacement of the oscillator along the

position quadrature x0 we use the propagation of error formula which gives

δ2ω =
Var[x0]

ν
∣∣∣∂〈x0〉∂ω

∣∣∣
2 (B.8)

where ν is the number of experimental repeats so if the total time for all repeats of the

experiment is given by TTot then ν = TTot/T . We also have, for a displaced-squeezed state

defined by |α, ζ〉 = D(α)S(ζ) |0〉 with α = |α|eiθ and ζ = reiϕ, the expectation value of

the general quadrature operator xλ is given by

〈α, ζ|xλ |α, ζ〉 =
1

2
(αe−iλ + α∗eiλ) (B.9)

and the variance is given by

∆2xλ =
1

4

(
e2r sin2(λ− ϕ/2) + e−2r cos2(λ− ϕ/2)

)
(B.10)

thus for λ = ϕ = θ, the expectation value of the displaced-squeezed state in the position

quadrature for the simultaneous scheme is given by

〈x0〉 = α, ∆2x0 =
1

4
e−2r (B.11)

hence, for the sequential squeeze-then-sense scheme, where clearly |ψf 〉 = D[±ω(T −
t1)]S(r) |0〉, the expectation value and variance in the position quadrature are given by

〈x0〉s = ±ω(T − t1) (B.12)

and

∆2
sx0 =

1

4
e−4ηt1 . (B.13)

For the final state of the concurrent preparation and sensing scheme (B.5), the expectation

value and variance in the position quadrature are given by

〈x0〉c = ±ω
(

(T − t1) +
1

2η
(1− e−2ηt1))

)
(B.14)
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and

∆2
cx0 =

1

4
e−4ηt1 . (B.15)

Note that ∆2
cx0 = ∆2

sx0 so that

δ2ωc =
∆2
cx0

ν
∣∣∣∂〈x0〉c∂ω

∣∣∣
2

=
∆2
sx0

ν
∣∣∣
(

(T − t1) + 1
2η (1− e−2ηt1)

) ∣∣∣
2

=
∆2
sx0

ν|(T − t1)|2
∣∣∣
(

1 + (1−e−2ηt1 )
2η(T−t1)

) ∣∣∣
2

=
∆2
sx0

ν
∣∣∣∂〈x0〉s∂ω

∣∣∣
2∣∣∣
(

1 + (1−e−2ηt1 )
2η(T−t1)

) ∣∣∣
2

= δ2ωs

∣∣∣∣∣

(
1 +

(1− e−2ηt1)

2η(T − t1)

) ∣∣∣∣∣

−2

(B.16)

thus

δωs
δωc

= 1 +
1− e−2ηt1

2η(T − t1)
(B.17)

then since T ≥ t1 ≥ 0 and η ≥ 0, this implies

1− e−2ηt1

2η(T − t1)
≥ 0 (B.18)

hence, for all parameters

δωs
δωc
≥ 1 (B.19)

thus we find that the concurrent state preparation and readout scheme will perform as well

or outperform the analagous sequential scheme in agreement with the results of section

3.4.2.

B.1.1 Physical Setup

A system that submits the contrived Hamiltonian depicted by (B.1) is introduced here.

We consider a nonlinear medium subject to a classical pump field and a coherent signal

field. The initially fully quantized Hamiltonian is given by

H =~ωsa†a+ ~ωpb†b+ i~χ(2)[a2b† − (a†)2b]

+ ~εp(b† + b) sin(ωpt+ ϕ) + ~εs(a† + a) sin(ωst+ φ) (B.20)
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where, a is the driving field mode, b is the pump mode and the terms (from left to right)

correspond to the free energy of the driving and pump field, the nonlinear coupling of the

fields, the pump driving and the signal driving. Furthermore, the frequencies ωs and ωp

correspond to the signal and pump fields respectively, χ(2) is the 2nd order susceptibility, ϕ

is a controlled phase and εp and εs are the amplitudes of the pump and signal respectively.

Taking the pump field to be a coherent classical field that loses no photons over time t, i.e

taking the parametric approximation, the operators b and b† become βe−iωpt and β∗eiωpt

respectively, where β = |β|eiθ with θ ∈ [0, 2π]. Note that this essentially amounts to

stating that for an operator Â ≈ A0 + δÂ where A0 is a constant, we have 〈A0〉 � 〈δÂ〉
the operator Â is effectively a constant. Thus, ignoring the irrelevant constant terms, the

Hamiltonian (B.20) becomes

H = ~ωsa†a+ i~[η∗eiωpta2 − η(a†)2e−iωpt] + ~εs(a† + a) sin(ωst+ φ). (B.21)

where η = χ(2)β. Defining H0 = ~ωsa†a, H1 = i~[η∗eiωpta2 − η(a†)2e−iωpt] and H2 =

~εs(a† + a) sin(ωst+ φ), the Hamiltonian in the interaction picture is given by

HI = eiH0t/~(H −H0)e−iH0t/~

= eiH0t/~(H1 +H2)e−iH0t/~. (B.22)

Using the operator identity (2.37) we find

eiωsta
†aae−iωsta

†a = ae−iωst and eiωsta
†aa†e−iωsta

†a = a†eiωst (B.23)

and using this result with the exponential form of the sine function, the Hamiltonian

becomes

HI = i~
[
η∗eiωpt−2iωsta2 − ηe−iωpt+2iωst(a†)2

]
+ ~ε

(
a†eiωst + ae−iωst

)[ei(ωst+φ) − e−i(ωst+φ)

2i

]

= i~
[
η∗eiωpt−2iωsta2 − ηe−iωpt+2iωst(a†)2

]
− i~εs

2

(
a†ei(2ωst+φ) − a†eiφ + aeiφ − ae−i(2ωst+φ)

)
.

(B.24)

Finally, setting ωp = 2ωs, φ = 0, taking η, εs ∈ R+ and applying the rotating wave

approximation, we arrive at the Hamiltonian

HI = i~η
[
a2 − (a†)2

]
± i~εs

2
(a† − a) (B.25)

where, the ”±” allows for the displacement to be applied in the positive or negative

direction along the position axis in phase space. Simply substituting εs/2 = ω retrieves

the desired Hamiltonian (B.1)
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B.2 Lossy

Here we introduce loss into the optical system that was analysed in the preceding section

and find that even in the presence of loss, concurrent state preparation and readout is a

more effective use of the limited time resource.

B.2.1 Sequential Scheme

To include optical loss the system is coupled to a thermal bath which can be taken to be

a multitude of harmonic oscillator modes of the electromagnetic field. The system-bath

coupling is given by

V =
∑

k

λk(ab
†
k + a†bk) (B.26)

which can be represented as k fictional beam-splitters coupling the system mode to the k

field modes. The full Hamiltonian is then given by

H = H0 +Hs(t) + V (B.27)

where the system and bath free energy is

H0 = ωsa
†a+

∑

k

ωkb
†
kbk + ωpc

†c (B.28)

and the squeeze-then-sense system Hamiltonian is given by

Hs(t) =




~ωpc†c+ i~χ[a2c† − (a†)2c] + ~εp(c† + c) sin(ωpt+ ϕ) for t ≤ t1

~εs(a† + a) sin(ωst+ φ) for t1 ≤ t ≤ T

in which a is the system mode, bk are the bath modes and c is a pump field taken to be a

coherent classical field that loses no photons over the total time T . With this c ≈ βe−iωpt

and c† ≈ β∗eiωpt where β = |β|eiθ, θ ∈ [0, 2π] then transforming to the interaction picture,

in units of ~, yields

HI(t) = eiH0t(H −H0)e−iH0t

= eiH0tHs(t)e
−iH0t + eiH0tV e−iH0t

= H ′s(t) + eiH0t
∑

k

λk(ab
†
k + a†bk)e

−iH0t. (B.29)

Through the same reasoning given in the previous section,taking the RWA and setting

ωp = 2ωs gives

H ′s(t) =




iη[a2 − (a†)2] for t ≤ t1

± iεs
2 (a† − a) for t1 ≤ t ≤ T .
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For the system-bath coupling term, transforming to the interaction frame gives

V ′ =eiωsta
†aae−iωsta

†a
∑

k

λk exp

(
i
∑

k′
b†kbk′

)
b†k exp

(
−i
∑

k′
b†kbk′a

)

+ eiωsta
†aa†e−iωsta

†a
∑

k

λk exp

(
i
∑

k′
b†kbk′

)
bk exp

(
−i
∑

k′
b†kbk′a

)

=a
∑

k

λkb
†
ke
i(ωs−ωk)t + a†

∑

k

λkbke
−i(ωs−ωk)t

=aB†(t) + a†B(t) (B.30)

where we have defined B(t) ≡∑k λkbke
−i(ωs−ωk)t noting that

[B(t), B†(t′)] = γδ(t− t′) (B.31)

This is a consequence of the Markov approximation [53] which is a useful tool in analysing

open quantum systems. An open quantum system consists of the system of interest and

it’s environment (in the above case, this environment is taken to be a thermal bath).

Since the system will typically entangle with it’s environment, even if initially described

by a pure state it will evolve to a mixed state ρ. The Markov approximation comes

about from the largeness of the bath (more strictly, the closeness of the energy levels),

which ensures that from one moment to the next the system effectively interacts with a

different part of the environment. In other words, the bath has no history. The Markov

approximation is often used in combination with the Born approximation when analysing

the dynamics of open quantum systems. The Born approximation is that the system-

environment coupling is taken to be weak. This ensures that the affect of the system on

the environment is negligible. Then rather than attempting to find a quantum state of

the system - and by proxy, the environment - the approximate evolution of the system

state alone is found. In other words, the Born-Markov approximations are used in order

to find a differential equation for ρ. Following [53] the Heisenberg-picture dynamics of an

the position system operator are found using

ṡ(t) = −i[H, s(t)] (B.32)

where s(t) is an arbitrary system operator (here, choose s(t) = x(t)) which can be set to

the system’s density matrix operator ρ thus revealing the master equation. However, the

commutation relation (B.31) complicates this and as such, the infinitesimal evolution of

s(t) (in the Heisenberg picture) is considered. Furthermore, the infinitesimal operator is

defined as

dB(t) = B(t)dt (B.33)



175

so that the unitary operator for an infinitesimal evolution generated by V ′ (in the inter-

action frame) is given by

UI(t+ dt, t) = exp
[
−i
(
adB†(t) + a†dB(t)

)]
. (B.34)

and commutation relation is found to be

[dB(t), dB†(t)] = dt (B.35)

using the heuristic notion that dt is the smallest increment of time and the area under a

delta function is 1 thus δ(0)dt = 1 ⇒ δ(0) = 1/dt. From this it is apparent that dB(t) is

not of order dt but in fact of order
√
dt thus it is necessary to expand (B.34) to second

order in it’s argument when inspecting the infinitesimal evolution of s(t) in the Heisenberg

picture which is given by

s̃(t+ dt) = U †I (t+ dt, t′)s(t′)UI(t+ dt, t′)

= U †I (t, t′)U †I (t+ dt, t)UI(t, t
′)U †I (t, t′)s(t′)UI(t, t

′)U †I (t, t′)UI(t+ dt, t′)

= Ũ †(t+ dt, t)s̃(t)Ũ(t+ dt, t) (B.36)

where, “tilde” denotes Heisenberg picture operators. Then it is apparent that

Ũ(t+ dt, t) = U †I (t, t′)e−iHI(t)dtUI(t, t
′)

≈ U †I (t, t′)

(
1− iHI(t)dt−

1

2
H2
I (t)dt2

)
UI(t, t

′)

= U †I (t, t′)UI(t, t
′)− iU †I (t, t′)HI(t)UI(t, t

′)dt

− 1

2
U †I (t, t′)HI(t)UI(t, t

′)U †I (t, t′)HI(t)UI(t, t
′)dt2

= 1− iH̃I(t)dt−
1

2
H̃2
I (t)dt2

= 1− i
(
H̃ ′s(t) + ãB̃†(t) + ã†B̃(t)

)
dt− 1

2

(
H̃ ′s(t) + ãB̃†(t) + ã†B̃(t)

)2
dt2

= 1− i
(
H̃ ′s(t)dt+ ãdB̃†(t) + ã†dB̃(t)

)
− 1

2

(
H̃ ′s(t)

2dt2 + H̃ ′s(t)ãdB̃
†(t)dt

+ H̃ ′s(t)ã
†dB̃(t)dt+ ãdB̃†(t)H̃ ′s(t)dt+ ã†dB̃(t)H̃ ′s(t)dt

+ ãã†dB̃†(t)dB̃(t) + ã†ãdB̃(t)dB̃†(t) + (ãdB̃†(t))2 + (ã†dB̃(t))2
)

= 1− i
(
H̃ ′s(t)dt+ ãdB̃†(t) + ã†dB̃(t)

)
− 1

2

(
ãã†dB̃†(t)dB̃(t) + ã†ãdB̃(t)dB̃†(t)

+ (ãdB̃†(t))2 + (ã†dB̃(t))2
)

+O(dt3/2) +O(dt2) (B.37)
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thus,

s̃(t+ dt) = s̃(t)− s̃(t)i
(
H̃ ′s(t)dt+ ãdB̃†(t) + ã†dB̃(t)

)
− s̃(t)1

2

(
ãã†dB̃†(t)dB̃(t) + ã†ãdB̃(t)dB̃†(t)

+ (ãdB̃†(t))2 + (ã†dB̃(t))2
)

+ i
(
H̃ ′s(t)dt+ ãdB̃†(t) + ã†dB̃(t)

)
s̃(t)

+
(
ã†dB̃(t) + ãdB̃†(t)

)
s̃(t)

(
ãdB̃†(t) + ã†dB̃(t)

)
− 1

2

(
ãã†dB̃†(t)dB̃(t)

+ ã†ãdB̃(t)dB̃†(t) + (ãdB̃†(t))2 + (ã†dB̃(t))2
)

+O(dt3/2) +O(dt2)

= s̃(t) + i[H̃ ′s(t)dt+ ãdB̃†(t) + ã†dB̃(t), s̃(t)] +
(
ã†s̃(t)ãdB̃(t)dB̃†(t) + ã†s̃(t)ã†(dB̃(t))2

+ ãs̃(t)ã(dB̃†(t))2 + ãs̃(t)ã†dB̃†dB̃(t)
)

− 1

2

{
ãã†dB̃†(t)dB̃(t) + ã†ãdB̃(t)dB̃†(t) + (ãdB̃†(t))2 + (ã†dB̃(t))2, s̃(t)

}

(B.38)

ignoring terms of order O(dt3/2) where we have used [s̃(t), dB̃(t)] = 0 and {·, ·} denotes

the anti-commutator. We have for a general bath

dB̃†(t)dB̃(t) = γNdt (B.39)

dB̃(t)dB̃†(t) = γ(N + 1)dt (B.40)

dB̃(t)dB̃(t) = γMdt (B.41)

〈dB̃(t)〉 = βdt (B.42)

where a M = 0 and N = (exp[~ωk/kBT − 1])−1 for a white noise bath - which is a good

approximation of a thermal bath. This implies

s̃(t+ dt) = s̃(t) + i[H̃ ′s(t)dt+ ãdB̃†(t) + ã†dB̃(t), s̃(t)] + ã†s̃(t)ãγ(N + 1)dt+ ãs̃(t)ã†γNdt

− 1

2

{
ã†ãγ(N + 1)dt+ ãã†γNdt, s̃(t)

}

= s̃(t) + i[H̃ ′s(t)dt+ ãdB̃†(t) + ã†dB̃(t), s̃(t)] + ã†s̃(t)ãγ(N + 1)dt+ ãs̃(t)ã†γNdt

− dt

2
γ(N + 1)

(
ã†ãs̃(t) + s̃(t)s̃(t)ã†ã

)
− dt

2
γN

(
ãã†s̃(t) + s̃(t)ãã†

)
(B.43)

so finally, the rate of change of a general system observable is given by

ds̃

dt
=
s̃(t+ dt)− s̃(t)

dt
= i[H̃ ′s(t) + ãB̃†(t) + ã†B̃(t), s̃(t)] + γN

(
ãs̃(t)ã† − 1

2
ãã†s̃(t)− 1

2
s̃(t)ãã†

)

+ γ(N + 1)

(
ã†s̃(t)ã− 1

2
ã†ãs̃(t)− 1

2
s̃(t)ã†ã

)
. (B.44)

The position quadrature operator is given by

x(t) =
1

2
(a(t) + a†(t)) (B.45)
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thus the rate of change (in the Heisenberg picture) is given by

dx̃

dt
=

1

2

(
dã

dt
+
dã†

dt

)
(B.46)

then from (B.44)

dã

dt
= i[H̃ ′s(t) + ãB̃†(t) + ã†B̃(t), ã] + γN

(
ããã† − 1

2
ãã†ã− 1

2
ããã†

)

+ γ(N + 1)

(
ã†ãã− 1

2
ã†ãã− 1

2
ãã†ã

)

= i
(
H̃ ′s(t)ã+ ãB̃†(t)ã+ ã†B̃(t)ã

)
− i
(
ãH̃ ′s(t) + ããB̃†(t) + ãã†B̃(t)

)

+ γN

(
ã

1

2
(ãã† − ã†ã)

)
+ γ(N + 1)

(
(ã†ã− ãã†)ã1

2

)

= iH̃ ′s(t)ã− iãH̃ ′s(t) + iã†ãB̃(t)− iãã†B̃(t)

+ iããB̃†(t)− iããB̃†(t) + γN
ã

2
− γ(N + 1)

ã

2

= i[H̃s(t), ã] + iB̃(t)[ã†, ã] + γ
ã

2
(N −N − 1)

= i[H̃s(t), ã]− iB̃(t)− γã

2
(B.47)

and

dã†

dt
= −i[H̃s(t), ã]† + iB̃†(t)− γã

2

= −i
((

H̃ ′s(t)ã
)†
−
(
ãH̃ ′s(t)

)†)
+ iB̃†(t)− γã

2

= −i
(
ã†H̃ ′s(t)− H̃ ′s(t)ã

)
+ iB̃†(t)− γã

2

= i[H̃s(t), ã
†] + iB̃†(t)− γã

2
. (B.48)

The commutation relations give

[H̃ ′s(t), ã] =





[iη(ã2 − (ã†)2), ã] for t ≤ t1

[± iεs
2 (ã† − ã), ã] for t1 ≤ t ≤ T

then using that

[ã, ã] = 0 (B.49)

[ã†, ã] = −1 (B.50)

[(ã†)2, ã] = −2ã† (B.51)
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it is evident that

[H̃ ′s(t), ã] =





[−iη((ã†)2), ã] for t ≤ t1

[± iεs
2 (ã†), ã] for t1 ≤ t ≤ T

=





2iηã† for t ≤ t1

∓ iεs
2 for t1 ≤ t ≤ T

(B.52)

and similarly

[H̃ ′s(t), ã
†] =





2iηã for t ≤ t1

∓ iεs
2 for t1 ≤ t ≤ T .

so that

dx̃

dt
=





1
2

(
−2ã†η − iB̃(t)− γ

2 ã− 2ãη + iB̃†(t)− γ
2 ã
†
)

for t ≤ t1
1
2

(
± εs

2 − iB̃(t)− γ
2 ã± εs

2 + iB̃†(t)− γ
2 ã
†
)

for t1 ≤ t ≤ T .

=




−2ηx̃(t)− γ

2 x̃(t) + i
2

(
B̃†(t)− B̃(t)

)
for t ≤ t1

± εs
2 −

γ
2 x̃(t) + i

2

(
B̃†(t)− B̃(t)

)
for t1 ≤ t ≤ T .

= κ(t)x̃(t) + υ(t) (B.53)

where the following have been defined

κ(t) ≡




−2η − γ

2 for t ≤ t1

−γ
2 for t1 ≤ t ≤ T .

(B.54)

υ(t) ≡





i
2

(
B̃†(t)− B̃(t)

)
for t ≤ t1

± εs
2 + i

2

(
B̃†(t)− B̃(t)

)
for t1 ≤ t ≤ T .

. (B.55)

Relabelling the time increment to t0 ≤ t ≤ t1 for the squeezing (preparation) time and

t1 ≤ t ≤ t2 for the sensing time (the previous notation corresponds to t0 = 0 and t2 = T ),

the solution of this differential equation for the system position operator at the time t is

given by

x̃(t) = e
∫ t2
t0
κ(t′′)dt′′

[
+

∫ t2

t0

e
∫ t2
t′ κ(t′′)dt′′υ(t′)dt′ + C

]
(B.56)

setting t = t0 implies x̃0(t) = C and thus the solution at final time t2 is given by

x̃(t2) = x̃(t0)e
∫ t2
t0
κ(t′′)dt′′ +

∫ t2

t0

e
∫ t2
t′ κ(t′′)dt′′υ(t′)dt′ (B.57)
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where,
∫ t2

t0

κ(t′′)dt′′ =

∫ t1

t0

κ(t′′)dt′′ +

∫ t2

t1

κ(t′′)dt′′

=
(
−2η − γ

2

)
(t1 − t0) +

(
−γ

2

)
(t2 − t1)

= −2ηt1 =
γ

2
t1 − 2ηt0 +

γ

2
t2 +

γ

2
t1

= −2η(t1 − t0)− γ

2
(t2 − t0) (B.58)

noting that

e
∫ t2
t0
κ(t′′)dt′′e

−
∫ t′
t0
κ(t′′)dt′′

= exp

[∫ t0

t′
κ(t′′)dt′′ +

∫ t2

t0

κ(t′′)dt′′
]

= exp

[∫ t2

t′
κ(t′′)dt′′

]
. (B.59)

Furthermore,
∫ t2

t0

e
∫ t2
t′ κ(t′′)dt′′υ(t′)dt′ =

∫ t1

t0

e
∫ t1
t′ κ(t′′)dt′′+

∫ t2
t1
κ(t′′)dt′′υ(t′)dt′ +

∫ t2

t1

e
∫ t2
t′ κ(t′′)dt′′υ(t′)dt′

=

∫ t1

t0

e−(2η+ γ
2 )(t1−t′)− γ2 (t2−t1)υ(t′)dt′ +

∫ t2

t1

e−
γ
2

(t2−t′)υ(t′)dt′

(B.60)

noting that t′ ∈ [t0, t2] and t′′ ∈ [t′, t2] which can be split into the two cases where

t′ ∈ [t0, t1] ⇒ t′′ ∈ [t0, t2] and t′ ∈ [t1, t2] ⇒ t′′ ∈ [t1, t2], i.e if t′ does not exist between

t0 and t1, then neither can t′′. The expression for the system position operator in the

Heisenberg picture is then

X̃(t2) = X̃(t0)e−2η(t1−t0)−γ(t2−t0)/2 +

∫ t1

t0

e(−2η−γ/2)(t1−t′)−γ(t2−t1)/2 i

2
(B̃†(t)− B̃(t))dt′

+

∫ t2

t1

e−γ(t2−t′)/2
(
εs
2

+
i

2
(B̃†(t)− B̃(t))

)
dt′. (B.61)

Recall that a thermal state in the Fock basis is given by

ρ =
∑

n

〈n〉n
(1 + 〈n〉)n+1

|n〉 〈n| =
∑

n

cn |n〉 〈n| (B.62)

thus for the thermal state of our bath

〈B̃(t)〉 = Tr[ρB̃(t)] = Tr

[∑

n

cn |n〉 〈n| B̃(t)

]
=
∑

n

cn 〈n| B̃(t) |n〉 = 0 (B.63)

and similarly 〈B̃†(t)〉 = 0. Descriptively; because the thermal state is diagonal in the Fock

basis, the expectation values of it’s associated ladder operator will vanish. Consequently,

〈X̃(t2)〉 = 〈X̃(t0)〉 e−2η(t1−t0)−γ(t2−t0)/2 +
εs
2

∫ t2

t1

e−γ(t2−t′)/2dt′

= 〈X̃(t0)〉 e−2η(t1−t0)−γ(t2−t0)/2 +
εs
γ

(
1− e−γ(t2−t1)/2

)
(B.64)
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and further

〈X̃2(t2)〉 = 〈
(
X̃(t0)e−2η(t1−t0)−γ(t2−t0)/2 +

∫ t1

t0

e(−2η−γ/2)(t1−t′)−γ(t2−t1)/2 i

2
(B̃†(t)− B̃(t))dt′

+

∫ t2

t1

e−γ(t2−t′)/2
(
εs
2

+
i

2
(B̃†(t)− B̃(t))

)
dt′

)2

〉

= 〈X̃2(t)〉 e−4η(t1−t0)−γ(t2−t0) + 2 〈X̃(t0)〉 e−2η(t1−t0)−γ(t2−t1)/2 εs
γ

(1− e−γ(t2−t1)/2)

+
1

4
γ(2N + 1)

[
1

γ + 4η
(e−γ(t2−t1) − e−γ(t2−t0)−4η(t1−t0)) +

1

4
(1− e−γ(t2 − t1))

]

+
ε2s
γ2

(1− e−γ(t2−t1))2 (B.65)

where we have use the fact that terms like the following

− 1

4

∫ t1

t0

e(−2η−γ/2)(t1−t′)−γ(t2−t1)/2(B̃†(t)− B̃(t))dt′
∫ t2

t1

e−γ(t2−t′)/2(B̃†(t)− B̃(t))dt′ =

∫ t1

t0

dt′
∫ t2

t1

dt′′e−2η(t1−t′)−γ(t2−t′)/2−γ(t2−t′′)(B̃†(t′)B̃†(t′′) + B̃†(t′)B̃(t′′) + B̃(t′)B̃†(t′′) + B̃(t′)B̃(t′′))

=

∫ t1

t0

dt′
∫ t2

t1

dt′′e−2η(t1−t′)−γ(t2−t′)/2−γ(t2−t′′)(γNδ(t′ − t′′) + γ(N + 1)δ(t′ − t′′))

=

∫ t1

t1

dt′e−2η(t1−t′)−γ(t2−t′)γ(2N + 1) = 0 (B.66)

and B̃(t′)B̃†(t′′) = γNδ(t′ − t′′) etc. The variance is then found to be

∆2
sX̃(t2) =∆2

sX̃(t0)e−4η(t1−t0)−γ(t2−t0) +
2N + 1

4
(1− e−γ(t2−t1))

+
γ(2N + 1)

4(γ + 4η)
(e−γ(t2−t1) − e−γ(t2−t0)−4η(t1−t0)) (B.67)

where for |ψ(t0)〉 = |0〉 ⇒ ∆2
sX̃(t0) = 1

4 〈0| ã2 + ãã† + ã†ã+ (ã†)2 |0〉 = 1
4

B.2.2 Simultaneous

The (Heisenberg) system Hamiltonian in the interaction picture for the simultaneous

scheme is given by

H̃ ′s(t) =




iη(ã2 + (ã†)2) + iεs

2 (ã† − ã) for t0 ≤ t ≤ t1
iεs
2 (ã† − ã) for t1 ≤ t ≤ t2

(B.68)
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noting that the resulting displacements in the t ∈ [t0, t1] and t ∈ [t1, t2] will be in opposite

directions as desired (c.f lossless regime). As such

[H̃ ′s(t), ã] =





[iη(ã2 + (ã†)2) + iεs
2 (ã† − ã), ã] for t0 ≤ t ≤ t1

[ iεs2 (ã† − ã), ã] for t1 ≤ t ≤ t2

=




−iη[(ã†)2, ã] + iεs

2 [ã†, ã] for t0 ≤ t ≤ t1
iεs
2 [ã†, ã] for t1 ≤ t ≤ t2

=





2iηã† − iεs
2 for t0 ≤ t ≤ t1

− iεs
2 for t1 ≤ t ≤ t2

(B.69)

and further

[H̃ ′s(t), ã]† = −[H̃ ′s(t), ã
†] =




−2iηã† + iεs

2 for t0 ≤ t ≤ t1

+ iεs
2 for t1 ≤ t ≤ t2

⇒ [H̃ ′s(t), ã
†] =





2iηã− iεs
2 for t0 ≤ t ≤ t1

− iεs
2 for t1 ≤ t ≤ t2.

(B.70)

From this and equations (B.46-B.48) the rate of change of the position operator is given

by

dx̃

dt
=




−2ηx̃(t)− γ

2 x̃(t) + εs
2 + i

2

(
B̃†(t)− B̃(t)

)
for t0 ≤ t ≤ t1

εs
2 −

γ
2 x̃(t) + i

2

(
B̃†(t)− B̃(t)

)
for t1 ≤ t ≤ t2.

= κ(t)x̃(t) + υ(t) (B.71)

where κ(t) is given by (B.55) and

υ(t) ≡





i
2

(
B̃†(t)− B̃(t)

)
for t0 ≤ t ≤ t1

± εs
2 + i

2

(
B̃†(t)− B̃(t)

)
for t1 ≤ t ≤ t2.

(B.72)

so equations (B.56-B.60) hold as before but with (B.72) so that

X̃(t2) = X̃(t0)e−2η(t1−t0)−γ(t2−t0)/2 +

∫ t1

t0

e(−2η−γ/2)(t1−t′)−γ(t2−t1)/2 i

2
(B̃†(t)− B̃(t))dt′

+

∫ t2

t1

e−γ(t2−t′)/2
(
εs
2

+
i

2
(B̃†(t)− B̃(1t))

)
dt′ +

εs
2

∫ t1

t0

e(−21η−γ/2)(t1−t′)−γ(t2−t1)dt′.

(B.73)
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where the final term is the contribution due to the simultaneous preparation and sensing;

an additional displacement. The expectation value is then found to be

〈X̃(t2)〉 = 〈X̃(t0)〉+
εs
γ

(1− e−γ(t2−t1)/2)

[
1 +

(
1

1 + 4η/γ

)
(1− e−(2η+γ/2)(t1−t0))

]

(B.74)

where we have used (B.63). Furthermore

〈X̃2(t2)〉 =

〈X̃2(t0)〉 e−4η(t1−t0)−γ(t2−t0)

+ ε2s

[
1

γ + 4η

(
e−γ(t2−t1)/2 − e−γ(t2−t0)/2−2η(t1−t0) +

1

γ
(1− e−γ(t2−t0))

)]2

+ 2 〈X̃2(t0)〉 e−2η(t1−t0)−γ(t2−t0)/2 εs
γ + 4η

(
e−γ(t2−t1)/2 − e−γ(t2−t0)/2−2η(t1−t0) +

1

γ
(1− e−γ(t2−t0))

)

+
1

4

∫ t1

t0

dt′
∫ t1

t0

dt′′e(−2η−γ/2)(t1−t′)−γ(t2−t1)+(−2η−γ/2)(t1−t′′)−γ(t2−t1)/2[γ(N + 1)δ(t′ − t′′)

+ γNδ(t′ − t′′)]

− 1

4

∫ t2

t1

dt′
∫ t2

t1

dt′′e−γ(t2−t′)/2−γ(t2−t′′)(−γ(N + 1)δ(t′ − t′′)− γNδ(t′ − t′′)) (B.75)

which reveals

〈X̃2(t2)〉 =

〈X̃2(t0)〉 e−4η(t1−t0)−γ(t2−t0) + ε2s

[
1

γ + 4η

(
e−γ(t2−t1)/2 − e−γ(t2−t0)/2−2η(t1−t0) +

1

γ
(1− e−γ(t2−t0))

)]2

+ 2 〈X̃2(t0)〉 e−2η(t1−t0)−γ(t2−t0)/2 εs
γ + 4η

(
e−γ(t2−t1)/2 − e−γ(t2−t0)/2−2η(t1−t0) +

1

γ
(1− e−γ(t2−t0))

)

=
γ(2N + 1)

4(γ + 4η)

(
e−γ(t2−t1) − e−γ(t2−t0)−4η(t1−t0)

)
+
γ(2N + 1)

4γ

(
1− e−γ(t2−t1)

)
(B.76)

so that the variance is given by

∆2
cX̃(t2) = ∆2

cX̃(t0)e−4η(t1−t0)−γ(t2−t0) +
2N + 1

4

(
1− e−γ(t2−t1)

)

+
γ(2N + 1)

4(γ + 4η)

(
e−γ(t2−t1) − e−γ(t2−t0)−4η(t1−t0)

)
. (B.77)

Comparison and Checks

Now we have from the error of propagation formula

δ2εcs =
(t2 − t0)

T

∆2
sX̃(t2)∣∣∣∂〈X̃(t2)〉c
∂εs

∣∣∣
2 (B.78)

and we note

∂ 〈X̃(t2)〉s
∂εs

=
1

γ

(
1− e−γ(t2−t1)/2

)
(B.79)
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and
∣∣∣∣∣
∂ 〈X̃(t2)〉c

∂εs

∣∣∣∣∣

2

=

∣∣∣∣∣

(
1 +

1

1 + 4η/γ

(
e−γ(t2−t1)/2 − e−γ(t2−t0−2η(t1−t0))

) [(
1− e−γ(t2−t1)

)]−1
) ∣∣∣∣∣

2∣∣∣∣∣
1

γ

(
1− e−γ(t2−t1)

) ∣∣∣∣∣

2

∣∣∣∣∣

(
1 +

1

1 + 4η/γ

(
e−γ(t2−t1)/2 − e−γ(t2−t0)−2η(t1−t0)

) [(
1− e−γ(t2−t1)

)]−1
) ∣∣∣∣∣

2

·
∣∣∣∣∣
∂ 〈X̃(t2)〉s

∂εs

∣∣∣∣∣

2

(B.80)

then since ∆2
sX̃(t2) = ∆2

cX̃(t2)

δ2εcs =

(t2 − t0)

T

∆sX̃(t2)∣∣∣∂〈X̃(t2)〉s
∂εs

∣∣∣
2

∣∣∣∣∣

(
1 +

1

1 + 4η/γ

(
e−γ(t2−t1)/2 − e−γ(t2−t0)−2η(t1−t0))

) [(
1− e−γ(t2−t1)

)]−1
) ∣∣∣∣∣

−2

= δ2εss

∣∣∣∣∣

(
1 +

1

1 + 4η/γ

(
e−γ(t2−t1)/2 − e−γ(t2−t0)−2η(t1−t0)

) [(
1− e−γ(t2−t1)

)]−1
) ∣∣∣∣∣

−2

(B.81)

hence,

δεss
δεcs

= 1 +

(
e−γ(t2−t1)/2 − e−γ(t2−t0)−2η(t1−t0)

)

(1 + 4η/γ)
(
1− e−γ(t2−t1)/2

)

= 1 +

(
e−γ(t2−t1)/2 − e−(2η+γ/2)(t1−t0)−γ(t2−t1)/2

)

(1 + 4η/γ)
(
1− e−γ(t2−t1)/2

)

= 1 +

(
1− e−(2η+γ/2)(t1−t0)

)
e−γ(t2−t1)/2

(1 + 4η/γ)
(
1− e−γ(t2−t1)/2

)

≥ 1 ∀t2, t1, t0, η and γ (B.82)

and we conclude δεcs ≤ δεss for all parameters i.e the precision of the measurement of para-

meter εs provided by the concurrent preparation and sensing scheme is superior to that

provided by the analagous sequential scheme even under the effects of optical loss.

CHECKS: In the limit of no squeezing, i.e when η → 0 we find

δεss
δεcs

= 1 +
(1− e−γ(t1−t0)/2)e−γ(t2−t1)/2

(1− e−γ(t2−t1)/2)
(B.83)

noting that zero squeezing implies t1 = t0 it is the clear that δεss
δεcs

= 1, as expected.

Furthermore, in the limit of vanishing loss rate we find

lim
γ→0

δεss
δεcs

= 1 +
1− e−2η(t1−t0)

2η(t2 − t1)
(B.84)
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where we have used the fact that

lim
γ→0

(1 + 4η/γ)(1− e−γ(t2−t1)/2) = 2η(t2 − t1). (B.85)

Comparing equations (B.84) and (B.17) it is clear the expressions are equivalent (up to

arbitrary choices of parameters e.g taking t2 ≡ T and t0 = 0 as is the case in (B.17)).
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