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In recent years, there has been a rise in applications of mathematical modelling in sexually transmitted 
infections. This paper outlines a new approach to mathematical modelling that tests intervention efforts 
on Chlamydia. The aim was to produce a simple model that can be used when new data comes to hand 
without the need to re-run the simulation. A simple model was developed to study the effects of 
interventions in lowering rates of Chlamydia in a high-risk population of 16 to 24 year olds. Parameters 
are informed by the best available data. The model was verified by running it backwards in time to see if 
it correctly ‘retrodicts’ rates of Chlamydia in the past. The model predicted that Chlamydia would 
disappear long-term if there were 45% condom use, annual check-ups and 23.5% successful contact 
tracing among the high-risk 16 – 24 year old age group. The model’s expressions can be applied readily 
to different populations of interest and to address specific questions, indicating that the model is a 
quick and easy tool to apply in public health policy making.  
 
Key words: Mathematical modelling, Chlamydia, public health interventions, partner notification, annual check-
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INTRODUCTION 
 
In recent years there has been a rise in the applications 
of mathematical modelling in infectious disease epi-
demiology (Garnett, 2002; Fone et al., 2003; Grundmann 
and Hellreigel, 2006). Mathematical models have been 
utilised to forecast the course of epidemics, the cost-
effectiveness of different interventions (Duncan and Hart, 
1999; Jolly et al., 2001) and to inform estimates of biolo-
gical and epidemiological parameters that are difficult to 
measure (Garnett, 2002; Turner et al., 2006). Population 
modelling techniques from mathematical bio-logy have 
been combined with sexual network analysis from socio-
logy to investigate the impact of sexual behaviours on the 
transmission of Sexually Transmitted Infections (STIs) 
(Jolly et al., 2001; Riolo et al., 2001; Potterat et al., 2002; 
Cabral et al., 2003; Pinkerton et al.,  2003;  Turner  et  al.,  
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2006). However, these models are often complex and 
difficult to understand (Garnett, 2002).  

Furthermore, the models are informed by estimates of 
parameters from singular geographically specific studies 
and so do not generally provide exact analytical 
solutions. This results in the models having to be re-run 
every time new data comes to hand.   

The purpose of this paper is to replace the mathema-
tical modelling process of the natural sciences with those 
of the physical sciences to develop a model that can 
explore the impact of intervention options on the trans-
mission of Chlamydia trachomatis (Chlamydia). This has 
the advantage of simplifying the modelling process. 
Chlamydia is the most commonly diagnosed STI in the 
United Kingdom (Adams et al., 2004a, b; Heath 
Protection Agency, 2005; Hawker et al., 2005). The main 
interventions used to lower prevalence of Chlamydia are 
partner notification (contact tracing), screening and the 
primary prevention method of condom usage during 
sexual intercourse. We aim to derive simple algebraic 
expressions  for  the  prevalence  of  Chlamydia  that  can 



 

 
 
 
 
be used when new data come to hand without the  need  
to  re-run  the  simulation.  These expressions could also 
be applied immediately to different populations of 
interest.  
 
 
METHODS 
 
Mathematical modelling is a powerful field of procedures in the 
natural and physical sciences. In brief, a mathematical model is an 
abstract model that uses mathematical language to describe the 
behaviour of a system. It typically uses a set of variables and a set 
of equations that establish relationships between the variables. 
Mathematical models enable one to understand the nature of 
complex systems that cannot be solved exactly. Also known as 
computer simulation modelling, mathematical modelling is different 
to the modelling techniques in statistics, where a single equation is 
used such as ordinary least squares linear regression or logistic 
regression. The mathematical model has the potential for producing 
simulations suited to making predictions and exploring the limits of 
predictability. Using only those factors that are considered relevant 
to disease transmission, different scenarios can be explored under 
varying conditions and can be used to address specific questions. 
For instance, they can test the effects of different preventative stra-
tegies on the transmission of Chlamydia. A model is validated by 
comparing its results with qualitative observations or quantitative 
data from the real world (Garnett, 2002).  

Our model focuses on the effects of interventions on lowering 
exposure to Chlamydia in a high-risk population of sexually active 
16 – 24 year olds. It tests the impact of three preventative strate-
gies: condoms, screening and partner notification. Mathematical 
models’ parameters are informed by data taken from the literature 
(Jolly et al., 2001; Pinkerton et al., 2003; Cabral et al., 2003; Doyle 
et al., 2006). Our model uses estimates from systematic reviews, 
the British National Survey of Sexual Attitudes and Lifestyles (2000) 
(Johnson et al., 2001; Fenton et al., 2001; Turner et al., 2006) and 
routine surveillance on the target population by Health Protection 
Agency. While the risk of acquiring STIs involves the infectiousness 
of an individual and susceptibility of the partner to a new infection, 
(Doherty et al., 2005), the main behavioural determinants of STI 
transmission are condom usage, two plus sexual partners in the 
previous 12 months and frequency of sexual acts.  

For the purposes of the model, discriminate use of condoms in 
casual partnerships versus long-term monogamous partnerships 
are not essential, what is important is the effectiveness of condoms 
in preventing Chlamydia.  Systematic reviews on condom usage 
have shown that condoms are 90% effective on a per-act basis for 
both HIV and STIs (Pinkerton et al., 2003, 2007). Unfortunately, 
there is little evidence of how regularly 16 to 24 year olds use 
condoms for sexual encounters.  In addition, studies on condom 
usage in the reduction of STI transmission tend to focus on the 
impact of a consistent use of condoms (Warner et al., 2004; Holmes 
et al., 2004), yet the percentage of those who use condoms 100% 
of the time is small.  In the National Survey of Sexual Attitudes and 
Lifestyles conducted in 2000, 33% of men and 24.1% of women in 
the UK reported using a condom on all occasions in the previous 
four weeks (Johnson et al., 2001). In our model, we will explore the 
effects of varying condom use in sexual acts to uncover the effects 
of inconsistent use of condoms.   

Sexually transmitted infections are spread through sexual inte-
ractions between individuals so the greater the number of people 
with whom an individual has sexual relationships the greater the 
likelihood of coming in contact with sexually transmitted infections. 
Irrespective of whether condoms are used or not, having two or 
more sexual partners in the previous 12 months increases the risk 
of exposure to an STI (Fenton et al., 2000; Johnson et al., 2001; 
Heffernan, 2004; Hawker et al., 2005). Firstly, it is likely that the  re-  
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lationships are non-monogamous and they tend to be casual, short 
term or one night stands. Secondly, people with multiple partners 
over a twelve month period are more likely to have concurrent or 
overlapping relationships, which facilitate rapid transmission of an 
STI. One relationship may be ending whilst another is commencing, 
allowing infection to be spread before the symptoms can appear. 
However, an individual risk of acquiring an STI is a function only of 
the total number of partners. It does not depend upon whether they 
are concurrent or sequential. In relation to Chlamydia, it has been 
demonstrated that the number of secondary cases produced by the 
initial case is highest for those who had two plus partners compared 
to those with just one in the time period (Fenton et al., 2000; Jolly et 
al., 2001; Potterat et al., 2002).   

Frequency of sex is the third behavioural factor in the transmis-
sion of chlamydia. In the UK, males aged 16 to 24 years have sex 
on average 6.9 times a month, whilst females reported an average 
of 7.7 times (Johnson et al., 2001). In addition, 54.8% of the male 
and 44.8% of the females report having sexual intercourse within 4 
weeks of meeting a new sexual partner (Johnson et al., 2001).   

In our model, the following parameters are fixed (that is, we are 
not free to change them): 
 
1. Initial fractional prevalence of Chlamydia among 18 to 24 year 
olds, I(0) = 0.01 (Health Protection Agency, 2007). 
2. Average number of new sexual partners per year, yp = 2 (Fenton 
et al., 2001; Jolly et al., 2001; Johnson et al., 2001; Potterat et al., 
2002; Heffernan, 2004; Hawker et al., 2005). 
3. Average number of sexual encounters with each partner, s = 44. 
This is based on 16 to 24 year olds having sex an average of 88 
times per year (Johnson et al., 2001) and an average of 2 new 
sexual partners per year. 
4. Probability of transmission of Chlamydia from an infected to a 
susceptible per unprotected sexual act, p = 0.0375 (Turner et al., 
2006). 
5. Effectiveness of condoms in preventing the spread of Chlamydia, 
e = 0.90 (Pinkerton et al., 2003, 1997).   
 
We treat the following as variables that we can adjust to find the 
best intervention strategy: T, the average time between check-ups; 
c, the fraction of condom use on a per act basis; and r, the number 
of contacts screened per diagnosed case. 
 
 
Condom use 
 
For simplicity, we use a population averaging model. While a more 
complete treatment might use a selective mixing model and also 
consider individual based simulations rather than population 
averages, the aim of the present treatment is to gain straightforward 
insights into the effectiveness of different intervention strategies. 
This should enable us to highlight features that could be studied 
further in more detailed models and test different strategies that 
ethics would not allow to be tested in real populations. 

We denote the fractional prevalence of Chlamydia in the popula-
tion under study at time t as I(t). If each person has (an average) s 
sexual encounters with each new partner, then the prevalence at a 
slightly later time t + dt can be written as, 
 
I(t + dt) = I(t) + yp [1 − (1 − p(1 − ce))s] I(t)(1 − I(t))dt,  (1) 
 
where the probability of transmission per unprotected encounter is 
p, the average fraction of condom use is c, the average number of 
new partners per person per year is yp, and the effectiveness of 
condoms in preventing transmission is e. This can be rearranged to 
give a simple nonlinear differential equation,  
 
dI 
dt   = yp [1 − (1 − p(1 − ce)) s] I(1 − I),    (2) 
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This equation can be solved numerically to find the prevalence of 
chlamydia at subsequent times. 
 
 
Screening (‘check-ups’) 
 
So far, the model does not include the effect of people seeking 
treatment. For planning and auditing purposes of a screening pro-
gramme, a useful measure is patient attendance at a clinic or site 
within a one year period (Salisbury et al., 2006), that is, annual 
check-ups. This model explores the effect of an annual (or other 
frequency) visit at a clinic. The effect of check-ups and treatment 
can be incorporated into the model by adding the term −I/T to the 
right hand side of (2), where T is the average number of years 
between check-ups.  This gives: 
 
dI 
dt  = yp [1 − (1 − p(1 − ce))s] I(1 − I) − I/T.   (3) 
 
We should also account for the fact that people are in the high-risk 
category, of interest in this model, only between the ages of 16 and 
24. After the age of 24, it has been shown that the prevalence of 
Chlamydia reduces dramatically due to changes in sexual beha-
viours (Boekeloo et al., 2002: Adams et al., 2004a, b). This means 
that one ninth of the population ‘drops out’ each year and a new 
uninfected ninth enters the population. This can be accounted for 
with another term, −1/9. The prevalence is then given by: 
 
dI 
dt  = yp I(1- I) - ( T+9 ) I,      (4) 
                9T     
 
where we have made the definition,  = 1 − (1 − p(1 − ce))s.  can 
be interpreted as the total probability of transfer of infection 
between an average couple over the course of their relationship. 

The model presented so far enables us to study how the preva-
lence of Chlamydia depends on the rate of condom use and on the 
average time between check-ups. The first term on the right hand 
side of Equation (4) represents the rate of increase of the preva-
lence and the second term represents the rate of decrease. This 
means that, to decrease the prevalence of Chlamydia, we could 
reduce the first term (e.g. by decreasing  by increasing the rate of 
condom use) or increase the size of the second term by reducing T, 
that is, the time between check-ups. 
 
 
Partner notification 
 
Partner notification or contact tracing is a well established interven-
tion in the control of STIs (Cowan et al., 1996; Cabral et al., 2003; 
Tomnay et al., 2005; Low et al., 2007). This is the process whereby 
the sexual partners of people with Chlamydia diagnoses are 
informed of their exposure to the infection. They are then offered 
diagnosis, treatment and advice about preventing future infection. 
The idea behind this intervention strategy is that it identifies people 
who have had contact with the infection and are therefore more 
likely to have acquired it than a person selected at random from the 
population. We now outline how this can be incorporated in our 
model. 

At time t, the prevalence of the infection is I(t). This means Idt/T 
is the fraction of the population that is treated between t and t + dt.  
The fraction of the population that presents itself for screening 
based on contact tracing is then rIdt/T, where r is the number of 
contacts that are screened for each chlamydia case diagnosed. To 
incorporate the effect of contact tracing in our model, we need to 
know the fraction of the informed partners that are infected. A first 
approach might be to assume they have the same rate of infection 
as the general population, that is, I(t). However, such  an  approach 

 
 
 
 
would be to deny the great advantage of contact tracing which iden-
tifies people that are more likely to be infected than the average. 
Instead, we calculate the probability that the notified partners are 
infected based on the fact that they have had sexual contact with at 
least one infected person. This gives the probability of infection as, I 
+  (1 − I), that is, the probability they were already infected plus 
the probability they acquired an infection from their contact.  The 
term that now needs to be added to (4) is −rI(I +  (1 − I))/T .  

The new differential equation, including contact tracing, is: 
 
dI 
dt  =  yp I(1 − I) − (T + 9) I –  r   I(I +  (1- I)).  (5) 
      9T  T 
 
This equation is the basis of our model. 
 
 
RESULTS 
 
Figure 1 illustrates the results for different average 
periods between check-ups keeping all other parameters 
fixed at their current values. There is a dramatic decrease 
in the prevalence of Chlamydia between check-ups every 
15 months and every 12 months. There is a further dra-
matic decrease when check-ups are every 9 months on 
average. 

Figure 2 shows the effect of condom use when all other 
parameters are fixed at their current values. It is clear 
that condom use enables substantial decreases in the 
infection rates. There is a significant reduction in the 
prevalence of the infection for a 25% increase in the per-
act rate of condom use. 

Figure 3 illustrates the effect of contact tracing with all 
other parameters fixed at their current values. We see 
that there is an increase in the prevalence of the infection 
when the rate of contact tracing is decreased by 25% and 
a decrease when the rate is increased by 25%. While 
contact tracing achieves a notable reduction in the preva-
lence of the infection, the effects are not as powerful as 
for either condom use or the frequency of check-ups. 
Contact tracing may not be a successful strategy in 
reducing the incidence of Chlamydia in the absence of 
other strategies. It seems likely that a combination 
approach will be the best strategy. 

Our model allows us to derive simple algebraic expres-
sions for the likely long-term effects of any intervention 
strategy. The long-term prevalence of Chlamydia, Ilt, can 
be found by setting dI/dt to zero in Equation (5) and 
solving for I. This gives: 
 
Ilt =  9  (Typ − r) − (T + 9) 
           9  (Typ − r) + 9r     (6) 
 
which could be useful for assessing the relative long-term 
benefits of different approaches. 

In Figures 4 to 6, we have plotted respectively the long 
term prevalence of Chlamydia when we vary the period 
between check-ups, the rate of condom use and the rate 
of successful contact tracing. In each Figure, all other 
parameters are fixed at their current values. We see that, 
in each case, there is some  critical  value  beyond  which   
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Figure 1. Effect of the time between check-ups with all other parameters remaining egual. The dashed 
line represents the current parameters and the two solid lines represent a 25% increase and a 25% 
decrease in the period between check-ups. 

 
 
 

 
 
Figure 2. Effect of condom use with all other parameters remaining egual. The dashed line 
represents the current parameters and the two solid lines represent a 25% increase and a 25% 
decrease in the rate of condom use on a per act basis.  
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Figure 3. Effect of contact tracing with all other parameters remaining egual. The 
dashed line represents the current parameters and the two solid lines represent a 25% 
increase and a 25% decrease in the current rate of contacts  who are successfully 
screened for each index case. 

 
 
 

 
 
Figure 4. Long-term prevalence of Chlamydia as a function of time between check-ups. 

 
 
 
the long term prevalence of the infection is zero. This 
critical value corresponds to the value that the  parameter  

needs to have to effectively eradicate the infection  in  the  
long term. We can  derive  simple  expressions  for  these  
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Figure 5. Long-term prevalence of Chlamydia as a function of condom use on a per-act 
basis. 

 
 
 

 
 
Figure 6. Long-term prevalence of Chlamydia as a function of fraction of successful 
contact tracing.. 

 
 
 
critical parameters by setting Ilt = 0 in Equation 7, to give: 
 
9  (Typ − r) − (T + 9) = 0.                (7) 
 
Using this expression, the critical value for the period 
between check-ups, Tcrit, is: 
 
Tcrit = 1 + r 
          yp – 1     (8) 

which for present parameters gives Tcrit  0.87 (that is  
about 10.5 months) and agrees well with the value shown  
in Figure 4. This is not a substantial change from current 
targets. The critical value for  is: 
 
crit =  T + 9      
        9(ypT − r),        (9) 
 
Which for  present  parameters  gives  crit    0.604.  This 
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Figure 7. Model verifification: The model is run backwards in time and compared with 
observed data. 

 
 
 
corresponds to a rate of condom use of about 49% and 
agrees with the value in Figure 5. 

Finally, the critical value for the rate of successful 
contact tracing, rcrit, is: 
 
rcrit = Typ −  T + 9 
                     9 ,    (10) 
 
which for present parameters gives rcrit  39%, in good 
agreement with the value in Figure 6. 

Of course, these critical values are just approximate 
values. Among other things, they depend on there being 
no changes to the parameters in the intervening time. 
They should be treated more as relevant figures of merit 
for the different approaches. Overall, however, they are 
encouraging and show that relatively modest improve-
ments can make a major difference to the prevalence of 
Chlamydia. This is likely to be particularly true when 
combination strategies are applied, e.g., our model 
predicts that Chlamydia would disappear long-term if we 
had 45% condom use, annual check-ups, and 23.5% 
successful contact tracing among the high-risk 16 – 24 
year old age group. It would of course be preferable to do 
better than these targets since then the infection would 
be controlled more rapidly. 
 
 
DISCUSSION 
 
Model verification 
 
All computer simulations should be validated.  The  accu- 

racy of our model can be tested by using the current 
values of the parameters in our model and running the 
model backwards in time to see whether it correctly 
‘retrodicts’ rates of Chlamydia in the past. To carry out 
this test, we need values for the parameters c, T, and r. 

We take the rate of condom use on a per act basis 
among 16 - 24 year olds to be c = 0.33 (Wellings et al., 
1994) and assume that check-ups are on average taken 
annually, that is, T = 1 (Boekeloo et al., 2005). This is a 
useful timeframe since the incubation period of 
Chlamydia is about three months and, in the UK, men 
consult their GP on average about 1.7 times per year, 
and women about 5 times (Salisbury et al., 2006). We will 
keep r as a fitting parameter, that is, r will be adjusted to 
find the best match between our model and the observed 
data. 

The results of this test are plotted in Figure 7. The solid 
line represents our model and it is compared to the repor-
ted rates of diagnosed Chlamydia infection from Health 
Protection Agency (crossed data points). These notifica-
tions are for 16 to 24 year olds of both sexes. The best 
agreement between the model and the observed data is 
shown for r = 0.16. Reported rates of contact tracing for 
Chlamydia have included 0.1 and 0.2 (Chlamydia Advi-
sory Group, 2005; Turner et al., 2006) and a systematic 
review on the management of gonorrhoea and Chlamydia 
in GUM clinics in the UK found that contact tracing results 
in the treatment of about 0.61 partners per index case of 
Chlamydia (Low et al., 2004), that is, r = 0.61. The value 
of r derived from our model falls within the range of both 
these reported rates and shows our  model  is  consistent 



 

 
 
 
 
with the observed data. While this agreement does not 
guarantee that our model will accurately predict future 
prevalence, it does show that our model reflects past real 
trends of Chlamydia and we can be confident in using it 
to simulate the impact of different intervention strategies 
on Chlamydia transmission. 
 
 
Use of model 
 
Mathematical modelling processes utilised in physical 
sciences can be readily employed to examine the effec-
tiveness of public health interventions on lowering rates 
of Chlamydia. Our model provides simple algebraic 
expressions for the long-term impact of different inter-
vention strategies (equation 7) and for the critical values 
of parameters needed to effectively eradicate the infec-
tion (equations 8 to 10). These expressions are intended 
primarily as a guide to the likely impact of different 
approaches. They can be applied readily (without having 
to re-run any simulations) whenever new and improved 
data comes to hand. The expressions can also be run 
with local population data and so the model could be a 
quick and easy tool to apply in policy making.   

Mathematical modelling is limited by parameter values 
being estimated with the best available data. When 
developing this model, we were forced to recognise the 
assumptions being made and cast a critical eye over the 
evidence used to estimate parameter values. Systematic 
reviews can help but systematic reviews are reliant on 
the quality of data already collected.  Developing this 
model highlighted weaknesses in the existing literature.  
Firstly, there is a need for more rigour in surveying the 
numbers of partners notified and treated per individuals. 
The model assumed transmission probability for 
Chlamydia being 0.0375, though in truth, there is very 
little data on this parameter. Sexually transmitted 
infections are commonly underreported and estimates for 
parameters like condom usage and  the number of 
partners notified per individual vary greatly from study to 
study (Weller et al., 2006; Mathews et al., 2006). The 
model also revealed that studies on condom usage and 
STIs focus on 100% use of condoms versus non-use 
(Warner et al., 2004; Holmes et al., 2004). More informa-
tion is needed on the inconsistency of use, that is, the 
rate of condom usage on a per act basis. Thirdly, there 
was considerable variation with the estimates of para-
meters within and between men and women. In some 
instances, estimates were missing. However, with a 
model like the one presented here, the model can be 
elaborated to incorporate these parameters in the future. 

Our model is simplistic but it can be further developed 
to include confounding factors, such as factors influen-
cing condom use. Cost effectiveness is also omitted. The 
model could be adapted to find how much should be 
spent on each intervention strategy to maximise the 
reduction in the prevalence of Chlamydia for a given bud-
get. In other words, for a  given  total  budget,  this  model 
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could be used to find how much should be spent on each 
intervention strategy to maximise the reduction in the 
prevalence of Chlamydia. Such an approach could be 
helpful in targeting key areas for a more detailed analysis 
and costing. This model could also be modified to include 
impact of other factors such as re-infection, self-cure and 
heterogeneous mixing of sexual partners.  
  However, the purpose of this paper was to step back 
from the trend of increasing complex mathematical 
models in the epidemiology of STIs to produce a simpler 
model that could be used to predict overall impact of 
public health interventions on Chlamydia. It is intended 
that public health practitioners could take equation (7) 
and by imputing their local data, they would be able to 
predict the long- term effects of intervention strategies in 
their populations. This (and the estimation of critical para-
meter values in equations 8 to 10) could aid cost-effective 
planning for reducing Chlamydia transmission. There is 
also the opportunity to change model assumptions and 
run a series of ‘what if’ scenarios, for example the effects 
of 50% versus 75% condom usage in sexual partnerships 
on the transmission of an STI.  
   Parameters can be changed easily to address specific 
questions or populations or to compare different 
strategies. This provides an interesting method to explore 
relationships between parameters and to predict 
outcomes without the constraints of getting appropriate 
sample sizes and significance testing. It also offers the 
advantage of incorporating existing evidence on social 
and behaviour determinants of STIs without having to 
commission a large survey to inform the estimates.   
 
 
Conclusion 
 
The trend in mathematical modelling may be towards 
more complex epidemiological models but simple models 
can still be produced which are user-friendly and practical 
in exploring the impact of intervention options on 
Chlamydia. Furthermore, it is possible to develop a model 
that is not dependent on estimates from a singular study 
and as a result, does not need to be discarded any time 
new data emerges. Once this type of model is developed, 
the parameters of the model can be changed or adapted 
to address specific questions or populations, for example, 
the effects of 50% versus 75% condom usage in sexual 
partnerships on the transmission of an STI in a defined 
age group. Future work should include further develop-
ment for use in policies for restricting the transmission of 
STIs.    
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