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Summary

Over the past two decades there has been considerable and growing interest in the develop-

ment of quantum sensors. These are devices whose function is based on quantum systems

and offer the potential for unprecedented sensitivity in a range of measurements. This

PhD has developed three different theoretical projects examining the sensitivity improve-

ment of these devices with a focus on atom gravimeters, which are particularly useful

for measuring inertial quantities such as rotations and accelerations. We have invest-

igated the theoretical sensitivity limits of atom gravimeters and we examined different

entanglement-enhanced schemes, in order to increase their performance.

To start with, we used tools from estimation theory, in order to quantify the per-

formance of current atom gravimeters. We showed that there is additional metrological

potential in these devices, and that we can extract all this information by making innov-

ative measurements, other than the conventional population difference measurement. Our

analysis introduces a new way of evaluating the performance of atom gravimeters that

could influence future sensor designs.

In addition, we examined entanglement-enhanced schemes, in order to improve the

performance of quantum sensors, which are limited by the atom shot-noise limit. We

considered entanglement generation schemes based on atom-light interactions, in order for

them to be compatible with atom interferometer based sensors. More particularly, we ex-



amined a quantum non-demolition measurement scheme and an one-axis-twisting scheme

with cavity feedback. In both schemes we incorporated relevant decoherence mechan-

isms and we analysed how the optimum parameter regime can be found, by balancing

between coherence loss and spin-squeezing strength. We also examined several modifica-

tions in both models that could offer additional improvements. The results presented here

could have a big impact on the future design and understanding of atom-based quantum-

enhanced sensors.
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Chapter 1

Introduction

1.1 Atom Optics and Atom Interferometers

One of the main features that distinguish quantum mechanics from classical mechanics

is the wave-particle duality. In the early 20th century Louis de Broglie extended the wave-

particle duality notion from massless objects, such as photons, to massive particles, where

he suggested that a particle with mass m and momentum p can be described as a wave

with wavelength

λ =
h

p
. (1.1)

This theory was supported by the subsequent electron and atom diffraction experiments

[1, 2]. However, the lack of atom-optical elements, which for example would work as

beam-splitters or mirrors (similarly with optics), in combination with the small size of

the atomic wavelength at room temperature made the experiments in this field extremely

difficult [3]. The advent of the optical laser, and the subsequent development of laser

cooling and trapping techniques [4–8] led to the realization of atom-optical elements such

as lenses [9, 10], mirrors [11, 12] and diffraction gratings [13]. These advances resulted in

the development of atom optics, of which one important element is atom interferometry.

Atom interferometers are the atomic counterpart of optical interferometers, which are

used in order to detect phase shifts, which correspond to small differences in the length of

the two arms, by observing interference fringes of the optical waves. However, these optical

devices are unable to measure quantities that do not interact with the electromagnetic

(EM) field, such as inertial quantities. On the other hand, atom interferometers, which

use the interference of atomic waves, provide us with extremely sensitive measurements

of inertial quantities, such as accelerations and rotations. Also, due to the rich internal

structure of an atom we can estimate EM fields, as well as we can use them as clocks.
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Atom interferometers have a very similar function with their optical counterparts. Namely

they operate between two different atomic states, where after some time of propagation,

a phase difference accrues between the two arms, due to the interaction of the atoms

with some physical process, e.g. a gravitational field. At the end, we can observe the

matter-wave interference and find the total phase difference between the two arms, which

is related with the parameter of the physical process we finally want to estimate, in this

example the gravitational acceleration g.

The first experiments in atom interferometry were realised in 1991 by using laser-

cooled alkali atoms [14–17]. Up to this day, cold atoms have been used as inputs to atom

interferometers in many different experiments, measuring the local gravity [18–24], accel-

erations [25–28], gradients of the gravitational field [29,30], as well as rotations [31–33]. In

addition, another input of atom interferometers used for inertial sensing are Bose-Einstein

Condensates (BECs) [34,35], which were realised in 1995 [36,37]. We are going to discuss

in more detail about BECs in Chapter 2. BECs have a narrower momentum distribution,

compared to cold atoms, which makes them more robust to noise in laser pulses, realising

more precise beam-splitters and mirrors [38]. That would be essential in the case of atom

gravimeters, which have the Mach-Zehnder (MZ) configuration and use laser pulses, in

order to realise the optical elements, as we are going to analyse in Chapters 2 and 4. How-

ever, the realisation of a BEC needs to reach temperatures below a critical value, which

is accomplished by using evaporative cooling. This process reduces the temperature, by

excluding the warmer atoms, and consequently limits the atom flux available to the inter-

ferometer. Hence, BECs provides us with more reliable optical elements, but with reduced

atom flux compared to cold atom sources. A summary of experimental results comparing

the metrological gain offered by cold atoms and BECs can be found in [39] (Fig. [2]). In

this review, it has been shown that even if BECs show promising results, cold atoms offer

better performances up to this date.

Atom interferometers have been used in many experiments that are trying to estimate

physical constants, with extremely high precision, such as Newton’s gravitational con-

stant [40] and the fine structure constant [41]. We can also use high precision gravitational

measurements, in order to experimentally test the weak equivalence principle of general

relativity. This principle states that the inertial and gravitational mass are identical, lead-

ing to the universality of free fall [42]. Atom interferometers have also many geophysical

applications. Using incredibly precise atom gradiometers we can optimize the extraction

of resources such as gas and oil. These devices also have applications in detecting cavit-
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ies before subsistence, surveying disused mineshafts, as well as in finding water reserves.

There is considerable interest in measuring small signals associated with climate change

and hazard monitoring, such as volcanic activity, aquifers and mass motion due to water

movement, e.g. melting glaciers [43].

1.2 Gravimeters

In this thesis, we are going to focus on the case of atom gravimeters, which have the

construction of the well-known MZ interferometer. Gravimeters are devices used in or-

der to precisely measure the absolute value (absolute gravimeters), as well as differences

(relative gravimeters or gravity gradiometers) of the gravitational acceleration g. Atom

gravimeters can be used for both absolute and relative measurements. Before the devel-

opment of atom gravimeters, the most efficient device for absolute measurements of the

gravitational field were the so-called falling corner cube gravimeter (FCCG). This device

uses a laser interferometer and an atomic clock, in order to measure the drop length and

the time of the test mass, which is a corner cube [43,44]. Atom gravimeters have showed

better performance than FCCGs, mainly because of their increased tolerance to micro-

seismic vibrations, and because of the lack of mechanical wear. The FCCGs are more

susceptible to vibrations caused by the fall of the cube, firstly because the cube has a

mass considerably larger than the atomic mass and secondly because of the smaller repe-

tition rate compared to an atom gravimeter. Also, the fact that atom gravimeters do not

excite vibrations of the floor, as FCCGs tend to, extends their applicability to a range of

different sites [45]. Spring based gravimeters are very common devices for making relative

measurements of the gravitational field. As their name indicates their function is based

on one or more mechanical springs supporting a mass. Small gravitational signals can

be detected by measuring small length differences of the spring, due to the interaction

of the mass with the gravitational field. It is difficult to measure slowly varying signals

over periods of months or years using these devices, because they suffer from long term

instrumental drift due to changes in the length of the spring, caused by environmental

factors [43, 44]. Atom gravimeters offer comparable performance to the state of the art

spring gravimeters, but more importantly they do not suffer from mechanical wear, be-

cause their response to the gravitational signal depends on the atomic properties, which

are fixed by laws of physics, and not on any mechanical object. Additionally, atom gra-

vimeters are more appropriate devices for airborne and shipborne gravity surveys, due

to their immunity to hysteresis effects which strongly affect the performance of spring
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gravimeters during turbulence [45]. Another device which is capable of measuring gravity

gradients with high stability is the superconducting gravimeter (SG), whose main function

is based on the levitation of a superconducting sphere. Small changes in gravity result

in large displacements of the sphere. SGs are very stable devices showing only linear in-

strumental drift [43, 44]. Up to this day, SGs can measure gravity signal differences with

better performance than the atom gravimeters. Besides the fact that atom gravimeters

can still not provide us with the best precision of relative gravity measurements, they are

extremely promising drift-free devices, which are capable of making absolute and relative

measurements of gravity. On the other hand, spring gravimeters and SGs require the use

of an absolute gravimeter, such as an FCCG, in order to be calibrated [45]. Many geo-

physical applications require the measurement of gravity signals with even better precision

provided by all aforementioned devices.

Atom interferometers, similarly with their optical counterparts, are ultimately limited

by the projection noise of atoms, which scales like 1/
√
N as we are going to see in more

detail in Chapter 2 and 3. To be more specific, many experiments are limited by technical

noise, such as imperfect matching of Raman pulses wavefronts [45], but the atom shot-noise

is the ultimate limit of all these devices in the case of N uncorrelated atoms. In that sense,

there are two different paths we could follow, in order to increase the sensitivity of those

devices, the classical and the quantum path. In the former, we can increase the sensitivity

by increasing the available resources, namely by using a larger number of atoms, or in the

case of a MZ interferometer by increasing the space-time area, which means larger initial

momentum kick or increased total interferometer time, as we will analyse in more detail

in Chapters 2 and 4. In the quantum path we can use appropriate quantum states as the

input states of the interferometer, in order to surpass the atom shot-noise limit. As we

analyse in more detail in Sec. [1.4], in this thesis we focus on quantum schemes that can

be applied in conjunction with classical methods of improving the atom interferometer’s

sensitivity. Namely, we examine quantum models that do not limit any improvement

offered by classical strategies, but rather they can be considered as an additional boost to

current methods.

1.3 Quantum Enhanced Atom Interferometry

Quantum states with no correlations amongst the particles offer sensitivities con-

strained by he atom shot-noise limit (SNL), as mentioned at the end of the previous

section. In the interferometer case, this is caused by the “quantum randomness”, namely
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the atom randomly chooses at which output port of the interferometer will be detected.

This uncertainty, which is inherent in quantum states with no correlations, adds noise

to the final signal, limiting the final sensitivity. In this section we will discuss the use

of entangled states, which are states with correlations amongst the particles that can

redistribute the quantum noise and consequently offer sensitivities surpassing the SNL.

Conceptually entangled states are divided into two broad categories, the spin-squeezed

states and the entangled non-Gaussian states (ENGS). Here, we give a brief overview of

the concept of entanglement and spin squeezing, but we are going to discuss them in more

detail in Chapter 3. The concept of spin-squeezing refers to the reduction of the inherent

quantum noise of atomic collective spin components along a particular direction, at the

expense of increased noise in the corresponding perpendicular direction, in such a way that

the Heisenberg uncertainty principle is being satisfied at the end. Spin-squeezed states are

Gaussian states that permit sub-shot-noise sensitivities, by making a simple population

difference measurement. On the other hand, ENGS are more complicated states to be

produced and they do not offer improvements with respect to a simple population differ-

ence measurement, but you need to examine higher order moments to obtain enhanced

sensitivity. Despite their complexity they can provide us with an advantage in quantum

enhancement, by making more complicated measurements than the simple population

difference. ENGS have been generated using BECs [46], as well as cold atoms [47].

The concept of spin squeezing was introduced in the early 1990s in the context of

trapped ions [48], and then the well-known one-axis-twisting (OAT) dynamics, for creating

spin-squeezed states, was introduced by Kitagawa and Ueda [49]. Atomic spin-squeezing

can be divided in two broad classes. In the first one we create spin-squeezed states by

exploiting atom-atom interactions, while in the latter we use atom-light interactions. Ini-

tially, OAT was realised by considering the interactions amongst a small number of trapped

ions [50,51]. Up to this date, to our knowledge, spin squeezing with up to 219 ions has been

demonstrated [52]. Using spin squeezing, created by interactions amongst an ensemble of

ions, can not result in large quantum enhancements of atom interferometers, because the

total number of ions we can use with current technology is limited to small numbers, due

to difficulties to isolate and trap large ensembles of ions. In addition, spin-squeezing has

been generated using OAT-like interactions between the atoms in BECs [53–56]. Now, we

can create spin squeezing via atom-light interactions, using two different schemes. The

first one is called quantum non-demolition (QND) measurement scheme and has been

demonstrated in vapour cells [57] and cold atomic ensembles [58–60]. Here, we essentially
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entangle atom and light properties, through their interaction and we can reduce the atomic

spin noise, by making an appropriate measurement of a light observable. In Chapter 5,

we examine a QND measurement scheme in an atomic ensemble of BECs, in order to

enhance the performance of an atom gravimeter. The second class produces OAT effective

dynamics by using a cavity feedback scheme [61–65]. Here, the interaction of a two-level

atomic ensemble with the cavity light mode is considered, while incoming coherent light

detuned from the cavity resonance is driving the dynamics of the system. The number of

photons entering the cavity depends on the population difference between the two atomic

levels, creating entanglement amongst the atoms and resulting in effective OAT dynamics.

We will examine this scheme in more detail in Chapter 6.

1.4 Quantum Sensors

As we analysed in the previous section, entangled states can provide us with sensit-

ivities surpassing the inherent quantum noise of an atomic ensemble consisting of uncor-

related particles. However, in many cases the entanglement scheme under consideration

constrains the total number of particles that we can use. Hence, although we can obtain

sub-shot-noise sensitivities using entanglement, the number of atoms allowed is usually

much smaller that the one we could use in uncorrelated states. That is to say, that using

uncorrelated particle states would still provide us with better sensitivities compared to

the entangled states. More generally, quantum sensors that use atom-atom interactions,

in order to create entanglement, would be unable to surpass the performance of current

state of the art devices using uncorrelated states. This is due to the following three main

reasons:

� Atom-atom interactions, which create the entangled state, are also responsible for

an effect known as phase diffusion, which results in sensitivity decrease. This effect

does not allow for long interrogation times, due to the deleterious effect of phase

diffusion to the sensitivity, limiting the performance of the sensors compared to the

case of uncorrelated states, which allow longer interrogation times.

� Increasing the number of atoms in a strongly interacting system, would increase

the complicated multi-mode dynamics, resulting in poor mode-matching and fringe

contrast.

� Optical elements, such as beam-splitters and mirrors, are implemented in MZ in-

terferometer configurations with Raman laser pulses. The required function of each
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element is based on the two photon resonant transition of the atoms, between the

two available atomic states, as we will see in more detail in Chapters 2 and 4. Atomic

interactions would result in momentum change due to recoil from collisions, which

would shift the atoms from the two photon transition resonance, resulting in less

efficient optical elements and consequent sensitivity decrease.

In this thesis, in Chapters 5 and 6 we are going to consider entanglement-enhanced

schemes, where the entanglement is generated via atom-light interactions. The reason for

this is to avoid the incompatibility that the entanglement schemes via atom-atom interac-

tions show, with the classical methods of improving the sensitivity, such as increasing the

number of atoms, or considering longer interrogation times. On the contrary, the atom-

light entanglement scheme can be implemented in parallel with these methods. In that

way, these improved schemes, can be considered as an additional enhancement to current

working quantum sensors that are based on atom interferometers.

1.5 Thesis Overview

In this thesis we examine innovative ways of increasing the performance of quantum

sensors with a focus in atom gravimeters. More particularly, we use tools from the para-

meter estimation theory, in order to quantify the performance of current state of the art

gravimeters, which use uncorrelated particle states. In addition, we examine two differ-

ent entanglement-enhanced schemes using atom-light interactions, in order to enhance the

performance of current devices limited by atom-shot noise.

More particularly, in Chapter 2 we introduce some basic concepts of quantum field

theory, in order to describe a system of many indistinguishable particles. We also examine

the atom-light interaction, as well as we briefly present the basic function of a MZ atom

interferometer. In Chapter 3, we introduce the concept of quantum noise and we discuss

in more detail about entanglement and spin-squeezing. We also outline some basic tools

from estimation theory.

The main original contribution begins in Chapter 4, where we use theoretical tools

from estimation theory to quantify the metrological potential of an atom gravimeter. We

show that there is more metrological information available in these devices than what is

currently considered. We also examine modified measurements, compared to the conven-

tional measurement of the population difference at the exit ports of the interferometer,

which extract almost all this extra information. In addition, we show that the metrological
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potential of an atom being in a gravitational field increases with the momentum and the

position distribution of the final atomic state. This leads us to consider a modified sensor

design that creates an atomic state with a larger position distribution and consequently

more metrological information than the conventional design of a two mode interferometer.

In Chapter 5 we examine a QND measurement scheme. Here, we create entangle-

ment through atom-light interactions. More particularly, we explore the interaction of

a BEC with a light field freely propagating in space. After the interaction, we measure

an appropriate light observable, which contains information about the atomic ensemble.

That reduces the atomic spin noise in one direction, resulting in a spin-squeezed state.

We also incorporate the deleterious effect of atomic spontaneous emission and examine

the dependence of the final sensitivity over all system parameters. This provides us with

extremely useful information about how to reach parameter regimes that give the best

sensitivity. Furthermore, we show that we can increase the scheme’s performance by using

squeezed incoming light. Finally, we investigate the case of using a cavity, since it increases

the atom-light interaction and leads to further improvements.

In Chapter 6 we explore the generation of entanglement and squeezed atomic states

by using the effective OAT dynamics via a cavity feedback. Here, the atomic ensemble in-

teracts with the single mode of the cavity, while an incoming laser beam, detuned from the

cavity resonance, drives the whole dynamics. As before, we consider atomic spontaneous

emission and again find relationships between all the relevant system parameters and how

they affect the final sensitivity. We combine the OAT and QND schemes by measuring

the photons leaking out of the cavity and consequently extracting some extra information

about the atomic state, leading to sensitivity improvements. We also consider the use of

squeezed incoming light offering again further sensitivity improvements.
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Chapter 2

Background I: Atoms, Photons

and their Interaction

The purpose of this chapter is to provide the reader with a basic overview of describing

atoms, photons and their interaction in a quantum mechanical way. We start by describing

an ensemble of many bosonic particles, using the second quantization formalism. We

move to the specific case of photons and the quantization of the electromagnetic (EM)

field. We also use this formalism, in order to describe a Bose-Einstein Condensate (BEC).

We then give a brief outline of the interaction of atoms and light. We start with the

interaction of a single atom with a single mode of light, and then we move to the many

particle case interacting with a mutli-mode light field. For both cases we consider the

use of a quantum and classical light field (semi-classical approximation). In addition,

we introduce the Langevin formalism, in order to describe processes such as the atomic

spontaneous emission, as well as photons leaking out of a cavity. Finally, we discuss

atom interferometry. More particularly, we examine the case of a Mach-Zehnder (MZ)

interferometer with Raman laser pulses. The introduction of all those concepts will be

crucial for understanding the main chapters of this thesis.

2.1 The Quantum State of Many Particles

In classical mechanics we can describe a system of many particles by using position

vectors for each particle. Also, we explore the dynamics of the system by considering

trajectories showing the evolution of the position of each particle. Essentially, we consider

that all particles are distinguishable and that we know the position of each particle at each

time point. However, we cannot use a similar analysis for a system of many particles in
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quantum mechanics. In this case the system is described by the total wave-function of all

particles, which we consider as identical, in the sense that the interchange of two particles

would only result in a global phase of the total wave-function and thus it has no observable

consequence. To illustrate this, we use the exchange operator P̂ij , to interchange particle

i and j where i, j = 1, 2, ..., N :

P̂ijΨ(r1, r2, ..., ri..., rj , ..., rN , t) = eiθΨ(r1, r2, ..., rj ..., ri, ..., rN , t). (2.1)

Applying it twice we should recover the original wave-function

P̂ 2
ijΨ(r1, ..., ri..., rj , ..., rN , t) = Ψ(r1, ..., ri..., rj , ..., rN , t), (2.2)

leading us to:

Ψ(r1, r2, ..., ri..., rj , ..., rN , t) = ±Ψ(r1, r2, ..., rj ..., ri, ..., rN , t), (2.3)

which tells us that the total wave-function of the system is either symmetric or anti-

symmetric under the interchange of any two particles. The spin-statistics theorem states

that particles with integer spin follow Bose-Einstein statistics and they are called bosons,

while particles with half integer spin satisfy Fermi-Dirac statistics and they are known as

fermions. The total wave-function is symmetric under the exchange of any two bosons

and anti-symmetric under the exchange of any two fermions [66].

For simplicity, we start by examining the case of just two indistinguishable particles.

As we mentioned above, the total wave-function of the system should be symmetric or

antisymmetric under the exchange of the two particles. We write the total state of the

system using the single particle states |φi〉 with i = 1, 2

|Ψ〉± =
1

2
(|φ1〉|φ2〉 ± |φ2〉|φ1〉) , (2.4)

where the single particle states satisfy the orthonormality condition 〈φi|φj〉 = δij . The

index + (−) denotes the symmetric (anti-symmetric) sum of the two possible states. Here,

the first (second) ket refers to the first (second) particle. In case of two fermions we can

see that if |φ1〉 = |φ2〉 then |Ψ〉 = 0, which is the so called Pauli exclusion principle [66].

It essentially means that two fermions can never occupy the exact same quantum state.

So, for a system of two fermions the only allowed state is the antisymmetric one

|Ψ〉− =
1

2
(|φ1〉|φ2〉 − |φ2〉|φ1〉) , (2.5)

while the bosons have three different options, the two particles to be in the same state or

in a fully symmetrized state:

|φ1〉|φ1〉, |φ2〉|φ2〉,
1

2
(|φ1〉|φ2〉+ |φ2〉|φ1〉) . (2.6)
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If we were in the case of two distinguishable particles, which satisfy the Maxwell-Boltzmann

statistics and they do not have to obey any symmetry regulations [66], we would have the

following possible states

|φ1〉|φ1〉, |φ2〉|φ2〉, |φ1〉|φ2〉, |φ2〉|φ1〉. (2.7)

From the above analysis we conclude that fermions are not even allowed to occupy the

same state, while bosons are the particles which are the most likely to occupy the same

state (two out of three possible states) even compared with the distinguishable particle

case, where no symmetry postulates should be satisfied (two out of four possible states).

We will now restrict our analysis to a bosonic system, as throughout this thesis we

will only be interested in bosons. We already know that the total wave-function should be

symmetric under the exchange of two bosons, which is something that radically reduces

the size of the Hilbert space. We define the Fock state, or number state, |n1, n2, ..., nk〉,

as the symmmetrized permutations of the single particle mode states, where we have ni

particles in the i-th mode, in order the symmetrization condition for bosons to be met

|n1, n2, ..., nk〉 ≡
√
n1!n2!...

N !

(
|φ1〉...|φ1〉︸ ︷︷ ︸
n1times

|φ2〉...φ2〉︸ ︷︷ ︸
n2times

... |φk〉...|φk〉︸ ︷︷ ︸
nktimes

+

|φ2〉 |φ1〉...|φ1〉︸ ︷︷ ︸
n1times

|φ2〉...|φ2〉︸ ︷︷ ︸
n2−1 times

... |φk〉...|φk〉︸ ︷︷ ︸
nktimes

+all other permutations
)
,

(2.8)

where the total number of particles is the sum of the particles in each mode N =

n1 + n2 + ... + nk. We also present here the position representation of the Fock states

Ψ(r1, r2, ..., rN ) = 〈r1, r2, ..., rN |n1, n2, ..., nk〉, in order for the symmetrization of the total

wave-function to be more apparent

Ψ(r1, r2, ..., rN ) =

√
n1!n2!...

N !

(
φ1(r1)φ1(r2)...φ1(rn1)φ2(rn1+1)φ2(rn1+2)...φ2(rn1+n2)...+

φ2(r1)φ1(r2)...φ1(rn1)φ1(rn1+1)φ2(rn1+2)...φ2(rn1+n2)...+

all other permutations
)
,

(2.9)

where φi(rj) = 〈rj |φi〉 is the position repsresentation of the j-th particle in the i-th single

particle mode, where i runs over all the possible single mode states and j = 1, 2, ..., N runs

over all the particles.

The Fock state formulates a complete and orthonormal basis, thus we can write a
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general many particle state as:

|Ψ〉 =
∞∑

n1=0

∞∑
n2=0

...
∞∑

nk=0

...Cn1,n2,...,nk,...(t)|n1, n2, ..., nk, ...〉, (2.10)

and the orthonormality condition is written as

〈n1, n2, ...nk, ...|n′1, n′2, ...n′k, ...〉 = δn1,n′1
δn2,n′2

...δnk,n′k ... (2.11)

2.2 Quantization of the Radiation Field

Up to this point we were discussing bosons (particles with integer spin) in general.

In this section we want to specifically treat the case of photons and examine the basic

points of the quantization of the electromagnetic (EM) field. This can be found in many

books [67–70], but we present it here for completeness. It is convenient to begin with the

classical description of the EM field based on the free source Maxwell’s equations [68,69]

∇×H =
∂D

∂t
(2.12)

∇×E = −∂B
∂t

(2.13)

∇ ·B = 0 (2.14)

∇ ·D = 0, (2.15)

where E, H are the electric and magnetic field respectively and they are related to the

displacement and inductive vector D, B respectively via

B = µ0H (2.16)

D = ε0E. (2.17)

Here, ε0 and µ0 are the free permittivity and permeability respectively, which satisfy

µ0ε0 = 1/c2, where c is the speed of light. The free source Maxwell’s equations are

gauge invariant. A convenient gauge would be the Coulomb gauge that would allow as to

determine E and B using a vector potential A(r, t)

B =∇×A (2.18)

E = −∂A
∂t

, (2.19)

where the following condition must be satisfied

∇ ·A = 0. (2.20)
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If we substitute Eq. (2.18) into Eq. (2.12) we obtain the wave equation for the vector

potential

∇2A(r, t) =
1

c2

∂2A(r, t)

∂t2
. (2.21)

We make the standard separation of variables

A(r, t) =
∑
m

Amum(r)αm(t), (2.22)

where the separation constant is k2
m = ω2

m
c2

. In the following we are going to confirm that

km is the common wave-number, ωm is the frequency of the wave and c is the speed of

light. Also, the quantity Am =
√

~
2ωmε0

has dimensions of a vector potential. From the

time ordinary differential equation we obtain

αm(t) = αme
−iωmt−φ α∗m(t) = α∗me

iωmt−φ, (2.23)

where φ is an arbitrary phase. For now αm and α∗m are just two complex conjugate

numbers. Later in this section we will quantize the EM field by converting these numbers

into operators. The solution of the spatial differential equation depends on the boundary

conditions of the problem under consideration. For example, if we examine the case of a

cavity of length L the mode functions would be standing waves (∝ sin(kmz)). Here we are

going to examine the case of a cubic cavity of side L, where the mode functions have the

form

um(r) =
1√
V
eikm·rem, (2.24)

where em is the unit polarization vector. From the Coulomb gauge condition we obtain

km · em = 0, (2.25)

which is the transversality condition of the m-th mode of the field, meaning that the vector

potential A (and consequently the electric field E) has only two possible polarizations,

orthogonal to the direction of the field propagation (km). Hence, the subscript m denotes

the Cartesian components of the propagation vector km = (kx, ky, kz), as well as the

two possible polarizations of the field. The periodic boundary conditions of our system

determine the allowed values for km.

kx =
2πm1

L
, ky =

2πm2

L
, kz =

2πm3

L
, m1, m2, m3 = 0, ±1, ±2, ..., (2.26)

and the set of numbers (m1, m2, m3) defines a specific mode of the field. The mode

functions also satisfy the orthogonality condition∫
V
u∗m(r)um′(r) dr = δmm′ . (2.27)



14

The vector potential can now be written as

A(r, t) =
∑
m

√
~

2ωmε0
em

[
αme

i(km·r−ωmt−φ) + α∗me
−i(km·r−ωmt+φ)

]
. (2.28)

The corresponding electric and the magnetic field would be

E(r, t) = i
∑
m

√
~ωm
2ε0V

em

[
αme

i(km·r−ωmt−φ) − α∗me−i(km·r−ωmt+φ)
]

(2.29)

H(r, t) = − i

cµ0

∑
m

√
~ωm
2ε0V

em × k̂m
[
αme

i(km·r−ωmt−φ) − α∗me−i(km·r−ωmt+φ)
]
, (2.30)

where k̂m is the unit vector pointing towards the propagation direction of the wave. The

Hamiltonian for the electromagnetic field is given by

H =
1

2

∫ (
ε0E

2 + µ0H
2
)
dr. (2.31)

Using Eq. (2.25) and (2.27) we conclude to

H =
∑
m

~ωm(α∗mαm +
1

2
). (2.32)

We notice that the single mode Hamiltonian has exactly the same form with the Hamilto-

nian of a simple harmonic oscillator (SHO) ~ω(â†â+1/2). So, we quantize the EM field by

mapping the complex numbers α and α∗ to the quantum harmonic oscillator’s annihilation

and creation operators â and â† respectively

Ĥ =
∑
m

~ωm(â†mâm +
1

2
). (2.33)

Thus, our system is dynamically equivalent to a sum of independent SHOs. We finally

write the electric field operator in its quantized form

E(r, t) =
∑
m

√
~ωm
2ε0V

em

[
âme

i(km·r−ωmt) + â†me
−i(km·r−ωmt)

]
, (2.34)

where we have chosen φ = π/2, in order to eliminate the i factor in front of the sum. Just

to clarify here that this is the electric field operator in the Heisenberg picture, since as

can be noticed it has an explicit time dependence through the annihilation and creation

operators âm(t) = âme
−iωmt. In the Schrödinger picture it is written as

E(r, 0) =
∑
m

√
~ωm
2ε0V

em

[
âme

ikm·r + â†me
−ikm·r

]
, (2.35)

where now the annihilation and creation operators are independent of time âm(0) = âm.
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2.3 Continuous Mode Field Operators

As we can see in Eq. (2.34) the electric operator is expressed as a discrete sum of modes.

However, in a typical optical experiment we have light beams that travel in free space,

namely without any cavity mediated from the light source to the detector. In this case, we

can consider that the light travels towards an infinitely long axis parallel to the z axis, but

we consider that the cross-sectional area A, perpendicular to that axis, is still finite [70].

Here, we consider that k would be the one-dimensional continuous mode variable that

transfers us from the discrete to the continuous case, but we could equivalently use the

frequency. We start from the discretized quantized electric field operator, Eq. (2.34), with

a fixed polarization towards the x-axis. The mode spacing would be ∆k = 2π
L , where L is

the length of the aforementioned axis of propagation. When L tends to infinity, ∆k tends

to zero and we move from the discrete to the continuous case. Thus, the discrete sum

is expressed as an integral
∑

k →
1

∆k

∫
dk, while the discrete Kronecker delta is replaced

with the continuous delta function δkk′ → ∆kδ(k − k′). We also move to the continuous

creation and annihilation operators from their discrete counterparts by using [70]

âk → (∆k)1/2â(k), â†k → (∆k)1/2â†(k). (2.36)

Hence, the discrete commutation relation [âk, â
†
k′ ] = δkk′ would now be transformed into

[â(k), â(k′)†] = δ(k − k′). After making all the appropriate transformations the electric

field operator could be expressed as

Ê(z, t) =

∫ ∞
0

dk

(
~ck

4πε0A

)[
â(k, t)eikz + â†(k, t)e−ikz

]
x̂, (2.37)

where we have used that V = AL. We can expand the region of integration to the whole

axis (−∞ → +∞) and then assume that the bandwidth of the field excitation is much

smaller than its central frequency, ω0 = ~k0. Hence, the electric field operator can be

written as

Ê(z, t) =

(
~ck0

2ε0A

)1/2 [
â(z, t) + â†(z, t)

]
x̂, (2.38)

where we have defined the Fourier transformation of the annihilation and creation oper-

ators

â(z, t) ≡ 1√
2π

∫ ∞
−∞

dk â(k, t)eikz, â†(z, t) ≡ 1√
2π

∫ ∞
−∞

dk â†(k, t)e−ikz, (2.39)

where the explicit time dependence of the operators indicates that we are still on the

Heisenberg picture.
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2.4 Second Quantization

After getting some insight from the quantization of the EM field, we continue with the

examination of the Fock basis, which constitutes a corner stone of the second quantization

formalism. We introduce the multi-mode creation and annihilation operators â†i and âi,

which are the corresponding operators from the SHO, but now they refer to the i-th mode

of the field and satisfy the following commutation relations

[âi, â
†
j ] = δij , [âi, âj ] = 0. (2.40)

The Fock states, or the number states, have a well-defined number of particles in each

mode, since they are defined in such a way, in order to be eigenstates of the number

operator of the i-th mode, n̂i = â†i âi

n̂i|n1, n2, ..., ni, ...nk〉 = ni|n1, n2, ..., ni, ...nk〉. (2.41)

Using the above two equations we can derive the common ladder operator formalism,

in order to raise(lower) the number of bosons in the i-th mode, by applying the cre-

ation(annihilation) operator to the total state, in a similar way as we did in the SHO

case

âi|n1, n2, ..., ni, ...nk〉 =
√
ni|n1, n2, ..., ni − 1, ...nk〉 (2.42)

â†i |n1, n2, ..., ni, ...nk〉 =
√
ni + 1|n1, n2, ..., ni + 1, ...nk〉, (2.43)

We define the vacuum state, as the state with no particles in any of the modes |0, 0, ..., 0〉 =

|0〉. Hence, now we can create any Fock state by using the creation operators acting on

the vacuum state:

|n1, n2, ...〉 =
(â†1)n1

√
n1!

(â†2)n2

√
n2!

...|0〉. (2.44)

We also define the field operator ψ̂(r) which annihilates a particle from position r

ψ̂(r) =
∑
j

φj(r)âj , (2.45)

where φj(r) = 〈r|φj〉 and |φj〉 is the single particle mode basis. We can use the field

operator, in order to move from a single particle operator Ô, to the corresponding many

body operator

Ô =

∫
drψ̂†(r)Ôψ̂(r). (2.46)
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Also, the field operator satisfies the following commutation relations[
ψ̂(r), ψ̂†(r′)

]
= δ(r − r′)

[
ψ̂(r), ψ̂(r′)

]
= 0. (2.47)

Up to this point we have been considering many indistinguishable particles in the same

internal state. We can generalise this formalism for many particles in different internal

states in the obvious way. For example, if we consider an atomic ensemble with two

internal states |a〉 and |b〉, Eq. (2.10) generalises to

|Ψ〉 =
∞∑

na1=0

...
∞∑

nak=0

...
∞∑

nb1=0

...
∞∑

nbk=0

...Cna1 ,...,nak ,...,nb1 ,...,nbk ,...
(t)|na1 , ..., nak , ..., nb1 , ..., nbk , ...〉.

(2.48)

We can also define the corresponding field operators for each internal state of the system

ψ̂a(r) =
∑
j

φaj (r)âj ψ̂b(r) =
∑
j

ubj (r)b̂j , (2.49)

where âj (b̂j) describes the annihilation of a particle with internal state |a〉 (|b〉) from the

j-th mode. The commutation relations for the field operator generalise to[
ψ̂j(r), ψ̂†k(r

′)
]

= δjkδ(r − r′)
[
ψ̂j(r), ψ̂k(r

′)
]

= 0, (2.50)

where the indices j, k refer to the two different internal states, as well as r and r′ denote

two different positions.

2.5 Bose-Einstein Condensate

In Sec. [2.1] we introduced bosons as fundamental particles with integer spin. However,

we could also consider an atom with integer spin as a boson, in case we are in a regime

where its inner structure does not play a significant role in the dynamics of the system.

In that sense, we can talk about atomic bosons and we can use the second quantisation

formalism, we have already introduced, in order to describe an ensemble consisting of N

atomic bosons. After clarifying that point, we continue with the main subject of this

section, which is the atomic Bose-Einstein condensates (BECs).

If we have a dilute gas of bosons, under a critical temperature TC , a large fraction of

the total number of bosons will occupy the ground state, or putting it differently they will

“condense” into the ground state, forming a BEC. This is essentially due to the statistics

that identical bosons obey, which follow the Bose-Einstein distribution, and it allows two

and more bosons to occupy the same quantum state, in contrast with fermions, as we
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saw in Sec. [2.1]. For a gas of N non-interacting indistinguishable bosons in thermal

equilibrium the mean occupancy of each quantum state is given by

〈nj〉 =
1

e(Ej−µ)/kBT − 1
, (2.51)

where Ej is the single particle energy that corresponds to the j-th mode, T is the tem-

perature, kB denotes Boltzmann’s constant and µ is the chemical potential. The total

number of bosons is given by the sum of the particles in each quantum state N =
∑

j〈nj〉.

The mean number of bosons that occupy the ground state, below the critical temperature

TC , for a 3D trapping harmonic potential V (x, y, z) = 1
2mω(x2 + y2 + z2) is given by [71]

〈n0〉 = N

[
1−

(
T

TC

)3
]
, (2.52)

where ω is the trapping frequency and m is the mass of the particles. In this case, the

critical temperature is given by [71]

TC ≈ 0.94
~(ωxωyωz)

1/3

KB
T 1/3. (2.53)

By using the second quantization formalism in order to describe a BEC, we reveal

the wave nature, as well as other quantum effects existing in a BEC. The non interacting

Hamiltonian of a system of bosons is given by

Ĥ0 =

∫
ψ̂†(r)

(
− ~2

2m
∇2 + V (r)

)
ψ̂(r)d3r =

∑
j

Ej â
†
j âj , (2.54)

where the second equality is derived by expanding the field operator in the eigenbasis of

the single particle Hamiltonian Ĥ0 = − ~2

2m∇
2 + V (r), where the first term is the kinetic

energy of the particle and the second one is the external potential. Now, if we consider a

two body interaction, namely a particle in position r interacts with a particle in position

r′ with an interaction energy U(r− r′), then the interaction Hamiltonian would be given

by

Ĥint =
1

2

∫ ∫
ψ̂†(r)ψ̂†(r′)U(r − r′)ψ̂(r)ψ̂(r′)d3rd3r′. (2.55)

For ultra-cold gases of alkali atoms the range of the inter-particle interaction is much

smaller than the distance between the atoms. This is the reason why we can make the

approximation for the interaction energy U(r − r′) = U0δ(r − r′), where U0 = 4π~2a
m and

a is the s-wave scattering length [72]. After this approximation, we can now write the

Hamiltonian in the simpler form

Ĥtot =

∫
ψ̂†(r)Ĥ0ψ̂(r)d3r +

U0

2

∫
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)d3r. (2.56)
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We can find the Heisenberg equation of motion for the field operator

i~
∂

∂t
ψ̂(r, t) =

(
Ĥ0 + U0ψ̂

†(r, t)ψ̂(r, t)
)
ψ̂(r, t). (2.57)

This equation fully describes the evolution of a dilute bosonic gas, but its non-linearity

in the second term in the right hand side makes it analytically unsolvable. In order to

proceed, we consider some approximative methods, such as the mean field theory.

2.5.1 Mean Field Theory

In the mean field, or semi-classical approximation, we essentially ignore the quantum

fluctuations of the atomic field and consider that the important dynamics is given by a

mean field. This is something similar with the semi-classical approximation we make for

the quantized electric field. In that case, we essentially consider the electric field as a

wave and ignore the concept of photons as quanta of the EM field, namely we ignore the

quantum fluctuations of the light. We will analyse the semi-classical approximation of

the EM field in the following sections. The well-known Gross-Pitaevski equation (GPE)

is an equation that describes the evolution of the bosonic gas, under the semi-classical

approximation. In order to derive this equation, we start from the general state given by

Eq. (2.10) and consider that all particles are in the same single particle state denoted here

by the index ψ

|Ψ〉 =
∞∑

nψ=0

cnψ |0, 0, ..., nψ, ...〉 =
∞∑
N=0

cN

(
â†ψ

)N
√
N !
|0, 0, ..., 0〉, (2.58)

where

âψ =

∫
dru∗ψ(r)ψ̂(r), (2.59)

which is a reasonable assumption to make for a BEC. In the second equality of Eq. (2.58)

we used the vacuum state |0, 0, ..., 0〉 and Eq. (2.44), in order to denote the creation of

all particles in mode ψ and that all the other modes remain empty. More particularly,

we choose the coefficients cN appropriately, in order the BEC to be described by a single

Glauber coherent state, hence

|Ψ〉 = |α〉|0, 0, ..., 0〉. (2.60)

We will examine Glauber coherent states in more detail in Chapter 3, Sec. [3.2.1]. For now

it is sufficient just to mention that these states are eigenstates of the annihilation operator,
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namely â|α〉 = α|α〉, where α is a complex number. By writing the field operator in an

appropriate basis ψ̂(r) =
∑

i ui(r)âi we can calculate its expectation value:

〈ψ̂(r)〉 = uψ(r)α = ψ(r), (2.61)

where ψ(r) is called order-parameter or mean-field wave-function. Considering that the

BEC can be well approximated by a Glauber coherent state, makes it easier to calculate

all symmetrically ordered operators〈
ψ̂†i (r)ψ̂i(r)ψ̂i(r)

〉
= |ψ(r)|2ψ(r). (2.62)

Hence, the BEC is well approximated by the mean-field (macroscopic) wave-function,

ψ(r), in the sense that it can be used to calculate expectation values of observables, such

as the number density n(r, t) = 〈ψ̂†(r, t)ψ̂(r, t)〉 = |ψ(r, t)|2, but not their variances. By

assuming such a state for the BEC, we essentially have made the spontaneous symmetry

breaking assumption, which assigns a particular phase to the condensate. We can overcome

this conceptual difficulty, by considering that the BEC is a mixture of coherent states with

different phases, and when we make a measurement the BEC is projected on a state with

a particular phase [73,74]. By taking the expectation values of Eq, (2.57) we find the GPE

i~
∂

∂t
ψ(r, t) =

(
− ~2

2m
∇2 + V (r) + U0|ψ(r, t)|2)

)
ψ(r, t). (2.63)

As we have seen, in the mean field approximation we ignore the quantum fluctuations

of the bosonic field. That means that we can not describe quantum effects, such as

entanglement or spin squeezing using the semi-classical model. However, this description

can realize the wave nature of the atoms and consequently can describe effects such as the

matter-wave interference. In Chapters 5 and 6, we examine atom light interaction, which

creates entangled and spin squeezed states. In such cases we cannot use the mean field

approximation in order to describe the atomic ensemble, but instead we use the truncated

Wigner method, which is an approximative phase space method, enabling us to include

quantum fluctuations and examine their effects in the dynamics of the system.

2.6 Atom Light Interaction

So far, we have separately examined the quantum state of many particles, and the

quantized electric radiation field. Now, it is time to examine the interaction of the radiation

field Ê with matter. We are going to consider the simple case of a single atom interacting

with a single mode light field at first, in order to derive the famous Jaynes-Cummings
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Hamiltonian. Then, we will move to the semi-classical case, by simply turning off the

quantum fluctuations of the light. This is how we introduce the concept of Rabi oscillations

and Rabi frequency. The next step, is to consider many atoms for both quantum and

classical case of the light field. Firstly, we examine the quantum case, by considering a light

field freely propagating in space interacting with an atomic ensemble, where we derive the

corresponding interaction Hamiltonian. We are going to use this Hamiltonian in Chapter

5, where we explore the dynamics of a quantum non-demolition (QND) measurement

scheme. In this case, we adopt the quantum approach for the light, since the quantum

fluctuations of the light field play a significant role in the full dynamics of the system.

Then, we examine the semi-classical approach for the atom-light interaction, by considering

a classical monochromatic wave for the light field. We conclude again to a very similar

picture to the one of the single atom semi-classical case, where we had oscillations between

the two electronic states, described by the Rabi frequency. The semi-classical description

of the atom-light interaction will be important in Chapter 4, where we make use of a

two-photon transition, which we analyse in the following sections, in order to describe

the optical elements, beam-splitters and mirrors, of a MZ interferometer. These elements

are commonly realised by considering bright lasers, where the light quantum noise is

insignificant and the full dynamics of the system can be well described by the semi-classical

approach.

2.6.1 Single Atom - Single Mode Light Field

The interaction of a single electron atom with the radiation field is described by the

Hamiltonian [67,70]

Ĥ =
1

2m

[
p̂− eÂ(r, t)

]2
+ eV (r) + Ĥlight, (2.64)

where m, p̂ and V (r) is the mass, momentum and Coulomb potential of the electron

respectively. Also, Â(r, t) is the vector potential of the field and Ĥlight is the unperturbed

light field energy. Here, we briefly explain the basic steps we need to make, in order to go

from Eq. (2.64) to Eq. (2.65), but for a detailed derivation the reader is referred to [69].

Firstly, we make the unitary transformation |ψ′(t)〉 = exp[ier · Â(r, t)]|ψ(t)〉, as well as

we use of the Coulomb gauge condition ∇ · A = 0. We also make the standard dipole

approximation A(r) ≈ A(r0), where r0 is the position of the atomic nucleus, where we

essentially assume that the field is uniform over the whole atom, since we consider that

the radiation wavelength is much larger than the atomic size. Hence, the Hamiltonian in
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the dipole approximation is written as [68]

Ĥ = Ĥatom + Ĥlight + Ĥint, (2.65)

where Ĥint = d̂ · Ê and Ĥatom is the atomic energy without considering any interaction.

As we have already seen the energy of the free field in the second quantization formalism

is written by

Ĥlight =
∑
k

~ωkâ†kâk, (2.66)

where we have neglected the the zero-point energy. The atomic dipole operator is

d̂ = −er̂, (2.67)

where r̂ is the vector declaring the distance of the electron and the nucleus. For simplicity,

we assume that the nucleus of the atom is at the origin r0 = 0. We expand d̂ in the

complete set of electronic states {|i〉},
∑

i |i〉〈i| = 1̂, and we obtain

d̂ =
∑
i,j

|i〉〈i|d̂|j〉〈j| =
∑
i,j

dijσij , (2.68)

where dij = −e〈i|r̂|j〉 is the electric dipole transition matrix element and σij = |i〉〈j| is

the matrix describing the transition |i〉 → |j〉. Due to Hermiticity, the dipole transition

matrix elements satisfy dii = 0 and dij = dji. For simplicity, we consider the case of a two

level atom with states |a〉 and |b〉, i.e. i = a and j = b. Hence,

d̂ = dab (σ̂+ + σ̂−) , (2.69)

where we used the raising and lowering operators of the atomic states σ̂+ = |a〉〈b| and

σ̂− = σ̂†+ respectively. We consider the zero energy level in the middle between the atomic

states |a〉 and |b〉, thus

Ĥatom =
1

2
~ωabσ̂z, (2.70)

where we have used the second equality of Eq. (2.54) and we have defined ωab = ωb − ωa.

We have also used the z-component of the Pauli matrices σ̂z = |a〉〈a| − |b〉〈b|. Now, we

recall the result for the quantized propagating EM field Eq. (2.34)

E(r, t) =
∑
k

√
~ωk
2ε0V

ek

[
âke

i(k·r−ωkt) + â†ke
−i(k·r−ωkt)

]
, (2.71)

where in our case r ≈ r0 = 0, as we aforementioned. Also, for simplicity we move to the

single mode light field case. Thus, in the Schrödinger picture the electric field operator is

given by

Ê(r0, 0) =

√
~ω0

2ε0V

(
â+ â†

)
e. (2.72)
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Hence, the interaction Hamiltonian finally is written as

Ĥint = d̂ · Ê = ~gab (σ̂+ + σ̂−)
(
â+ â†

)
, (2.73)

where gab = 1
~

√
~ω0

2ε0V
dab · e indicates the coupling strength between the light mode and

the atom. Just to clarify here that e is the electron’s charge, while e is the polarization

vector of the light field. From Eq. (2.73) we obtain the following four interaction terms:

� σ̂+â: absorption of a photon and the excitation of the atom.

� σ̂−â
†: emission of a photon and the de-excitation of the atom.

� σ̂+â
†: emission of a photon and excitation of the atom.

� σ̂−â: absorption of a photon and de-excitation of the atom.

It is common procedure to ignore the last two terms, because they do not conserve

the total energy of the system. We can show that in a more strict way, by moving

to the interaction picture of Ĥint, with respect to the unperturbed Hamiltonian Ĥ ′ =

Ĥatom + Ĥlight, in order to examine the time evolution of these terms

ĤI
int ≡ eiĤ

′tĤinte
−iĤ′t =

= −~gabeiĤatomt (σ̂+ + σ̂−) e−iĤatomteiĤlightt
(
â+ â†

)
e−iĤlightt. (2.74)

We finally obtain [69]

ĤI
int = ~gab

[
σ̂+âe

−i(ω0−ωab)t + σ̂−â
†ei(ω0−ωab)t + σ̂−âe

−i(ω0+ωab)t + σ̂+â
†e−i(ω0+ωab)t

]
.

(2.75)

In the case that we are near resonance, ω0 ≈ ωab, we can neglect the fast oscillating terms,

e±i(ω0+ωab)t ≈ e±2iωabt, which is the so called rotating wave approximation (RWA). Going

back to the Schrödinger picture and adding the atomic and light unperturbed Hamiltonians

we obtain the Jaynes-Cummings Hamiltonian

Ĥ =
~ωab

2
σ̂z + ~ω0â

†â+ ~gab
(
âσ̂+ + σ̂−â

†
)
. (2.76)

2.6.2 Single Atom - Classical Light (Semi-Classical Approach)

We can write the annihilation operator of the light field in a hand-wavy way as a sum

of a large complex number and small quantum noise â = 〈â〉e−iω0t + δâ. In the case of a

bright laser beam, we can describe the light field using a Glauber coherent state, where the

mean value 〈â〉 is large compared to the fluctuations. Hence, in that specific case we can
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move to the classical limit for the light field, by simply ignoring the quantum fluctuations

of the light, i.e. â = αe−iω0t. Also, we can express σ+ = |b〉〈a| and σ− = |a〉〈b| in a more

convenient form, in order to write Eq. (2.76) as

Ĥ =
~ωab

2
σ̂z + ~Ωab

(
|b〉〈a|e−iω0t + |a〉〈b|eiω0t

)
, (2.77)

where we have also assumed that α = α∗. Due to the fact that now we consider a classical

light field, we have ignored the second term in Eq. (2.76). Eq. (2.77) is the Hamiltonian

describing the interaction of a two level atom with a classical EM field. The last two terms

describe the oscillations of the electron between the two available states |a〉 and |b〉, which

are well known as Rabi oscillations. We have also defined the Rabi frequency as follows

Ωab = gabα =
1

~

(√
~ω0

2ε0V
α

)
dab =

E0dab
~

, (2.78)

which denotes the frequency of these oscillations. Also, E0 =
√

~ω0
2ε0V

α has dimensions of

electric field. The last equality in Eq. (2.78) is the definition of the Rabi frequency, which

is usually found in the literature, when we examine the semi-classical approximation of a

single atom with a classical light field [68].

2.6.3 Many Atoms - Multi-Mode Light Field

Now we move to the many atoms case, where we consider an ensemble of 2-level atoms

interacting with a quantized EM field freely propagating in space. For simplicity we

consider the 1-D case, where the light field is propagating along the z-direction, while the

polarization of the electric field is along the x-axis. Hence, we use Eq. (2.38) in order to

describe the electric field, which we also present here for convenience

Ê(z, t) =

(
~ω0

2ε0A

)1/2 [
â(z, t) + â†(z, t)

]
x̂, (2.79)

where we used that ω0 = ck0. We make use of Eq. (2.46), in order to move from the single

particle interaction Hamiltonian operator to the many particle case

Ĥint =

∫ ∞
−∞

dzψ̂†Ĥintψ̂, (2.80)

where ψ̂ = (ψ̂a(z, t), ψ̂b(z, t))
T and ψ̂a(z, t), ψ̂b(z, t) are the field operators corresponding

to |a〉 and |b〉 electronic states respectively. Again, we make the dipole approximation,

hence the interaction would be given by the term Ĥint = d̂ · Ê, where d̂ is given by

Eq. (2.69). We should mention here that we are interested on the atomic dynamics only

along the z-axis, which is the direction of propagation of the light. Thus,

Ĥint = dab

∫ ∞
−∞

dz
[
ψ̂†b(z, t)ψ̂a(z, t) + ψ̂†a(z, t)ψ̂b(z, t)

]
Ê(z, t), (2.81)
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where we have assumed that the dipole moment is aligned with the electric field operator

dab = dabx̂. Substituting Eq. (2.79) here and keeping only the energy conserving terms,

similarly with the process we followed in the previous section, we obtain

Ĥint = ~gab
∫ ∞
−∞

dz
[
ψ̂†b(z, t)ψ̂a(z, t)â(z, t) + ψ̂†a(z, t)ψ̂b(z, t)â

†(z, t)
]
, (2.82)

where we have defined gab = dab
~

(
~ω0
2ε0A

)1/2
, denoting the interaction strength. This is the

interaction term of the Hamiltonian we are going to use in Chapter 5, in order to describe

the interaction of a free propagating light field with an atomic ensemble of two level atoms.

2.7 Many Atoms - Classical Light (Semi-classical Approach)

We can move to the semi-classical case again, where we examine the interaction of a

classical field with a two level atomic ensemble, by just considering in Eq. (2.81) a classical

monochromatic electric field operator

E = E0

(
ei(k·r−ω0t) + e−i(k·r−ω0t)

)
, (2.83)

where E0 =
√

~ω0
2ε0V

α has dimensions of electric field. In this case we have chosen a single

mode, from a discretized sum of modes, for the classical electric field given by Eq. (2.29).

Now, it is easier to use an arbitrary direction for the light field, compared to the continuous

case we examined in the previous section. This is the reason why, here we have moved

back to the 3-D case. Substituting Eq. (2.83) into Eq. (2.81) and again keeping only the

energy conserving terms we find

Ĥint = ~Ωab

∫
d3r

(
ψ̂a(r)ψ̂†b(r)ei(k·r−ω0t) + ψ̂†a(r)ψ̂b(r)e−i(k·r−ω0t)

)
, (2.84)

where we defined again the Rabi frequency associated with the oscillations between states

|a〉 and |b〉

Ωab =
E0dab
~

=
1

~

(√
~ω0

2ε0V
α

)
dab, (2.85)

which is exactly the same with the single atom case Eq. (2.78).

2.7.1 Two Photon Transition

Here, we consider a 3-level system with states |a〉, |b〉 and |c〉, as depicted in Fig. [2.1].

For example |a〉 and |b〉 might represent different hyperfine states, such as the F = 1

and F = 2 hyperfine levels of 87Rb. We also consider a monochromatic light field with
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Figure 2.1: Interaction of a 3-level atom with two classical monochromatic beams. We

consider that a light beam with frequency ωa is related to the atomic transition |a〉 → |c〉,

while another beam with frequency ωb corresponds to the |b〉 → |c〉 transition. We also

consider that the atomic energy of the ground state |a〉 is zero.

frequency ωa and detuning ∆ from the atomic transition |a〉 → |c〉, and another monochro-

matic field with frequency ωb and the same amount of detuning for the transition |b〉 → |c〉.

We also consider that Ea = 0, Eb = ~δ and Ec = ~(ωa+∆), Fig. [2.1]. Following the same

reasoning as the previous subsection, we find the interaction terms for the two different

atomic transitions. So, the total Hamiltonian describing the dynamics of our system is

given by

Ĥtot = Eb

∫
drψ̂†b(r)ψ̂b(r) + Ec

∫
drψ̂†c(r)ψ̂c(r)+

+ ~Ωac

∫
dr
(
ψ̂a(r)ψ̂†c(r)ei(ka·r−ωat) +H.c

)
+

+ ~Ωbc

∫
dr
(
ψ̂b(r)ψ̂†c(r)ei(kb·r−ωbt) +H.c

)
. (2.86)

We find the equations of motion for the atomic operators

∂tψ̂a(t) = − i
~

[ψ̂a(t), Ĥtot] = −iΩacψ̂c(t)e
−i(ka·r−ωat) (2.87)

∂tψ̂b(t) = − i
~

[ψ̂b(t), Ĥtot] = −iδψ̂b(t)− iΩbcψ̂c(t)e
−i(kb·r−ωbt) (2.88)

∂tψ̂c(t) = − i
~

[ψ̂c(t), Ĥtot] = −i(ωa + ∆)ψ̂c(t)− iΩacψ̂a(t)e
i(ka·r−ωat) − iΩbcψ̂b(t)e

i(kb·r−ωbt).

(2.89)

Then, we make the following transformations ψ̃c = ψ̂ce
iωat and ψ̃b = ψ̂be

iδt, hence

∂tψ̃c(t) = −i∆ψ̃c(t)− iΩacψ̂a(t)e
ika·r − iΩbcψ̃b(t)e

ikb·r. (2.90)

By taking the Fourier transformation of each term in the above equation, we obtain

iωψ̃c(ω) = −i∆ψ̃c(ω)− iΩacψ̂a(ω)eika·r − iΩbcψ̃b(ω)eikb·r, (2.91)
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where we consider that we are in the low frequency regime, i.e. ω << ∆, Ωac, Ωbc, and

consequently we can eliminate the first term of the above equation. This is the well known

adiabatic elimination of the excited state, where we essentially consider that it will not be

significantly populated. Hence,

ψ̃c(t) = −Ωac

∆
ψ̂a(t)e

ika·r − Ωbc

∆
ψ̃b(t)e

ikb·r. (2.92)

Substituting Eq. (2.92) into Eq. (2.87) and Eq. (2.88) we obtain

∂tψ̂a(t) = i
Ω2
ac

∆
ψ̂a + i

ΩacΩbc

∆
ψ̃be

i(kb−ka)r (2.93)

∂tψ̃b(t) = i
Ω2
bc

∆
ψ̃b + i

ΩacΩbc

∆
ψ̂ae

−i(kb−ka)r. (2.94)

This result could also be realised using the effective Hamiltonian

Ĥeff = ~
Ω2
ac

∆

∫
ψ̂†a(r, t)ψ̂a(r, t)dr + ~

Ω2
bc

∆

∫
ψ̂†b(r, t)ψ̂b(r, t)dr+

~
ΩacΩbc

∆

∫ (
ψ̂†a(r, t)ψ̂b(r, t)e

i(kb−ka)·r + ψ̂†b(r, t)ψ̂a(r, t)e
−i(kb−ka)·r

)
dr. (2.95)

We can interpret the first two terms of the effective Hamiltonian, which are proportional

to
Ω2
i

∆ for i = ac, bc, as the AC Stark shift of the initial atomic energy levels, due to the

interaction with the light. In addition, the last two terms represent transitions between

states |a〉 and |b〉, with frequency the effective two photon Rabi frequency ΩacΩbc/∆, ac-

companied with corresponding momentum kicks with magnitude equal to the momentum

difference of the two light beams ~(kb − ka). Hence, we have continuous oscillations

between the ground state (|a〉) and another low lying and long lived state (|b〉) of the

3-level system, as long as the atom-light interaction is on. This kind of interaction is very

useful, in order to realise beam-splitters, which create equal superpositions of two states,

or mirrors which interchange two states with each other. We can realise beam-splitters

or mirrors by appropriately adjusting the time of the atom-light interaction. This will be

crucial later, when we are going to explore the dynamics of an atom passing through a

Mach-Zehnder interferometer Sec. [2.10].

2.8 Spontaneous Emission - Langevin Formalism

Here we introduce the effect of atomic spontaneous emission taking place during atom-

light interaction. Commonly, spontaneous emission is described by considering that the

system under consideration (in our case atomic ensemble with light field) interacts with an

external bath, leading to the so-called Langevin equation. In Chapter 5 we examine the
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interaction of a light field freely propagating in space with a 2-level atomic ensemble. In

that case, we consider that the atoms being in the excited state interact with the bath at

a specific point in space. This is the reason why, we generalise the conventional Langevin

formalism [75], by describing the EM field outside the system, by using a continuous

bath operator with respect to frequency and space d̂(ω, z). Hence, it obeys the following

commutation relation

[
d̂(ω, z), d̂†(ω′, z′)

]
= δ(ω − ω′)δ(z − z′). (2.96)

We realize the heat bath using the following Hamiltonian

ĤB = ~
∫ +∞

−∞
dz

∫ +∞

−∞
dω ω d̂†(ω, z)d̂(ω, z). (2.97)

As aforementioned, only the atoms that are in their excited state interact with the bath,

hence the interaction Hamiltonian would be

Ĥint = i~
∫ +∞

−∞
dωk(ω)

∫ +∞

−∞
dz
(
d̂(ω, z)†ψ̂3(z)− ψ̂†3(z)d̂(ω, z)

)
, (2.98)

where ψ̂3(z) is the atomic field operator of the excited state and k(ω) describes the coupling

strength between the atoms and the bath. The total Hamiltonian (system + bath) would

be given by

Ĥtot = Ĥsys + ĤB + Ĥint. (2.99)

We are going to examine the dynamics of the system in the Heisenberg picture, so both

operators, ψ̂3(z) and d̂(ω, z), would also depend on time, which was not expressed explicitly

above for simplicity. We write the Heisenberg equation of motion for a general system

operator ψ̂i(z, t), where i denotes any atomic state, and d̂(ω, z, t)

∂tψ̂i(z, t) = − i
~

[
ψ̂i(z, t), Ĥsys

]
−
∫ +∞

−∞
dz′
([
ψ̂i(z, t), ψ̂3(z′, t)

] ∫ +∞

−∞
dωk(ω)d̂(ω, z′, t)

)
(2.100)

∂td̂(ω, z, t) = −iωd̂(ω, z, t) + k(ω)ψ̂3(z, t). (2.101)

Solving the differential equation for the bath operator, Eq. (2.101) we obtain

d̂(ω, z, t) = e−iω(t−t0)d̂(ω, z, t0) + k(ω)

∫ t

t0

dt′e−iω(t−t′)ψ̂3(z, t′). (2.102)

Now, we substitute this result into Eq. (2.100) and we make the first Markov approxima-

tion, k(ω) =
√
γ3/2π, where γ3 is the atomic spontaneous emission rate from the excited
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state, in order to obtain the general Langevin equation for a continuous system operator

in space

∂tψ̂i(z, t) = − i
~

[
ψ̂i(z, t), Ĥsys

]
−
∫ +∞

−∞

[
ψ̂i(z, t), ψ̂

†
3(z′, t)

] (γ3

2
ψ̂3(z′, t) +

√
γ3d̂in(z′, t)

)
dz′,

(2.103)

where we have used the following relations∫ +∞

−∞
dωe−iω(t−t′) = 2πδ(t− t′),

∫ t

t0

dt′δ(t− t′)ψ̂3(z′, t′) =
1

2
ψ̂3(z′, t), (2.104)

and we have defined

d̂in(z, t) =
1√
2π

∫ +∞

−∞
e−iω(t−t0)d̂(ω, z, t0)dω. (2.105)

The first term of Eq. (2.103) gives the unitary evolution of the operator, due to the system

Hamiltonian, which is what we had before adding spontaneous emission. The second term

represents the loss of atoms being in the excited state with rate γ3, due to the interaction

with the bath. The third term is the so-called Langevin noise, where d̂in(z, t) can be

interpreted as noise entering into our system, due to the interaction with the external EM

field, given that the bath is in an incoherent state [75].

2.9 Input-Output Formalism for a Cavity

In Chapters 5 and 6, we are also going to consider light interacting with an atomic

ensemble using a cavity. In this case, the light bounces back and forth between the

mirrors of the cavity, enhancing the interaction with the atomic ensemble. Here, we have

an additional physical process taking place, namely a fraction of the photons leaks out

of the cavity leading to decoherence and consequently to sensitivity decrease, as we are

going to see in more detail in Chapters 5 and 6. We can use the Langevin formalism in

order to describe this physical process. In this case, we consider the total system to be

a cavity described by an operator ĉ(t). We describe the EM field outside the cavity by

using an operator b̂(ω), which is only continuous with respect to frequency and not space,

since the cavity is described by a single mode operator. Hence, it satisfies the following

commutation relation

[b̂(ω), b̂†(ω′)] = δ(ω − ω′). (2.106)

Also, now the bath is described by the Hamiltonian

ĤB = ~
∫ ∞
−∞

dω ωb̂†(ω)b̂(ω). (2.107)
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Following the same strategy with the previous section, but using ĉ(t) and b̂(ω) instead of

ψ̂3(z, t) and d̂(ω, z) respectively, we find the equation of motion for the cavity operator

∂tĉ(t) = − i
~

[
ĉ(t), Ĥsys

]
− κ

2
ĉ(t) +

√
κb̂in(t), (2.108)

where we have defined

b̂in(t) =
1√
2π

∫ +∞

−∞
e−iω(t−t0)b̂(ω, t0)dω. (2.109)

The first term in the right hand side of Eq. (2.108) describes the unitary evolution of the

cavity, while the second term shows the loss of photons with rate κ. In the previous section

we interpreted the corresponding last term, d̂in(z′, t), as noise entering into our system due

to the interaction with the bath, given that the initial state of the bath and the system are

factorized and the state of the bath is incoherent. However, in this case we consider that

the initial state of the bath is in a coherent or a squeezed state, so the corresponding term,

b̂in(t), can no longer be interpreted as noise, but instead it is considered as a classical field

driving the dynamics of the cavity [76].

2.10 Atom Interferometry

Atom interferometers are the matter-wave counterparts of optical interferometers.

They make use of the dual wave-particle nature of massive objects shown by Louis de

Broglie [77] in the early 20th century. The wave nature of massive particles is allowing to

observe interference fringes at the end of the interferometer, similar to the optical case.

Hence, atom interferometers provide us with the ability to estimate inertial quantities,

such as accelerations and rotations, due to the interaction of massive particles with the

gravitational field. This is the reason why, they have a huge impact in many geophysical

applications. The basic function of an atom interferometer is similar with the optical

one, namely it is based on creating a superposition of two states, which propagate along

slightly different paths, acquiring a relative phase difference and finally being recombined

and interfered.

In 1991 the first four atom interferometers were realised [14–17]. Importantly, in

the last two experiments the atom interferometers were used, in order to measure small

rotations and the gravitational acceleration respectively, implementing in that way the

first atom interferometer based inertial sensors. More particularly in [14], they created

an atom interferometer based on a Young’s double slit construction. Namely, a helium

atomic beam passes through a single slit creating two spatially separated waves, which
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after impinging on a double slit structure, they interfere in a final single slit. However

in [15], they used a sodium atomic beam and a three grating geometry, in order to split

the initial beam into two separated beams in position and momentum and then recombine

them together, in order to observe the atomic interference. On the other hand in [16],

they used a calcium atomic beam and an optical Ramsey geometry, in order to implement

an atom interferometer. They examined the interaction of the atomic beam with two

pairs of separated counter-propagating laser fields, while the atomic beam apparatus was

rotated around a perpendicular axis. They were the first to report the Sagnac effect in

atoms, by observing the shift of the interference fringes and measuring the corresponding

phase shift due to the rotation. Finally in [17], they created an atom interferometer, by

using laser cooled sodium atoms in a MZ configuration, where they implemented the two

beam-splitters and the mirror by using Raman pulses. They were the first to measure the

gravitational acceleration, by using atom interference.

As the reader would have noticed from that description, in the first two experi-

ments, [14, 15], they used Bragg diffraction, while in the last two, [16, 17], they used

Raman pulses, in order to implement the optical elements of the atom interferometer. By

using Bragg pulses we create a superposition of two different momentum states, while the

atoms remain in the same internal state. In that case, at the end of the interferometer,

free propagation of the two states is necessary, in order to be spatially separated and con-

sequently distinguished prior to imaging. On the other hand, Raman transitions, create

a superposition between two momentum and two internal states. We have already seen

in Sec. [2.7.1], how we can use the two photon transition, in order to move to another

internal state with different momentum.

Let’s consider the case where we have a MZ type interferometer with three Raman

pulses, in a gravitational field Fig. [2.2 (a)]. This interferometer can also be found in the

literature as Kasevich-Chu (KC) interferometer, named after the corresponding experi-

ment in Stanford [18]. Each pulse consists of two counter-propagating laser beams. Let’s

examine how the first beam-splitter works, considering that the atoms are initially in the

internal state |1〉. The atoms absorb the light incident from below with wave-vector k1,

increasing their momentum by ~k1. Also, due to stimulated emission they emit a photon

with wave-vector k2, which results in an additional momentum kick for the atom, as de-

picted in Fig. [2.2 (b)]. The total two photon process transfers the atom to the internal

state |2〉 and gives a total momentum boost to the atom ∆p

∆p = ~k1 − ~k2 = ~k0 ≈ 2~k1, (2.110)
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Figure 2.2: (a) Particle passing through the KC interferometer, (b) momentum boost of

the atom, due to the interaction with the two counter-propagating beams, (c) Rabi oscil-

lations between states |1〉 and |2〉. We can realise different optical elements, by adjusting

appropriately the duration of the pulse.

since k1 and k2 point towards opposite directions and we have assumed that |k1| ≈ |k2|.

As long as the light is on, the atoms make Rabi oscillations between the two internal

states. By adjusting the time of the atom-light interaction we can realise a beam-splitter

or a mirror Fig. [2.2 (c)]. The whole interferometric sequence is depicted in Fig. [2.2 (a)].

More, particularly, the first pulse of the KC interferometer acts as a 50/50 beam-splitter,

namely it creates an equal superposition of the two internal and momentum states of

the atom, i.e |1,p〉 → |2,p + ~k0〉. Then, we have free evolution of the atoms into the

gravitational field for time Tπ. At t = Tπ we apply a Raman pulse, which acts as a mirror,

namely the two matter-waves interchange internal and momentum states, such that after

a second period of free evolution for time Tπ, they are spatially overlapping, where we also

apply a second 50/50 beam-splitter, in order for the two matter-waves to interfere. At the

end of the interferometer we usually measure the population of the atoms in each port,

which depends on the phase difference between the two arms, similarly with the optical
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case.

The phase shift at the output of an atom interferometer has already been calculated

[78, 79]. The common procedure is to separate the total phase shift into three different

components and calculate each one by finding the closed integral of the corresponding

Lagrangian

∆φtot = ∆φpropagation + ∆φinteration + ∆φseparation. (2.111)

The first term describes the phase difference due to the propagation of the matter-

waves along the classical trajectories in the gravitational field and can be separated even

further into two parts, namely a phase shift due to the kinetic and potential energies

∆φpropagation = ∆φkinetic + ∆φpotential, (2.112)

where they have same magnitudes and opposite signs [80]

∆φkinetic = −∆φpotential = k0gT
2
π . (2.113)

Here, k0 is the atomic momentum kick, which points towards the opposite direction of the

gravitational acceleration, and Tπ is the time that we apply the mirror.

The second term in Eq. (2.111) is referred to the phase difference due to the interaction

between the atoms and the light pulses. It also constitutes from two different terms, one

with the same magnitude and opposite sign with the phase difference obtained from the

kinetic energy [80], and one which depends on the phase difference of the laser beams

∆Φlaser, which is defined later

∆φinteraction = −k0gT
2
π + ∆Φlaser. (2.114)

The third term in Eq. (2.111) is a phase difference, which arises only when the two

wave-packets do not intersect at the final beam-splitter, so for the symmetrical case that

we examine here ∆φseparation = 0. Hence, we conclude that the final total phase difference

is given by

∆φtot = k0gT
2
π + ∆Φlaser, (2.115)

where ∆Φlaser = φ3− 2φ2 +φ1 and φi with i = 1, 2, 3 is the phase difference between the

two counter propagating laser beams, forming the first beam-splitter, the mirror and the

second beam-splitter respectively.

The interpretation of the source of the resulting final phase shift has been the reason for

the so called redshift controversy [81]. One way to obtain the result given by Eq. (2.115),
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is by cancelling the contributions of the kinetic and potential energy, meaning that the

total phase shift arises due to the interaction of the atoms with the laser pulses. We can

conclude to the exact same result, if we instead cancel the contributions of the kinetic

energy and the interaction phase shift, indicating that ∆φtot comes from the potential

energy, i.e. the redshift. Hence, it becomes clear that the interpretation of the total phase

shift between the two arms of the interferometer depends on the cancellation of these

terms [80].

In [80], except from analysing in a very clear way the source of the redshift controversy,

they also performed a calculation of the total phase shift based on an operator algebra

approach and they concluded to the exact same result with Eq. (2.115). Essentially, they

showed that the phase shift results due to the different time evolution operators that

describe the dynamics in the two arms of the interferometer. In both arms we have the

same operations but with different orderings, which combined with the non-commutability

of the various evolution operators results in the phase shift between the two arms. This

non-commutability originates from the very simple commutation relation between the

position and momentum operators

[ẑ, p̂z] = i~. (2.116)

We can clearly see now that the non-commutability of position and momentum operators is

at the heart of the origin of the total phase shift between the arms of a KC interferometer.

In order to proceed with our calculation we assume that the phase difference of all counter

propagating laser pulses, are independent of time, which means that ∆Φlaser = 0. Hence,

we obtain for the total phase shift

φg = k0gT
2
π , (2.117)

where from now on we will call the total phase shift in a KC interferometer as φg for

simplicity. We notice that we can estimate the gravitational field, after finding φg, with

error

∆g =
∆φg
k0T 2

π

. (2.118)

In Chapter 3, we are going to see that the precision of estimating a phase difference, using

an uncorrelated atomic ensemble, is limited by the atom shot-noise limit ∆φg = 1/
√
N .

Hence, we can estimate the gravitational field using a KC interferometer with precision

∆g =
1

k0T 2

1√
N
, (2.119)



35

which is limited by the projection noise of the atoms. We can surpass this noise limit,

by using the feature of entanglement, namely by considering atomic ensembles with ap-

propriate correlations amongst the particles. In the case of entangled states, the new

limit of precision of a phase difference is the Heisenberg limit ∆φg = 1/N , which for the

experimentally realistic value of N = 106 gives a 1000 factor of improvement, in the final

sensitivity of g. We are going to discuss about those concepts in more detail in Chapter

3, as well as they are the focus of our work in Chapters 5 and 6.

In Chapter 4, we follow a very similar approach with the operator algebra developed

in [80], in order to examine the evolution of the wave-function of a particle passing through

a KC interferometer and calculate the classical and quantum Fisher information, which

we are going to define in Chapter 3. During our calculations, we concluded to the same

result for ∆φtot, Eq. (2.115), where we also found ∆φseparation, since we considered the

more general case where the two time intervals of free evolution are not the same. In

Chapter 4, we also concluded to the very important outcome, that the result of the whole

interferometric sequence is not just a phase deference between the two arms, but it also

affects the wave-function of the particle itself. This result would help to gain a better

understanding of the whole dynamics, as well as it would help to find improvements in

the estimation of the gravitational field. We would analyse that result in more detail in

Chapter 4.



36

Chapter 3

Background II: Basic Concepts of

Quantum Metrology and

Parameter Estimation Theory

In this chapter we are going to introduce some basic concepts related to the field

of quantum metrology and parameter estimation theory, which would be very useful in

understanding the main chapters of this thesis. We start by introducing the concept of a

single qubit and then we move to the many spins case. We discuss the very useful Dicke

states, as well as the coherent spin states (CSSs), which describe the state of an atomic

ensemble with fixed number of atoms. We then give a very illustrative description of a

Mach-Zehnder (MZ) interferometer, as rotations of angular momentum operators. We also

introduce the concept of quantum noise of a measurement signal, and spin-squeezing, as

well as we discuss the fundamental limitations of estimating a phase difference between the

two arms of an atom interferometer. Furthermore, we talk about two very common states

of the electromagnetic field, the Glauber coherent state and the squeezed states. Finally,

we introduce some very useful tools from parameter estimation theory, which would help

us to quantify the performance of quantum sensors. More particularly, we introduce

the quantum Fisher information (QFI), which combined with the quantum Cramer-Rao

bound (QCRB) determine the fundamental limit of sensitivity with which a quantum

state provides us. In addition, the classical Fisher information (CFI), is a measure of how

much information we can extract, from the available metrological information, by making a

particular measurement. We are going to derive some very useful relations regarding those

quantities, which we are going to use in Chapter 4, in order to evaluate the performance

of atom gravimeters.
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3.0.1 Single Spin

Firstly, we consider a system consisting of only two modes (single particle states) |a〉

and |b〉. For example, these could be two atomic energy levels, two spatially separated

arms of a MZ interferometer etc. For convenience, we identify all two mode systems with

an effective single spin 1/2 particle, which can be in states ±1/2, called a qubit. Any pure

state of a single qubit can be written as [39]

|ψ(θ, φ)〉 = cos
θ

2
|a〉+ eiφ sin

θ

2
|b〉 =

[
cos

θ

2
â† + eiφ sin

θ

2
b̂†
]
|0〉|0〉, (3.1)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π are the polar and the azimuthal angles respectively and

|0〉|0〉 is the vacuum state. The second equality in Eq. (3.1) is the corresponding form in

the second quantization formalism, as we use the creation operators, â† and b̂†, in order to

create a particle in the corresponding single particle state. We introduce the Pauli vector

σ̂ = {σx, σy, σz}, where

σ̂x =

 0 1

1 0

 , σ̂y =

 0 −i

i 0

 , σ̂z =

 1 0

0 −1

 (3.2)

are the Pauli matrices, and s = {sin θ cosφ, sin θ sinφ, cos θ} is the mean spin direction

vector. We note that in this simple case of a single qubit the dimensions of the Hilbert

space are (2σ + 1) = 2. We can realise this two mode state in the so called Bloch sphere.

Let’s consider for example that the two states indeed represent the spin up, | ↑ 〉, and spin

down, | ↓ 〉, states, where in this case they lie at the north and the south pole of the Bloch

sphere respectively. Any pure quantum state can be associated with a point at the surface

of the Bloch sphere.

3.0.2 Many Spins

We generalize the single particle picture with spin 1/2 to N particles with total spin

J , by using the collective spin operators

Ĵi =
N∑
k=1

σ̂ki , (3.3)

where i = x, y, z and we sum over all single spin components of the N particles. Also, the

collective spin operators must satisfy the commutation relation [Ĵi, Ĵj ] = iεi,j,kĴk and the

Heisenberg uncertainty relation

∆Ĵ2
z∆Ĵ2

y ≥
〈Ĵx〉2

4
. (3.4)
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As we are going to see in the following subsections, the equality holds for the minimum

uncertainty states. We can calculate any observable, in a system with total spin J , by

using the three spin operator components Ĵx, Ĵy, Ĵz and the identity operator. Now, that

we have moved to the many spins case the dimensions of the Hilbert space have rapidly

increased to (2σ + 1)N = 2N . However, we consider a system which is symmetric under the

exchange of two spins, in the sense that all the operations applied in our ensemble affect

each spin in the same way. In this case the total spin of our system is the maximum allowed

for an N particle system, J = N/2 [39]. Also, after taking into account this symmetry the

dimensions of the Hilbert space are dramatically decreased to (2Nσ + 1) = (N + 1).

3.0.3 Dicke states

We can use the well known Dicke states |J,m〉, which are eigenstates of Ĵ2 and Ĵz, in

order to form a basis and write any general N particle state as

|Ψ〉 =

J∑
m=−J

cm|J,m〉, (3.5)

where |J,m〉 satisfies

Ĵ2|J,m〉 = J(J + 1)|J,m〉, Ĵz|J,m〉 = m|J,m〉, (3.6)

where J ∈ {N2 ,
N
2 − 1, ...,−N

2 + 1,−N
2 } and m ∈ {−J,−J + 1, ..., J − 1, J}. Due to the

exchange symmetry of the spins we can treat them as indistinguishable bosons. Hence,

we can describe the angular momentum operators using the more elegant Schwinger’s

formula. We essentially consider that we create (destroy) a particle by using the creation

(annihilation) operators in mode |a〉 and |b〉, â†(â) and b̂†(b̂) respectively, following the

usual second quantization formalism. So, the general k collective spin component can now

be written as

Ĵk =
1

2

(
â†, b̂†

)
σk

â
b̂

 , (3.7)

with k = x, y, z. We can alternatively write the Dicke states in the second quantization

formalism as

|J,m〉 =

∣∣∣∣N2 +m

〉
a

∣∣∣∣N2 −m
〉
b

=

(
â†
)N

2
+m√(

N
2 +m

)
!

(b̂†)
N
2
−m√(

N
2 −m

)
!
|0〉|0〉, (3.8)

where we have used that J = N
2 . We should clarify here a subtle point of the notation

we are using. The state |J,m〉, denoted by a single ket, describes a state in the angular
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momentum basis, while a state denoted by a direct product of two kets, |na〉|nb〉, indicates

the mode occupation basis. Written in that form we can see that the state |J,m〉 is

essentially a two mode Fock state, meaning that we have na = N
2 + m particles in mode

|a〉 and nb = N
2 −m in mode |b〉. We also define the raising and lowering spin operators

Ĵ± = Ĵx ± iĴy or Ĵ+ = â†b̂ and Ĵ− = b̂†â, which when applied to the Dicke states give

Ĵ± |J,m〉 =

√
N

2

(
N

2
+ 1

)
−m (m± 1) |J,m± 1〉 . (3.9)

The state |J, J〉 = |N〉a|0〉b represents the case, where all the particles are in mode |a〉,

e.g in the interferometer case we send N particles through the one port and none through

the other port, or in the spin picture all particles are in the spin up | ↑ 〉 state. This state

is often considered as the initial state of the system in experiments, since it is easy to

prepare all atoms in one mode.

3.0.4 Coherent Spin States

Coherent spin states are a generalization of the field coherent states, which we are

going to analyse in the following subsections. They are constructed as the normalized

product of N single particle states all pointing along the same mean-spin direction s =

{sin θ cosφ, sin θ sinφ, cos θ} Eq. (3.1)

|α(θ, φ)〉 =
1√
N !

(
cos

θ

2
|a〉+ eiφ sin

θ

2
|b〉
)⊗N

=
1√
N !

(
cos

θ

2
â† + eiφ sin

θ

2
b̂†
)⊗N

|0〉|0〉. (3.10)

These states are the eigenstates of Ĵs with maximum eigenvalue N/2. The CSSs are

defined as a product of states, thus no entanglement is present amongst the particles of

the system. We discuss about the concept of entanglement in more detail later. We can

also write a CSS in the Dicke basis

|α(θ, φ)〉 =
J∑

m=−J
cm(θ)e(N

2
+m)φ|J,m〉, (3.11)

where the coefficients cm(θ) are given by the binomial distribution

cm(θ) =

[
N !(

N
2 +m

)
!
(
N
2 −m

)
!

]1/2

cos(θ/2)
N
2
−m sin(θ/2)

N
2

+m. (3.12)

The main characteristic of CSSs is that there are no correlations amongst the particles,

which means no entanglement, since they are the only pure states that can be written as

a product of single-particle states. Also, we can move from one CSS to another by making
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single particle operations, such as rotations, which could not create entanglement, as we

are going to see in the following. CSSs as the Glauber coherent states, are known to be the

closest concept we have to classical states. This is true in the sense that they do not gen-

erate the quantum feature of entanglement and that they are minimum uncertainty states,

namely they satisfy the equality in Eq. (3.4). Thus, if we measure the spin component in

any direction orthogonal to the mean spin direction s, we get 〈Ĵs〉 = 0 and (∆Ĵn)2 = N/4,

where n · s = 0, since each individual spin is projected in the corresponding up and down

states along the s-axis [39,48,82]. Importantly, CSSs are easy to produce, by preparing all

particles in the same single particle state and then performing single particle operations,

which act as a collective operation, such as rotations, as we are going to see in the next

section. This is the reason why, we often consider them as our theoretical starting point.

3.0.5 Mach-Zehnder Interferometer

Here, we examine the dynamics of the well-known MZ interferometer, which consists

of three main steps, as we have already seen in Sec. [2.10], where we discussed atom inter-

ferometry. Firstly, we have a 50/50 beam-splitter, followed by a phase shift between the

arms of the interferometer and finally we have a second beam-splitter, which converts the

phase shift into population difference between the two modes (arms) of the interferometer,

which results in interference fringes. We are going to use the very illustrative angular mo-

mentum formalism, which was firstly introduced by Yurke [82], in order to describe the

quantum state passing through the MZ interferometer.

In the simple case of a single qubit we can describe any unitary transformation applied

to our state as a rotation of angle θ with respect to an arbitrary n-axis on the Bloch

sphere, i.e Û = e−i
θ
2
σ̂n . Moving to the N qubit case, we assume that such operations

affect all the qubits in the same way, due to the aforementioned exchange symmetry.

More particularly, we have the local rotation of each spin through the same angle and

axis, giving rise to a collective rotation ⊗Nl=1e
−i θ

2
σ̂

(l)
n = e−iθĴn . Hence, we can describe

all unitary transformations as rotations of the collective spin on the Bloch sphere. In the

following, we present the MZ interferometer evolution step by step, following an excellent

relevant description found in [83]. At each step we also depict the state of the system, by

using the Husimi Q representation Q(θ, φ) = 〈α(θ, φ)|ρ̂|α(θ, φ)〉, where ρ̂ = |ψ〉〈ψ| is the

density matrix of the system.

1. We start with an initial CSS |α(0, 0)〉 = |N〉|0〉 representing N particles in mode |a〉

and zero particles in mode |b〉, or putting it differently all spins are in | ↑ 〉 state.
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Figure 3.1: Husimi Q(θ, φ) representation of collective spin-up state. We consider a system

with N = 100.

2. As we mentioned before each unitary transformation can be realized by a rotation of

the collective spin. The beam-splitter is described by a π/2 rotation around the x-

axis, i.e e−iĴxπ/2. This is equivalent to putting each atom in a coherent superposition

1√
2

(|a〉 − i|b〉). Thus, the initial state would become

e−iĴxπ/2|N〉|0〉 = |α(π/2, π/2)〉 =
1√
N !

(
â†√

2
− i b̂

†
√

2

)⊗N
|0〉|0〉. (3.13)

Figure 3.2: Husimi Q(θ, φ) representation of the state after the first beam-splitter. We

consider a system with N = 100.

3. Then, we have a phase difference between the two arms of the interferometer, caused

by the interaction of the quantum state with the parameter of interest we want to

estimate. For example, in the case of a gravimeter the upper arm is affected in a

slightly different way than the lower arm of the interferometer, due to the interaction

with the gravitational field, resulting in a phase difference between them. This is

described by a rotation of angle φ around z-axis, i.e e−iĴzφ. The resulting state for
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our ensemble would be

e−iĴzφe−iĴxπ/2|N〉|0〉 = |α(π/2, π/2 + φ)〉 =
1√
N !

(
â†√

2
− ie−iφ b̂

†
√

2

)⊗N
|0〉|0〉.

(3.14)

Figure 3.3: Husimi Q(θ, φ) representation of the state after the free evolution. We consider

a system with N = 100.

4. We finally have the second beam-splitter which creates the interference fringes and

translates φ into population difference

eiĴxπ/2e−iĴzφe−iĴxπ/2|N〉|0〉 = |α(φ, 0)〉 =
1√
N !

(
sin(φ/2)â† + cos(φ/2)b̂†

)⊗N
|0〉|0〉,

(3.15)

Figure 3.4: Husimi Q(θ, φ) representation of the state after the final beam-splitter. We

consider a system with N = 100.

where we used Eq. (3.10) in the last equality of all three previous equations. As shown

in [82], all the aforementioned interferometric sequence is equivalent to a simple rotation
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of angle φ around the y-axis, eiĴxπ/2e−iĴzφe−iĴxπ/2 = eiĴyφ. One could pictorially confirm

that by just rotating the spin-up state of Fig. [3.1] with angle φ over the y-axis. In that

case the result would be Fig. [3.4]. This can be derived, in a more strict way, by starting

with the Taylor expansion of e−iĴzφ

ÛMZ = eiĴxπ/2e−iĴzφe−iĴxπ/2

= eiĴxπ/2
(

1− iĴzφ−
1

2
Ĵ2
zφ

2 + ...

)
e−iĴxπ/2

= 1− iφ
(
eiĴxπ/2Ĵze

−iĴxπ/2
)
− 1

2
φ2
(
eiĴxπ/2Ĵze

−iĴxπ/2
)2

+ ...

= exp
(
−iφeiĴxπ/2Ĵze−iĴxπ/2

)
= eiĴyφ, (3.16)

where in the third equality we used the operator property ÂB̂nÂ† =
(
ÂB̂Â†

)n
, for any

operator B̂ and any unitary operator Â (ÂÂ† = 1). Also, in the last equality we used that

eiĴxπ/2Ĵze
−iĴxπ/2 = Ĵy, as can easily be shown using the known commutation relations

of Ĵ components. Thus, we showed that the MZ interferometer analysed previously in

four different steps, can also be equivalently described by a rotation of angle φ around the

y-axis.

Now that we know how to implement the MZ interferometer, we can easily find how

it affects the spin components of the particles. At the output of the interferometer the

z-component of the collective angular momentum of the atoms is given by

Ĵz(φ) = e−iĴyφĴz(0)eiĴyφ = Ĵz(0) cosφ− Ĵx(0) sinφ, (3.17)

where Ĵz(0) is the z-component of the collective atomic angular momentum at the input

of the interferometer. In the above equation we notice the interference fringes, namely

we see that the population difference at the output of the interferometer depends on the

phase φ between the two arms. In the field of quantum metrology we aim to estimate this

phase difference with the highest possible precision. Using an error propagation formula

we find

∆φ(φ) =

√
Var(Ŝ(φ))

|∂φ〈Ŝ(φ)〉|
, (3.18)

where Ŝ is the signal we measure at the output of the interferometer. This is the standard

deviation of the phase difference in the asymptotic limit (ν >> 1, where ν is the number

of independent estimates) for a single estimate.
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Figure 3.5: Husimi Q(θ, φ) representation using N = 100 for (a) a maximal Ĵx eigenstate,

which is a spin coherent state and (b) a spin-squeezed state along the z-direction.

3.1 Spin Squeezing

We can calculate the phase shift between the two arms of the interferometer, φ, with

error ∆φ given by Eq. (3.18). We consider that we make the common measurement of the

population difference at the output of the interferometer, Ŝ = Ĵz, as well as we assume that

φ = 0, since we are usually interested about the fluctuations around a small mean value φ.

Hence, from Eq.(3.17) we obtain ∂φ〈Ĵz(φ)〉|φ=0 = 〈Jx(0)〉. For a CSS pointing along the

x-axis |α(π/2, π/2)〉 as the initial state entering the interferometer we have Var(Ĵz) = N/4

and 〈Jx〉 = N/2, which gives

∆φSNL =
1√
N
, (3.19)

where this is the so called shot-noise limit (SNL). This is the best precision we can have

for uncorrelated states, since CSSs are minimum uncertainty states Fig. [3.5(a)]. Un-

correlated, or separable states are states with no inter-particle correlations, where we do

not have entanglement, as we are going to analyse in more detail later. The SNL in not

limited to the concept of spin measurements, but is instead a fundamental limit for all

uncorrelated states where discrete measurements are made.

We define a spin squeezed state as the state that surpasses the SNL, given that we make

a measurement of an angular momentum component. Spin squeezed states constitute a

class of states, where they have a spin squeezed variance along one direction n, at the cost

of an appropriately increased variance along an orthogonal direction s, i.e. n · s = 0, in

order the Heisenberg uncertainty principle to be still satisfied Eq. (3.4), Fig. [3.5(b)]. If
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we measure the spin component along the n direction, i.e. Ŝ = Ĵn, we can estimate the

phase difference between the two arms of the interferometer with precision

∆φ(φ) =

√
Var(Ĵn(φ))

|∂φ〈Ĵn(φ)〉|
. (3.20)

The need to have a measure that quantifies the level of spin-squeezing motivates us to

write ∆φ as

∆φ =
ξ√
N
, (3.21)

where we have defined the spin squeezing parameter as

ξ =
√
N

√
Var(Ĵn(φ))

|∂φ〈Ĵn(φ)〉|
. (3.22)

Hence, for a CSS we have ξ = 1, while ξ < 1 is a sufficient and necessary condition for

spin-squeezing. A separable state of N particles, namely a state without any correlations

amongst the N particles, is described by the product

ρ̂ =
∑
k

Pkρ̂
(1)
k ⊗ ρ̂

(2)
k ⊗ ...⊗ ρ̂

(N)
k , (3.23)

where ρ̂
(i)
k is the density matrix for the i-th particle and Pk is the corresponding probab-

ility satisfying Pk > 0 and
∑

k Pk = 1. It was shown in [53] that these uncorrelated states

obey ξ ≥ 1. This indicates that ξ < 1 could be obtained only from non-separable states,

i.e entangled states. However, that does not mean that a non-separable state necessarily

has ξ < 1. There are the so called entangled non-Gaussian states (ENGSs) [46], which

are entangled and could offer sub-shot-noise sensitivities, by measuring more complicated

quantities other than the spin components. Thus, ENGSs are entangled states, which

are not spin-squeezed, i.e. ξ > 1. The fact that ξ < 1 could be obtained only from en-

tangled states also implies that we cannot surpass the SNL by ordinary operations, such

as rotations, but instead we need many body entanglement, namely to create appropriate

correlations amongst the particles. Summarizing, ξ < 1 is a sufficient and necessary condi-

tion for spin-squeezing and it is a sufficient but not necessary condition for entanglement

and sub-shot-noise sensitivity with respect to a collective spin measurement, i.e. Ŝ = Ĵk

with k = x, y, z.

In [84] a stronger condition was introduced for many body entanglement

χ2 =
N

FQ[ρ̂0, Ĝ]
< 1, (3.24)
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where FQ[ρ̂0, Ĝ] is the quantum Fisher information, which depends on the initial state ρ̂0

and the generator Ĝ that determines the unitary evolution of the system. We are going

to examine in more detail the QFI and other concepts of estimation theory in the next

section. This condition recognizes a class of states that can be entangled, χ2 < 1, but not

spin-squeezed ξ > 1. We briefly present here the quantum Cramer-Rao bound (QCRB),

which we properly derive in the next section

(∆ΘQCRB)2
θ =

1

FQ[ρ̂(θ)]
, (3.25)

in order to find the following relation with χ

(∆ΘQCRB)θ =
χ√
N

=
χ

∆φSNL
. (3.26)

As it becomes apparent from the above result, χ < 1 is a necessary and sufficient condition

for sub-shot-noise phase sensitivity. To summarize again, using states which satisfy the

condition χ < 1, provides us with metrologically useful entanglement, meaning that we

can surpass the SNL. However, as we aforementioned we may have a state with χ < 1 and

ξ > 1, which means that we have entanglement and we can surpass the SNL, but this may

involve a more complicated measurement rather than a simple collective spin measurement.

On the other hand, if we have entangled states satisfying χ > 1, then they won’t give any

improvement to the phase sensitivity compared to the SNL. We should point out here

that although χ provides us with a stronger condition for entanglement and sub-shot-

noise sensitivity, ξ provides us with a condition based on a particular measurement, which

is simple to perform. To point this more clearly, both ξ and χ are essentially two different

metrics quantifying the ability to surpass the SNL. The first one is based on the variance of

the measurement of a spin component, while the latter is based on the QFI, which makes

it a stronger metric, since as we are going to see in the last section of this chapter the

QFI determines the ultimate theoretical limit of precision, but it doesn’t involve a specific

measurement. For that reason, ξ could be more easily used for theoretical predictions in

experiments, since it is common to find the z-component of the spin by measuring the

population difference between the arms of the interferometer. Also, in case we need to

find the spin along another direction, we can firstly apply an appropriate rotation and

align it along the z-axis.

3.2 States of the Electromagnetic Field

Here, we are going to examine common states of the electromagnetic field, such as

the Glauber coherent states and the squeezed light states. These states do not have a
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fixed number of particles, as we saw in the case of CSSs. We are going to use these

states in Chapters 5 and 6, where we exploit the atom-light interaction, in order to create

entanglement and consequently spin-squeezed states. We also briefly examine the function

of an optical MZ interferometer and explore how the use of squeezed light states can offer

improvements in the sensitivity. In Chapters 5 and 6, we are going to utilise squeezed

light interacting with the atomic ensemble and we will show that this would provide us

with additional improvements with respect to the final sensitivity of the atomic state.

3.2.1 Glauber Coherent States

Glauber coherent states belong to a class of states, which satisfy the minimum uncer-

tainty principle, i.e the product of the variances of the amplitude and phase quadrature

operators takes the minimum possible value imposed by the Heisenberg uncertainty prin-

ciple [67–69]

∆X̂∆Ŷ = 1, (3.27)

where X̂ = â + â† is the amplitude light quadrature, while Ŷ = i
(
â− â†

)
is the phase

quadrature of the light field. To be more precise, coherent states are a member of a more

special class, where the two variances are also equal

∆X̂ = ∆Ŷ = 1. (3.28)

This is the reason why, they are well known as the closest quantum mechanical states to

(a) (b)

Figure 3.6: Phase diagram for (a) a vacuum state and (b) for a coherent state, which

is a displaced vacuum state by the complex number α. In both cases, we see the same

uncertainties for both quadratures of the EM field, since they are minimum uncertainty

states and they satisfy Eq. (3.28).

a classical description of the field, and hence they are a good approximation to a bright
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laser field. The vacuum state of the field, |0〉, has the same quantum noise properties,

namely it satisfies Eq. (3.28). Hence, Glauber coherent states, |α〉, are usually defined as

a displaced vacuum state in the phase space by the complex number α = X + iY , where

X and Y are the eigenvalues of the amplitude and phase quadrature operators, Fig. [3.6].

Hence, they can be written as

|α〉 = D̂(α)|0〉, (3.29)

where we have used the displacement operator D̂(α)

D̂(α) = eαa
†−α∗â. (3.30)

Also, a Glauber coherent state is the eigenstate of the annihilation operator

â|α〉 = α|α〉, (3.31)

as we briefly mentioned in Chapter 2, Sec. [2.5.1]. Using the Baker-Campbell-Hausdorff

formula we can write the displacement operator as

D̂(α) = e−
|α|2

2 eαâ
†
e−α

∗â. (3.32)

Making use of Eq. (3.31) and (3.32) we can easily see how the displacement operator

affects the amplitude of the coherent state

D̂†(α)âD̂(α) = â+ α, D̂†(α)â†D̂(α) = â† + α∗. (3.33)

Coherent states constitute an over-complete, and an non-orthogonal basis

1

π

∫
|α〉〈α|d2α = 1, |〈α|β〉|2 = e−|α−β|

2
, (3.34)

where if the distance between the two coherent states is large, they are approximately

orthogonal, i.e. if |α − β| >> 1 then |〈α|β〉|2 → 0. A coherent state has an uncertain

number of photons. This could be more clearly seen, if we make an expansion into the

Fock basis

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉. (3.35)

From this we can extract the probability distribution of finding a coherent state with n

photons

P (n) = e−|α|
2 |α|2n

n!
. (3.36)
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Also, we can easily calculate the mean photon number of a coherent state using Eq. (3.31)

〈N̂(α)〉 = 〈α|â†â|α〉 = |α|2. (3.37)

Substituting Eq. (3.37) into Eq. (3.36) we notice that the coherent states are a Poissonian

distribution of number states

P (n) = e−n̄
n̄n

n!
, (3.38)

where n̄ = 〈N̂(α)〉. Using again Eq. (3.31) we can easily calculate the variance of the

photon number in a coherent state, which is equal with the expectation value of the

photon number operator

Var(N̂(α)) = |α|2 = 〈N̂(α)〉. (3.39)

3.2.2 Squeezed States

Figure 3.7: Phase diagram of a squeezed state. We notice that we have squeezed noise in

one direction at the cost of increased noise in the other direction, such that the Heisenberg

uncertainty principle, Eq. (3.28), would be satisfied at the end.

Squeezed states are also minimum uncertainty states, but now the variance in the one

quadrature is decreased at the expense of a corresponding increase in the other quadrature,

in order to satisfy Eq. (3.27). In the case of coherent states we saw that we have the same

noise in both quadratures, thus they can be depicted in a phase diagram as a circle

Fig. [3.6], in contrast to squeezed states, which take the form of an ellipse, Fig. [3.7]. We

can create squeezed states, by generating correlations amongst the quadrature fluctuations

of the light. In that way, while for Glauber coherent states all quadrature pairs are equal,
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the correlations will distinguish a specific set of quadratures, where the fluctuations in one

of them would be below the corresponding noise of Glauber coherent states. This type of

correlations can be produced only with non-linear processes.

A common method to create squeezed light is by using an optical parametric oscillator

(OPO). Here, we briefly present the non-linear process that concludes to the so-called

squeezing operator Eq. (3.42), but for a more detailed analysis the reader is referred

to [67, 68]. A parametric oscillator consists of two modes, the signal and the idler with

frequencies ωs and ωi respectively. These two modes are coupled together via a non-linear

medium, which is pumped by a bright laser with frequency ωp = ωs + ωi [68, 85]. The

Hamiltonian describing the dynamics of this system, in the interaction picture, after the

rotating wave approximation is [68]

ĤI
sq = ~k

(
â†sâ
†
i b̂p + âsâib̂

†
p

)
, (3.40)

where k is the coupling constant, depending on the second order susceptibility of the

medium χ(2). If we consider a degenerate parametric amplifier, meaning same frequencies

for the signal and the idler, i.e. ωs = ωi = ω and consequently ωp = 2ω, we obtain

ĤI
sq = ~k

(
βâ2 + β∗â†2

)
, (3.41)

where we have also treated classically the pump laser. The purpose of this short analysis

was to shed some light on how we can realise the non-linear dynamics that create squeezed

light states through the unitary squeezing operator

Ŝ(ε) = e−iĤ
I
sqt/~ = e(ε

∗â2−εâ†2)/2, (3.42)

where ε = 2ikβ∗t = re2iφsq is an arbitrary complex number and r = |ε| is the so-called

squeeze factor, while φsq is the angle over which we have to rotate the initial reference

frame of quadratures, in order to obtain squeezing over the new X̂φsq quadrature Fig. [3.7].

Namely the new set of quadratures is defined as

X̂φsq = âe−iφsq + â†eiφsq , Ŷφsq = i
(
âe−iφsq − â†eiφsq

)
. (3.43)

A squeezed state |α, ε〉 can be created by firstly squeezing the vacuum and then displacing

it

|α, ε〉 = D̂(α)Ŝ(ε)|0〉. (3.44)
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Here, we also present some useful properties of the squeezing operator [69]

Ŝ†(ε)âŜ(ε) = â cosh r − â†e−2iφsq sinh r (3.45)

Ŝ†(ε)â†Ŝ(ε) = â† cosh r − âe−2iφsq sinh r (3.46)

Ŝ†(ε)
(
X̂φsq + iŶφsq

)
Ŝ(ε) = X̂φsqe

−r + iŶφsqe
r, (3.47)

Now we can calculate the following expectation values [69]

〈N̂(α, ε)〉 =|α|2 + sinh2 r (3.48)

∆X̂φsq = e−r, ∆Ŷφsq = er. (3.49)

It is clear that the noise of a squeezed state in the one quadrature (in the rotated plane)

has been decreased by a factor of e−r, while the other is increased by a factor of er, but

they still satisfy the condition of minimum uncertainty states:

∆X̂φsq∆Ŷφsq = 1. (3.50)

Let’s examine here the very simple cases of φsq = 0 and φsq = π/2. In the first case

we have X̂φsq=0 = X̂ and consequently we squeeze the amplitude quadrature ∆X̂φsq=0 =

∆X̂ = e−r. For the second case we obtain X̂φsq=π/2 = Ŷ , hence ∆X̂φsq=π/2 = ∆Ŷ = e−r,

namely we squeeze the phase quadrature. That means that we need to make the appro-

priate rotation, with respect to the initial quadrature reference frame, in order to squeeze

the preferred quadrature. We are going to apply those methods in Chapter 6, where we

will need to squeeze different quadratures depending on the entanglement scheme under

consideration, in order the use of squeezed light to provide us with further improvements.

3.2.3 Optical Interferometry

Up to this point we have highlighted many times the similarities between optical and

atom interferometers. We can describe an optical MZ interferometer by using the collective

angular momentum operators of the photons in direct analogy with the atomic case.

Namely the z-component of the photon angular momentum operator at the output of

the optical MZ interferometer would be given by

Ĵz(φ) = e−iĴyφĴz(0)eiĴyφ = Ĵz(0) cosφ− Ĵx(0) sinφ, (3.51)

which is exactly the same with the atomic case Eq. (3.17). We can calculate the phase

difference between the two arms of the interferometer, by measuring a signal Ŝ, with pre-

cision given by Eq. (3.18). In the optical, as in the atomic case, the common measurement
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Figure 3.8: Optical MZ interferometer. The use of squeezed vacuum light in the second

port provides us with sub-shot-noise sensitivities, Eq. (3.55).

at the end is the population difference between the two arms, i.e. Ŝ = Ĵz, namely the

precision of the phase difference would be given by

∆φ(φ) =

√
Var(Ĵz(φ))

|∂φ〈Ĵz(φ)〉|
. (3.52)

We consider an input state of the form |ψ〉in = |α〉|0〉, which represents a Glauber

coherent state at the one port and no light at all at the other port. After calculating all

relevant quantities we obtain the photon-shot noise limit [86]

∆φ|α〉|0〉 =
1√
〈N̂〉

, (3.53)

where we have assumed that we operate at the optimal point φ = π/2.

In 1981 Carlton Caves suggested that sub-shot-noise sensitivities can be achieved in

optical interferometers, by considering instead of no light at all, squeezed vacuum light

entering at the second port of the interferometer [87]. Namely, they considered the state

|ψ〉in = |α〉|ε〉, i.e. a Glauber coherent state and a squeezed vacuum state entering the

first and the second ports respectively. They also assumed squeezing over the amplitude

quadrature, i.e. φsq = 0. Calculating again the relevant quantities we find [86]

∆φ|α〉|ε〉 =

√
|α|2e−2r + sinh2 r

||α|2 − sinh2 r|
, (3.54)

operating at the optimal point, which is again φ = π/2. In the regime of many photons,

〈N̂〉 >> 1, the mean population of the squeezed vacuum state will be

√
〈N̂〉/2 and this
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would be equal to sinh2 r due to Eq. (3.48). So, for a sufficiently large value of r we can

make the approximation sinh2 r ≈ e2r ≈
√
〈N̂〉/2. Thus, from Eq. (3.54) we finally obtain

∆φ|α〉|ε〉 ≈ 1

〈N̂〉3/4
, (3.55)

indicating that the use of squeezed vacuum states can provide us with better sensitivities

than the photon shot-noise limit ∆φ|α〉|0〉.

The initial motivation of Caves’ work was to enhance the sensitivity of measurements

in optical interferometers, in order to be able to measure extremely small length differences

between the two arms, which could enable the detection of gravitational waves. In 2016

gravitational waves generated by a pair of black holes were detected for the first time,

by the Laser Interferometer Gravitational-Wave Observatory (LIGO) [88]. However, this

observation was not achieved by using squeezed light. The first use of squeezed vacuum

states in the measurement of gravitational waves was achieved with LIGO detectors in

2019 [89]. This setup consists of two main parts, the squeezed vacuum source and LIGO’s

Michelson interferometer. The former is equipped with a special geometry for the OPO

that creates the squeezing, as described in the beginning of Sec. [3.2.2]. More particularly,

two light fields are delivered via optical fibres to the OPO, which consists of a non-linear

medium. A second order non-linear interaction between the 532nm pump field and the

vacuum fluctuations of the 1064nm field creates a squeezed vacuum state. This state is

then circulated back to the interferometric setup. The use of a squeezed state instead of a

coherent state light field in LIGO’s Michelson interferometer, showed improvement in the

sensitivity of the device up to 3dB [89].

3.3 Parameter Estimation Theory

In this section we introduce some basic concepts of parameter estimation theory, which

we are going to use in Chapter 4. More particularly, we firstly define the classical Fisher

information (CFI) and the Cramer-Rao bound (CRB). Then we move to the quantum case

and introduce the quantum Fisher information (QFI) and the quantum Cramer-Rao bound

(QCRB), which as we have already seen provide us with a condition about entanglement

and sub-shot-noise measurements. Also, we are going to derive some very useful relations

for the QFI, some of which we use in Chapter 4. This analysis is based on an excellent

review in parameter estimation theory [90].
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3.3.1 Basic Concepts

An interferometer could essentially be described as any transformation of the input

(probe) state ρ̂, which can be parametrized by a real unknown number θ. For example, as

we have seen earlier, the MZ interferometer can be realised as a rotation of angle θ around

the y-axis. The main aim of parameter estimation theory is to measure some quantity

of the output state of the interferometer, ρ̂(θ), and from the outcome measurements to

estimate the value of the parameter θ. The outcomes of our measurement could be dis-

crete or continuous, depending on what kind of measurement we make. For example, the

outcomes would be discrete numbers, if we measure the number of particles at the output

modes of a MZ interferometer. Here, we are going to consider measurements with discrete

outcomes. The most general measurement in quantum theory is described by a positive-

operator valued measurement (POVM). A POVM is described by a set of operators {Êm},

which satisfy the following general conditions:

� Êm ≥ 0 : all the operators, Êm, of the set are non-negative (that guarantees non-

negative probabilities).

�

∑
ε Êm = 1̂, that guarantees normalization.

For example, the standard projective (von-Neumann) measurement is a particular POVM,

where the operators Êm are orthogonal projectors, satisfying ÊmÊm′ = Êmδm,m′ . We

define the Likelihood as the conditional probability to observe the result m for a given

value of θ

Pm(θ) = Tr[Êmρ̂(θ)], (3.56)

and the log-likelihood function is defined as

Lm(θ) ≡ ln[Pm(θ)]. (3.57)

We measure the quantity Êm, where m is a random variable. So, we get the set of

measurement outcomes, m = {m1,m2, ...,mn}, where mi are the individual measurement

outcomes, for i = 1, 2.., n. After that we calculate the estimator Θm, which is any mapping

from m onto the parameter space. In other words, the estimator is a generic function

associating each set of measurement results m, with an estimation Θ of the phase. Hence,

the aim of the estimator Θ is to estimate the true value of the unknown parameter θ,

as precisely as possible. The estimator Θm, depends on m, which is a random variable,

and that makes the estimator itself a random variable. We calculate the mean value
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(or statistical average) of the estimator using the likelihood, which provides us with the

probability to obtain a set of measurement outcomes given a specific value of the unknown

parameter θ. Thus, the mean value of the estimator would be θ dependent itself

〈Θm〉θ =
∑
m

Pm(θ)Θm, (3.58)

as is explicitly expressed using the index θ, where the brackets here 〈...〉 indicate statistical

averaging. Similarly, we calculate the variance of the estimator:

(∆Θm)2
θ =

∑
m

Pm(θ)(Θm − 〈Θm〉θ)2. (3.59)

We characterise an estimator as unbiased, when its statistical average coincides with the

true value of the parameter, i.e

〈Θm〉θ = θ, (3.60)

or putting it differently, ∂〈Θm〉θ
∂θ = 1, otherwise it is called biased.

Here, we give a brief outline of the main concept of the following subsections. Firstly,

we introduce the CRB and we define the CFI. For the interested reader, we also present

a detailed proof of the CRB in the subsequent section. Then, we introduce the QFI as

the upper limit of the CFI, optimized over all possible measurements, namely we declare

a stronger limit to the sensitivity, which essentially is how the QCRB is defined. In the

following we derive a relation for the QFI, FQ[ρ̂(θ)] = Tr
[
ρ̂(θ)L̂2

θ

]
. This will be very

helpful, when we come to calculate the QFI for mixed and pure states, as well as for a

specific case of unitary transformations considering both mixed and pure initial states,

which is the subject of the remaining subsections. A roadmap of the remainder of this

chapter is as follows:

� Introduce the CRB and the definition of the CFI.

� Proof of the CRB.

� Introduce the QCRB and the QFI.

� Derive the relation FQ[ρ̂(θ)] = Tr
[
ρ̂(θ)L̂2

θ

]
.

� Calculate the QFI for mixed states.

� Calculate the QFI for pure states.

� Calculate the QFI for unitary transformations of the form Û = e−iθĜ and mixed

initial states.
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� Calculate the QFI for unitary transformations of the form Û = e−iθĜ and pure initial

states.

3.3.2 The Cramer-Rao Bound and the Classical Fisher Information

The Cramer-Rao bound (CRB) sets a lower bound to the variance of any arbitrary

estimator

(∆Θ)2
θ ≥ (∆ΘCRB)2

θ ≡

(
∂〈Θm〉θ
∂θ

)2

FC(θ)
=

1

FC(θ)
, (3.61)

where in the last equality we assumed that we have an unbiased estimator. Also, FC(θ)

is the classical Fisher information (CFI) defined as

FC(θ) ≡

〈(
∂Lm(θ)

∂θ

)2
〉
θ

=
∑
m

Pm(θ)

(
∂Lm(θ)

∂θ

)2

. (3.62)

Using the definition of the log-likelihood function, Eq. (3.57), we obtain

FC(θ) =
∑
m

1

Pm(θ)

(
∂Pm(θ)

∂θ

)
, (3.63)

where we interchanged the derivation with respect to θ and the summation over m, since

we assumed that the range of possible outcomes, values of m, does not depend on θ. An

estimator that saturates the CRB, Eq. (3.61), is called efficient. The existence of efficient

estimators depends on the properties of the probability distribution. In the limit of a large

number of measurements, at least one efficient estimator exists, the maximum likelihood

estimator. Essentially, the CFI quantifies the change of the probability distribution refer-

ring to a particular observable, due to a small change of the parameter of interest. Also,

through the CRB it identifies what is the smallest change of the parameter of interest that

we can detect, by making that particular measurement.

3.3.3 Proof of the Cramer-Rao Bound

We take the derivative of Eq. (3.57) with respect to θ and rearrange with respect to

∂Pm(θ)
∂θ

∂Pm(θ)

∂θ
= Pm(θ)

∂Lm(θ)

∂θ
. (3.64)

Also, we take the derivative of 〈Θm〉θ =
∑

m Pm(θ)Θm with respect θ

∂ 〈Θm〉θ
∂θ

=
∑
m

Θm

(
∂Pm(θ)

∂θ

)
. (3.65)
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Using equation (3.64) we get

∂ 〈Θm〉θ
∂θ

=
∑
m

ΘmPm(θ)
∂Lm(θ)

∂θ
=

〈
Θm

∂Lm(θ)

∂θ

〉
θ

. (3.66)

Now, by differentiating the normalization condition of the probabilities
∑

m Pm(θ) = 1 we

have ∑
m

∂Pm(θ)

∂θ
= 0. (3.67)

Using equations (3.64) and (3.67) we obtain∑
m

∂Pm(θ)

∂θ
=
∑
m

Pm(θ)
∂Lm(θ)

∂θ
=

〈
∂Lm(θ)

∂θ

〉
θ

= 0. (3.68)

So, now we can write〈
Θm

∂Lm(θ)

∂θ

〉2

θ

=

〈
(Θm − 〈Θm〉θ)

∂Lm(θ)

∂θ

〉2

θ

, (3.69)

since the second term is zero according to Eq. (3.68). Thus, from Eq. (3.66) we have(
∂ 〈Θm〉θ
∂θ

)2

=

〈
(Θm − 〈Θm〉θ)

∂Lm(θ)

∂θ

〉2

θ

. (3.70)

We will now make use of the Cauchy-Schwartz inequality〈
A2
〉
θ

〈
B2
θ

〉
≥ 〈AB〉2θ , (3.71)

where A and B are arbitrary real functions of m and the equality is obtained if B = λA,

with λ independent of m. We assume that A = Θm − 〈Θm〉θ and B = ∂Lm(θ)
∂θ , thus〈

(Θm − 〈Θm〉θ)
2
〉〈(∂Lm(θ)

∂θ

)2
〉
≥
〈

(Θm − 〈Θm〉θ)
∂Lm(θ)

∂θ

〉2

θ

. (3.72)

Using equation (3.70) we have〈
(Θm − 〈Θm〉θ)

2
〉〈(∂Lm(θ)

∂θ

)2
〉
≥
(
∂ 〈Θm〉θ
∂θ

)2

. (3.73)

Also,
〈

(Θm − 〈Θm〉θ)
2
〉

is the variance of Θm, i.e (∆Θ)2
θ =

〈
(Θm − 〈Θm〉θ)

2
〉

. Hence, we

obtain the CRB

(∆Θ)2
θ

〈(
∂Lm(θ)

∂θ

)2
〉
≥
(
∂ 〈Θm〉θ
∂θ

)2

⇒ (3.74)

(∆Θ)2
θ ≥

(
∂〈Θm〉θ
∂θ

)2

FC(θ)
, (3.75)

where we have used the definition of the CFI, Eq. (3.62). The Cauchy-Schwartz inequality

is saturated when: B = λA. Hence, the CRB is saturated when〈
∂Lm(θ)

∂θ

〉
= λθ (Θm − 〈Θm〉θ) . (3.76)
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3.3.4 The Quantum Cramer-Rao Bound and the QFI

Up to this point we have been expressing FC as a function of the parameter θ, but it

really depends on the probability distribution Pm(θ), as can be seen from Eq. (3.63). We

know that Pm(θ) = Tr
[
Êmρ̂(θ)

]
, indicating the the CFI depends on the output state of

the interferometer ρ̂(θ) and the POVM {Êm}. We define the QFI, FQ, as an upper bound

to the CFI, maximizing it over all possible POVMs

FQ[ρ̂(θ)] ≡ max
{Êm}

FC

[
ρ̂(θ), {Êm}

]
. (3.77)

That means that FQ ≥ FC for all POVMs, where the equality holds for the one particular

measurement (POVM) that maximizes FC . We define

(∆ΘQCRB)2
θ ≡

(
∂〈Θm〉θ
∂θ

)2

FQ[ρ̂(θ)]
=

1

FQ[ρ̂(θ)]
, (3.78)

where in the last step we considered again an unbiased estimator. From Eq. (3.61) and

the fact that FQ ≥ FC we obtain the quantum Cramer-Rao bound (QCRB)

(∆Θ)2
θ ≥ (∆ΘCRB)2

θ ≥ (∆ΘQCRB)2
θ . (3.79)

The QFI essentially quantifies the change of the system’s quantum state, due to a

change of the parameter of interest. Through the QCRB, it identifies what is the smallest

change of the parameter of interest that we could detect by using that particular quantum

state. Unlike the CFI, it does not refer to a particular measurement, but optimises over all

possible measurements. The QCRB is the ultimate bound that gives the best sensitivity

with which we can theoretically calculate the precision of a phase at the output of an

interferometer.

3.3.5 Proof of: FQ[ρ̂(θ)] = Tr
[
ρ̂(θ)L̂2

θ

]
Now, we are going to prove the very useful relation FQ[ρ̂(θ)] = Tr

[
ρ̂(θ)L̂2

θ

]
, where L̂θ

is a Hermitian operator called symmetric logarithmic derivative (SLD), which is defined

as the solution of the equation

∂ρ̂(θ)

∂θ
=
ρ̂L̂θ + L̂θρ̂(θ)

2
. (3.80)

We start from differentiating Eq. (3.56) with respect to θ, ∂θPm(θ) = Tr
[
Êm∂θρ̂(θ)

]
. Then

we substitute Eq.(3.56) and the above result in Eq.(3.63)

FQ[ρ̂(θ), Êm] =
∑
m

Tr
[
Êm∂θ ˆρ(θ)

]2

Tr
[
Êmρ̂(θ)

] . (3.81)
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Now, by using Eq. (3.80) we can write Tr
[
Êm∂θρ̂(θ)

]
as

Tr
[
Êm∂θρ̂(θ)

]
=

1

2

{
Tr
[
Êmρ̂(θ)L̂θ

]
+ Tr

[
ÊmL̂θρ̂(θ)

]}
=

1

2

{
Tr
[
ρ̂(θ)L̂θÊm

]
+ Tr

[
L̂θρ̂(θ)Êm

]}
,

(3.82)

where in the second equality we used the circular property of the trace. Using a complete

basis {|n〉} we can write the trace as

Tr
[
L̂θρ̂(θ)Êm

]
=
∑
n

〈n|L̂θρ̂(θ)Êm|n〉 =
∑
n

[
〈n|
(
L̂θρ̂(θ)Êm

)†
|n〉
]∗

= Tr
[
Êmρ̂(θ)L̂θ

]∗
.

(3.83)

Combining the above two results we obtain

Tr
[
Êm∂θρ̂(θ)

]
= Re

{
Tr
[
ρ̂(θ)L̂θÊm

]}
. (3.84)

From |z|2 = Re{z}2 + Im{z}2, we can write the following inequality for complex numbers

Re{z}2 ≤ |z|2, (3.85)

where the equality holds, if and only if Im{z} = 0. So, in our case we obtain

Re
{

Tr
[
ρ̂(θ)L̂θÊm

]}2
≤
∣∣∣Tr
[
ρ̂(θ)L̂θÊm

]∣∣∣2 , (3.86)

and the equality holds when Im
{

Tr
[
ρ̂(θ)L̂θÊm

]}
= 0. Now, we use again the Cauchy-

Schwarz inequality ∣∣∣Tr
[
Â†B̂

]∣∣∣2 ≤ Tr
[
Â†Â

]
Tr
[
B̂†B̂

]
, (3.87)

with Â =
√
ρ̂(θ)

√
Êm and B̂ =

√
ρ̂(θ)L̂θ

√
Êm, thus we get∣∣∣Tr

[
Êmρ̂(θ)L̂θ

]∣∣∣2 ≤ Tr
[
Êmρ̂(θ)

]
Tr
[
ÊmL̂θρ̂(θ)L̂θ

]
. (3.88)

From Eq.(3.88) and (3.86) we obtain

Re
{

Tr
[
ρ̂(θ)L̂θÊm

]}2
≤ Tr

[
Êmρ̂(θ)

]
Tr
[
ÊmL̂θρ̂(θ)L̂θ

]
. (3.89)

Using Eq.(3.84) and taking the sum with respect to all measurement outcomes we obtain

∑
m

Tr
[
Êm∂θρ̂(θ)

]2

Tr
[
Êmρ̂(θ)

] ≤
∑
m

Tr
[
ÊmL̂θρ̂(θ)L̂θ

]
. (3.90)

We can express the classical Fisher information as

FC

[
ρ̂(θ), {Êm}

]
=
∑
m

Tr
[
Êm∂θρ̂(θ)

]2

Tr
[
Êmρ̂(θ)

] , (3.91)
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where this can be derived by substituting Pm(θ) = Tr
[
Êmρ̂(θ)

]
and ∂θPm(θ) = Tr

[
Êm∂θρ̂(θ)

]
in Eq.(3.63). Using Eq.(3.91) and the fact that

∑
m Êm = 1̂ we obtain

FC

[
ρ̂(θ), {Êm}

]
≤ Tr

[
ρ̂(θ)L̂2

θ

]
. (3.92)

The left hand side of the above inequality depends on the POVMs
{
Êm

}
, while the

right hand side does not, which indicates that this is a maximization of the CFI over all

measurements. There is only one measurement (POVM) where the equality holds and the

CFI reaches its maximum, which is the QFI as we saw earlier. Thus,

FQ [ρ̂(θ)] = Tr
[
ρ̂(θ)L̂2

θ

]
= max
{Êm}

FC

[
ρ̂(θ), Êm

]
. (3.93)

3.3.6 Quantum Fisher Information for Mixed States

Let us consider a complete basis, {|k〉}, such that

ρ̂(θ) =
∑
k

pk|k〉〈k|, (3.94)

where pk ≥ 0 and
∑

k pk = 1. Now, we can write the QFI as

FQ [ρ̂(θ)] = Tr
[
ρ̂(θ)L̂2

θ

]
= Tr

[
L̂θρ̂(θ)L̂θ

]
=
∑
k′

〈k′|L̂θρ̂(θ)L̂θ|k′〉 =
∑
k,k′

pk〈k′|L̂θ|k〉〈k|L̂θ|k′〉

=
∑
k,k′

pk

(
〈k|L̂θ|k′〉

)∗
〈k|L̂θ|k′〉 =

∑
k,k′

pk

∣∣∣〈k|L̂θ|k′〉∣∣∣2 =
∑
k,k′

pk + pk′

2

∣∣∣〈k|L̂θ|k′〉∣∣∣2,
(3.95)

where in the intermediate steps we used
∑

k |k〉〈k| = 1, while in the last step we made

use of the simple relation 1
2

∑
k,k′ pk

∣∣∣〈k|L̂θ|k′〉∣∣∣2 = 1
2

∑
k,k′ pk′

∣∣∣〈k|L̂θ|k′〉∣∣∣2. From the SLD,

Eq. (3.80), and the expansion of the density matrix, Eq. (3.94), we find

∂ρ̂(θ)

∂θ
=
ρ̂L̂θ + L̂θρ̂(θ)

2
=

1

2

(∑
m

pm|m〉〈m|L̂θ + L̂θ
∑
l

pl|l〉〈l|

)
. (3.96)

Now we want to calculate the elements 〈k|L̂θ|k′〉

〈k|∂ρ̂(θ)

∂θ
|k′〉 =

1

2

[
pk〈k|L̂θ|k′〉+ pk′〈k|L̂θ|k〉

]
. (3.97)

Thus,

〈k|L̂θ|k′〉 =
2

pk + pk′
〈k|∂ρ̂(θ)

∂θ
|k′〉. (3.98)

Substituting that result in Eq. (3.95), we obtain for the QFI

FQ [ρ̂(θ)] =
∑
k,k′

2

pk + pk′

∣∣∣∣〈k|∂ρ̂(θ)

∂θ
|k′〉
∣∣∣∣2 . (3.99)
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By inspecting Eq. (3.94) and due to the fact that the output state depends on θ, we

realise that the probabilities pk = pk(θ) and the state vectors |k〉 = |k(θ)〉 also depend on

θ themselves. After clarifying that, we take the derivative of Eq. (3.94) with respect to θ

∂θρ̂(θ) =
∑
k

(∂θpk) |k〉〈k|+
∑
k

pk|∂θk〉〈k|+
∑
k

pk|k〉〈∂θk|, (3.100)

where |∂θk〉 ≡ ∂θ|k〉. Now we calculate the matrix elements

〈k|∂θρ̂(θ)|k′〉 = 〈k| (∂θpk′) |k′〉+ pk′〈k|∂θk′〉+ pk〈∂θk|k′〉. (3.101)

Taking the derivative with respect to θ, of the ortho-normality condition 〈k|k′〉 = δk,k′ we

find

〈∂θk|k′〉 = −〈k|∂θk′〉. (3.102)

Hence, for Eq. (3.101) we obtain

〈k|∂θρ̂(θ)|k′〉 = ∂θpk′δkk′ + (pk − pk′)〈∂θk|k′〉. (3.103)

So, now we find∣∣〈k|∂θρ̂(θ)|k′〉
∣∣2 = (∂θpk′)

2 δ2
kk′ + (∂θpk′) (pk − pk′)〈k′|∂θk〉δkk′+

+ (∂θpk′) (pk − pk′)〈∂θk|k′〉δkk′ + (pk − pk′)2 |〈∂θk|k′〉|2. (3.104)

If we substitute the above result in Eq. (3.99) the second and the third terms would

be zero, since only the k = k′ term would survive in the sum, and then simply we get

pk − pk′ = 0. So, we finally obtain

FQ [ρ̂(θ)] =
∑
k

(∂θpk′)
2

pk
+ 2

∑
k,k′

(pk − pk′)2

pk + pk′
|〈∂θk|k′〉|2. (3.105)

We expand the SLD operator using the complete basis {|k〉}

L̂θ =
∞∑

k,k′=0

〈k|L̂θ|k′〉|k〉〈k′|. (3.106)

Using Eq. (3.98) and (3.103) we find

〈k|L̂θ|k′〉 =
2

pk + pk′
(∂θpk′)δkk′ + 2

pk − pk′
pk + pk′

〈∂θk|k′〉. (3.107)

We substitute this into Eq. (3.106)

L̂θ =

∞∑
k=0

(∂θpk)

pk
|k〉〈k|+ 2

∞∑
k,k′=0

pk − pk′
pk + pk′

〈∂θk|k′〉|k〉〈k′|. (3.108)

Eq. (3.105) and (3.108) are general results that we can use, in order to calculate the QFI

and the SLD respectively.
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3.3.7 Quantum Fisher Information for Pure States

Now we consider the special case of having a pure state, namely the density matrix is

written as

ρ̂(θ) =

∞∑
k=0

pk|k〉〈k| = |ψ(θ)〉〈ψ(θ)|. (3.109)

Putting it differently that means that pk = 1 only for k = ψ and pk = 0 for all the other

values of k (k 6= ψ). Splitting the sum in that way in Eq. (3.108) would be really useful,

in order to proceed with our calculations. The first term in Eq. (3.108) is zero, since we

take the derivative of a constant number and the second term can be written as

L̂θ = 2
∞∑
k=0

∞∑
k′=0

pk − pk′
pk + pk′

〈∂θk|k′〉|k〉〈k′| = 2

|ψ〉〈∂θψ|
 ∞∑
k=0
k 6=ψ

|k〉〈k|

+

 ∞∑
k=0
k 6=ψ

|k〉〈k|

 |∂θψ〉〈ψ|
 .

(3.110)

Also, our basis is complete
∑∞

k=0 |k〉〈k| = 1̂, hence

∞∑
k=0
k 6=ψ

|k〉〈k| = 1̂− |ψ〉〈ψ|. (3.111)

From the normalization condition 〈ψ(θ)|ψ(θ)〉 = 1 we take the derivative with respect to

θ and we find

〈∂θψ(θ)|ψ(θ)〉 = −〈ψ(θ)|∂θψ(θ)〉. (3.112)

We substitute those two results in Eq. (3.110) and we obtain

L̂θ = 2 [|ψ(θ)〉〈∂θψ(θ)|+ |∂θψ(θ)〉〈ψ(θ)|] . (3.113)

We can find a more elegant way to express L̂θ, if we take the derivative of ρ̂(θ) =

|ψ(θ)〉〈ψ(θ)| with respect to θ

∂θρ̂(θ) = |∂θψ(θ)〉〈ψ(θ)|+ |ψ(θ)〉〈∂θψ(θ)|. (3.114)

Hence,

L̂θ = 2∂θρ̂(θ). (3.115)

If we substitute ρ̂ = |ψ〉〈ψ| and Eq. (3.113) into Eq. (3.93) we conclude to an extremely

powerful and simple expression for calculating the QFI for pure states

FQ [|ψ(θ)〉] = 4
[
〈∂θψ(θ)|∂θψ(θ)〉 − |〈∂θψ(θ)|ψ(θ)〉|2

]
, (3.116)
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where we have also made use of Eq. (3.112) and the property of the trace that is invariant

under cyclic permutations, during the intermediate steps of the calculation. We are going

to use that result in Chapter 4, in order to calculate the QFI of a single particle travelling

in a gravitational field.

3.3.8 QFI for Unitary Transformations and Mixed Initial States

Here, we consider the special case of unitary transformations, where the parameter

of interest is already factorized and appears in the explicit form Û = e−iθĜ. Hence, the

density matrix ρ̂(θ) will be given by

ρ̂(θ) = e−iθĜρ̂0e
iθĜ, (3.117)

where ρ̂0 is the initial (probe) state, which for now we keep in the general form ρ̂0 =∑
k pk|k〉〈k|, and Ĝ is a hermitian operator, which is the generator of the unitary trans-

formation. The unitary transformation is described by the evolution operator Ûθ = e−iθĜ

and the following relations hold

Û †θ = eiθĜ, ÛθÛ
†
θ = 1̂ (3.118)

∂θÛθ = −iĜÛθ, ∂θÛ
†
θ = iĜÛ †θ . (3.119)

The transformed SLD operator will also be given by

L̂θ = e−iθĜL̂0e
iθĜ, (3.120)

where L̂0 is again the initial SLD operator. Taking the derivative of Eq. (3.117) and using

Eq. (3.119) as well, we obtain

∂θρ̂(θ) = i
[
ρ̂(θ), Ĝ

]
. (3.121)

Now we can write the equation of SLD, Eq.(3.80), in a more elegant way using the anti-

commutator notation

∂θρ̂(θ) =
ρ̂(θ)L̂θ + L̂θρ̂(θ)

2
=

1

2

{
ρ̂(θ), L̂(θ)

}
. (3.122)

Thus, from the above two equations we can write{
ρ̂(θ), L̂θ

}
= 2i

[
ρ̂(θ), Ĝ

]
. (3.123)

This result combined with Eq. (3.117) and (3.120) provides us with the corresponding

relation for the initial density matrix and SLD operators{
ρ̂0, L̂0

}
= 2i

[
ρ̂0, Ĝ

]
. (3.124)
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We substitute Eq. (3.117) and (3.120) into Eq. (3.93), in order to find

FQ [ρ̂(θ)] = Tr
[
L̂0ρ̂0L̂0

]
. (3.125)

We use again the complete basis {|k〉}, in order to express the trace as well as to expand

the density matrix

FQ[ρ̂0, Ĝ] =

∞∑
k,m=0

pm + pk
2

∣∣∣〈m|L̂0|k〉
∣∣∣2 , (3.126)

where we used again the same relation we had used in the final step of Eq. (3.95). We

should point out here that we changed our notation from FQ [ρ̂(θ)] to FQ[ρ̂0, Ĝ] just to

clearly present that the QFI would depend on the initial state ρ̂0 and the generator Ĝ of

the unitary transformation. We can find the matrix elements of L̂0 using Eq. (3.124) and

the density matrix expansion ρ̂0 =
∑

k pk|k〉〈k|

〈m|L̂0|l〉 =
2i

pm + pl
〈m|

[
ρ̂0, Ĝ

]
|l〉. (3.127)

Expanding the density matrix again we find

〈m|L̂0|l〉 =
2i(pm − pl)
pm + pl

〈m|Ĝ|l〉. (3.128)

We substitute this in Eq. (3.126) and we finally obtain

FQ[ρ̂0, Ĝ] = 2
∞∑

k,m=0

(pm − pk)2

pm + pk

∣∣∣〈m|Ĝ|k〉∣∣∣2 . (3.129)

This result provides us with a formula, in order to calculate the QFI of a general input

state, but only for unitary transformations.

3.3.9 QFI for Unitary Transformations and Pure Initial States

Now we consider the special case, where we have the same unitary transformation as

before and a pure initial state, i.e

ρ̂0 = |ψ0〉〈ψ0|. (3.130)

So, now the unitary transformed state would be given by

|ψ(θ)〉 = e−iθĜ|ψ0〉, 〈ψ(θ)| = eiθĜ〈ψ0|. (3.131)

We calculate the derivative of the state with respect to θ

|∂θψ(θ)〉 = −iĜe−iθĜ|ψ0〉, 〈∂θψ(θ)| = iĜeiθĜ〈ψ0|. (3.132)
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Here, we have assumed that we have a pure initial state and a unitary transformation,

that guarantees that our final state would also be pure, thus we can use Eq. (3.116) in

order to calculate the QFI

FQ

[
|ψ0〉, Ĝ

]
= 4

(
〈ψ0|Ĝ2|ψ0〉 −

∣∣∣〈ψ0|Ĝ|ψ0〉
∣∣∣2) = 4

(
∆Ĝ

)2

0
, (3.133)

where the variance in the last step is calculated using the initial state |ψ0〉.

In the next chapter, we will examine the motion of a particle into a gravitational field,

hence the dynamics would be described by the Hamiltonian Ĥ = p̂2

2m + mgẑ, and the

parameter of interest would be g. Thus, the unitary evolution operator Ûg = e−
iT
~ H(g),

where T is the total time of propagation into the gravitational field, would not be of the

form we examined here. This is the reason why, we will use the Baker-Campbell-Hausdorff

formula appropriately, in order to isolate the parameter of interest and conclude to an

operator of the form U ∝ e−igĜ, as we considered here. Then, we can simply calculate the

QFI by using Eq. (3.116) with respect to the final pure state, or by Eq. (3.133) with respect

to the initial pure state and the generator, after factorizing the parameter of interest.
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Chapter 4

Optimal Matterwave Gravimetry

In this chapter we are going to examine the fundamental limits of precision of an atom

gravimeter. We calculate the quantum Fisher information (QFI), of a particle passing

through a Kasevich-Chu (KC) interferometer and we find that there is more metrological

potential available than it is currently considered by semi-classical methods. We also cal-

culate the classical Fisher information (CFI), and we show that innovative measurements,

such as the position or the momentum distribution of the atoms at the output of the inter-

ferometer could extract more information compared to the conventional measurement of

the population difference. Our analysis gives us the ability to consider a modified design

for an atom gravimeter, other than the conventional KC configuration and shows that the

sensitivity can be more than doubled.

4.1 Introduction

Atom interferometry is a leading inertial-sensing technology, having demonstrated

state-of-the-art gravimetry [19, 20, 22, 35, 45, 91, 92] and gradiometry [29, 93–98] meas-

urements. Nevertheless, orders of magnitude improvement in sensitivity is required for

applications in navigation [99] and mineral exploration [100], as well as improved tests of

the equivalence principle [42, 101, 102] and quantum gravity [103, 104]. Atom gravimeters

use the configuration of a KC interferometer [17, 105], which we analysed in Chapter 2,

Sec. [2.10], in order to estimate the gravitational acceleration. We have already shown

that the phase shift between the two arms of a KC interferometer is given by

φg = gk0T
2
π , (4.1)

where g is the gravitational acceleration, ~k0 is the component of the momentum separ-

ation of the two arms aligned with g, and Tπ is the time at which the mirror is applied.



67

In Chapter 2, we showed that assuming N uncorrelated particles, a population-difference

measurement at the interferometer output yields sensitivity

∆g =
1√

Nk0T 2
π

. (4.2)

Equation (4.2) implies only four routes to improved sensitivity: (1) increase interrogation

time, (2) increase the momentum separation of the arms (e.g. via large momentum transfer

beam splitters [106–110]), (3) increase the atom flux, and/or (4) surpass the shot-noise

limit with quantum correlations [55,64,111–113]. Although all routes are worth pursuing,

each has unique limitations. For instance, size, weight, and power constraints limit both

Tπ and the maximum momentum transferrable via laser pulses. Additionally, evaporative-

cooling losses and momentum width requirements constrain atom fluxes [34,38,114–116].

Finally, quantum-correlated states must be compatible with the requirements of high-

precision metrology [22, 117–128] (e.g. high atom flux, low phase diffusion), and will

only be advantageous if classical noise sources, are sufficiently controlled to yield shot-

noise-limited operation prior to quantum enhancement. For example, two major factors

limiting the performance of current atom interferometers are the Coriolis force and the

misalignment of the Raman laser pulses with the atomic waves [129,130].

This assessment assumes that Eq. (4.2) is the optimal sensitivity. Here, we prove this

conventional wisdom false by showing that matterwave interferometers can attain better

sensitivities than Eq. (4.2). Ultimately, the gravitational field affects the quantum state

beyond the creation of a simple phase shift. We show this additional metrological potential

via the QFI, which determines the best possible sensitivity. We further determine the set of

measurements required to attain this optimal sensitivity via the CFI. Our analysis reveals

additional routes to improved sensitivity, such as variations in the measurement proced-

ure and input source, and these should be considered when designing future matterwave

gravimeters.

4.2 QFI for a Particle in a Gravitational Field

As we discussed earlier, semi-classical arguments suggest that the only effect of the

whole KC interferometric sequence would be a phase difference between the two arms.

Hence, the atomic state before the final beam-splitter would be given by [131]

|Ψ〉 = 1√
2
(|a〉+ eigk0T 2

π |b〉). (4.3)
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Figure 4.1: Spacetime diagrams for (a) KC interferometry and (b) Ramsey interferometry

(no mirror pulse), which are both sensitive to gravitational fields and accelerations.

We can calculate the QFI of a pure state using Eq. (3.116). We firstly need to calculate

|∂gΨ〉 =
ik0T

2
π√

2
eigk0T 2

π |b〉, 〈∂gΨ| = −
ik0T

2
π√

2
e−igk0T 2

π 〈b|, (4.4)

which gives

〈∂gΨ|∂gΨ〉 =
1

2
k0T

2
π (4.5)

Using Eq. (4.3) we also find

|〈Ψ|∂gΨ〉|2 =
1

4
k2

0T
2
π . (4.6)

So, we can finally calculate the corresponding semi-classical QFI

F sc
Q = k2

0T
4
π . (4.7)

As discussed in Chapter 3, the QCRB gives the lowest possible bound on the sensitivity.

For N uncorrelated particles this is ∆g2 ≥ 1/(NFQ), which for FQ = F sc
Q is consistent with

Eq. (4.2). However, this derivation treats the particle’s motion semi-classically, neglecting

the non-commutability of position and momentum. We account for this here. For the

moment we consider only the centre of mass degrees of freedom. In the presence of a

uniform gravitational field g acting along the z-axis, a particle of mass m in state |ψ0〉

evolves to |ψ(T )〉 = Ûg|ψ0〉 after time T , where Ûg = exp
[
− iT

~ ( p̂2

2m +mgẑ)
]
. As shown in

Appendix [A.1], we can rewrite

Ûg = e−i
T
~

p̂2

2m e−igĜ0(T )ei
mg2T3

12~ , (4.8)

where

Ĝ0(T ) = T
~
(
T
2 p̂z +mẑ

)
. (4.9)
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The QFI is

FQ(T ) = 4Var(Ĝ0(T )) (4.10a)

= T 4

~2 Var(p̂z) + 4m2T 2

~2 Var(ẑ) + 4mT 3

~2 Cov(p̂z, ẑ), (4.10b)

where the variances and covariance are evaluated with respect to |ψ0〉. To compare

Eq. (4.10a) and F sc
Q , consider a state |ψ0〉 with two well-defined peaks in momentum

space separated by ~k0, giving Var(p̂z) ≈ (~k0)2. For sufficiently large k0 and T such

that (~k0T/2)2 � m2Var(ẑ), mTCov(p̂z, ẑ), the first term of Eq. (4.10b) dominates, and

FQ(2Tπ) ≈ k2
0T

4
π = F sc

Q . However, the additional terms in Eq. (4.10b) potentially allow

sensitivities better than Eq. (4.2).

4.3 QFI for KC Interferometry

Equation (4.10a) is not the QFI for a KC interferometer, as we must account for the

internal state degrees of freedom, as well as the action of the mirror pulse. The evolution

is given by

ÛKC = Ûφ3
π
2
Ûg(T2)Ûφ2

π Ûg(T1)Ûφ1
π
2
, (4.11)

where

Ûφθ = 1̂ cos
(
θ
2

)
− i(|b〉〈a|ei(k0ẑ−φ) + h.c.) sin

(
θ
2

)
(4.12)

governs the beam-splitter and mirror dynamics. As shown in Appendix [A.4], Eq. (4.12)

is an excellent approximation to the beam splitting and mirror dynamics, when the pulse

duration is much shorter than the timescale for atomic motional dynamics. Here, T1(2)

are evolution times before(after) the π pulse and φ is the pulse phase, controlled via

the relative phase of the two Raman lasers. The first π/2 pulse maps the initial state

|Ψ0〉 = |a〉|ψ0〉 to |Ψ′0〉 = Ûφ1
π
2
|Ψ0〉 = 1√

2

(
|a〉 − iei(k0ẑ−φ1)|b〉

)
|ψ0〉, where |ψ0〉 contains the

initial state’s motional degrees of freedom. As detailed in Appendix [A.2],

|Ψ(T )〉 = ÛKC|Ψ0〉 = Û0e
−ig(Ĝ0(T )+Ĝe)|Ψ′0〉, (4.13)

where

Ĝe = Ĵzk0T
2
2 , (4.14a)

Ĵz =
1

2
(|a〉〈a| − |b〉〈b|) , (4.14b)

Û0 = Ûφ3
π
2
e−i

T2
~

p̂2

2m Ûφ2
π e−i

T1
~

p̂2

2m , (4.14c)
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and T = T1 + T2, giving QFI

FKC
Q (T ) = 4Var(Ĝ0(T )) + 1

4k
2
0

(
T 2 − 2T 2

2

)2
, (4.15)

where Var(Ĝ0(T )) is taken with respect to |ψ0〉. For T1 = T2 = Tπ,

FKC
Q (T ) = 4Var(Ĝ0(T )) + k2

0T
4
π . (4.16)

Since Var(Ĝ0(T )) ≥ 0, this implies FKC
Q ≥ F sc

Q , thereby permitting sensitivities better

than Eq. (4.2).

As we saw earlier the already known term k2
0T

4
π comes from the phase shift between

the two arms of the interferometer, while the new term 4Var(Ĝ0(T )) = T 4

~2 Var(p̂z) +

4m2T 2

~2 Var(ẑ) + 4mT 3

~2 Cov(p̂z, ẑ) is stemming from the propagation of the atom in the grav-

itational field. For long interferometer times we notice that the old term, k2
0T

4
π , as well as

T 4

~2 Var(p̂z) from the new term dominate. Hence, this result indicates that we can boost

the metrological potential of the interferometer, by engineering appropriate initial atomic

states with large momentum variance. In addition, for short interrogation times we no-

tice that 4m2T 2

~2 Var(ẑ) from the new term dominates. This means that the classical noise

sources associated with the phase difference term (k2
0T

4
π ), such as the Coriolis effect and

the Raman laser misalignment, would have a mitigated effect on the performance of the

device. Hence, engineering initial atomic states with large position variance would improve

the sensitivity and robustness of high bandwidth sensors for inertial navigation.

To summarize, Eq. (4.16) essentially shows that there are additional sources of inform-

ation available, which are related to momentum and position variances of the initial atomic

state and they are not taken into account by current methods. Thus, we can increase the

metrological potential of our device, by appropriately selecting the motional state of the

atoms entering the interferometer.

4.4 Classical Fisher Information

Although the QFI gives the best possible sensitivity, it is silent on how to achieve this

sensitivity. The attainable sensitivity for a particular measurement choice is given by the

CFI, which quantifies the information contained in the probability distribution constructed

from measurements of a particular observable, and necessarily depends upon this choice

of observable. We calculate the CFI via

FC(Λ̂) =

∫
dλ

[∂gP (λ)]2

P (λ)
, (4.17)
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where P (λ) is the probability of obtaining result λ, when the observable Λ̂ is measured

[86, 132]. As analysed in more detail in Chapter 3, the CFI is bounded by the QCRB

FC ≤ FQ, so a measurement that saturates this bound is the optimal measurement.

4.4.1 CFI for Population Difference Measurement

For the standard population difference measurement at the KC interferometer output,

Λ̂ = Ĵz and FC(Ĵz) =
∑

s=a,b(∂gPs)
2/Ps, where Ps =

∫
dz|〈s|〈z|Ψ(T )〉|2. As detailed in

Appendix [A.3], an analytic solution exists in this case. Specifically,

Pa = 1
2(1 + |C| sinα), (4.18a)

Pb = 1
2 (1− |C| sinα) , (4.18b)

yielding

FC(Ĵz) =
|C|2 cos2 α

1− |C|2 sin2 α
k2

0

(
T 2

2 − T
2
1

)2
, (4.19)

where

C = 〈ψ0|ei
k0
m

(T2−T1)p̂z |ψ0〉 ≡ |C|eiϑ, (4.20a)

α = φf − φg + ϑ, (4.20b)

with φf =
~k2

0
2m (T2 − T1) and φg = k0g(T

2

2 − T 2
1 ). Throughout the calculation in Ap-

pendix [A.3] we encountered all different components of the total phase shift between

the two arms of a KC interferometer, which we had introduced in Chapter 2. Here, φf

has exactly the same interpretation as ∆φseparation, which was denoted as the phase shift

arising when the two wave-packets do not intersect at the final beam-splitter. Also, φg

is the phase shift due to the gravitational field, where for the symmetrical case T1 = T2

we obtain φg = k0gT
2
π , as first mentioned in Chapter 2. In the intermediate steps of the

calculation in Appendix [A.3] we also encountered the phase difference due to the laser

pulses ∆φlaser = φ1 − 2φ2 + φ3. That is to say that following our analysis we were able

to derive all phase shifts coming from the semi-classical approach, but our formalism also

takes into account the effect of the gravitational field in the motional state of the particle.

The contrast |C| is determined by the spatial overlap of the two output wavepackets,

since ~k0
m (T2 − T1) is the spatial separation. This depends strongly on the time difference

T2 − T1. We can calculate the contrast by using

C =

∫ ∞
∞

P0(k)ei
k0
m

~(T2−T1)kdk, (4.21)
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Figure 4.2: This figure illustrates the conventional structure of a symmetric KC interfero-

meter. In our analysis, we consider a more flexible scheme, where the time of measurement,

i.e. the application time of the second beam splitter, is not fixed, but rather we consider

that the measurement could happen at each time point. We do that by fixing Tπ so the

mirror pulse always occurs at t = Tπ and if t ≤ Tπ, then T1 = t, T2 = 0, and the mirror

pulse has no meaningful effect; if t > Tπ then T1 = Tπ and T2 = t−Tπ. This strategy helps

to find the resulting Fisher information at all time points, Fig. [4.3] and [4.4], highlighting

potential non-conventional structures that could enable us to extract more information.

where in Eq. (4.20a) we have expanded the exponential and we have used the momentum

space wave-function, in order to calculate the expectation value. For an initial Gaussian

state 〈z|ψ0〉 = exp
(
−z2/2σ2

)
/(πσ2)1/4, we find

C = e−
~2k2

0
4m2σ2 (T2−T1)2

, (4.22)

where we also notice that θ = 0.

In the following sections, we are going to calculate the CFI for the population difference

as well as the momentum and position distribution measurements using the time evolved

atomic state, by numerically solving the Schrödinger equation. We are interested on finding

how much information we can extract at each time point of the evolution, considering

a more flexible structure than the standard KC interferometer, where the conventional

scheme requires the use of the mirror pulse and it always assumes the symmetric case

T1 = T2, Fig. [4.2]. For this reason we apply the following strategy. We fix Tπ, so the mirror

pulse always occurs at t = Tπ and we assume that we make a measurement instantaneously
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after the second beam splitter. We do not consider a fixed time of measurement, neither

that the measurement necessarily happens after t = Tπ. Namely we assume a variable

time of measurement that could happen at any time point along the t-axis, Fig. [4.2].

So for example, if we consider a time of measurement such that t ≤ Tπ, then T1 = t,

T2 = 0, and the mirror pulse has no meaningful effect. Instead, if we consider that the

measurement happens for times t > Tπ, then T1 = Tπ and T2 = t−Tπ. Following the logic

described above, we created Fig. [4.3], which shows the values of FQ, FC(Ĵz), FC(Ĵz, p̂z)

and FC(Ĵz, ẑ) at each time point, considering that each time point under consideration is

the time of measurement. When T1 and T2 are significantly different, the spatial overlap

of the two modes at the interferometer output is poor, so both the contrast and CFI of

the population difference are close to zero, Eq. [4.22] and [4.19] respectively. However,

|C| = 1 when T1 = T2 and FC(Ĵz) = F sc
Q = k2

0T
4
π , giving the same sensitivity as Eq. (4.2).

This is still less than FKC
Q , indicating that a different measurement could yield improved

sensitivities.

4.4.2 CFI for Momentum Distribution Measurement

Now, consider a measurement that distinguishes internal states and fully resolves the

z-component of the final momentum distribution, such as reported in Ref. [133]. This

measurement yields the CFI

FC(Ĵz, p̂z) =
∑
s=a,b

∫
dpz

[∂gPs(pz)]
2

Ps(pz)
, (4.23)

where Ps(pz) = |〈s|〈pz|Ψ(T )〉|2. Although no analytic formula exists for FC(Ĵz, p̂z), the

probabilities can be determined by numerically solving the Schrödinger equation, and the

CFI computed from finite differences of these probabilities [134]. This requires an explicit

choice of g; although we consider the sensitivity near g = 0 for all numerical calculations, a

large offset in g is easily accounted for by adjusting the beam splitter phases, as in typical

atom gravimeters [38].

Fig. [4.3(a)] shows that FC(Ĵz, p̂z) is significantly larger than FC(Ĵz) and very close

to FKC
Q . Additionally, FC(Ĵz, p̂z) ≈ FKC

Q even when T1 and T2 are vastly different. This

is because Ps(pz) displays interference fringes that are not present in Ps =
∫
dpzPs(pz),

when spatial overlap is poor.

The origin of the increased information in FC(Ĵz, p̂z) compared with FC(Ĵz) is easily

understood. Additional to the CFI associated with population exchange (generated by

Ĝe), there is information due to a shift in the momentum distribution. Concretely, consider
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initial momentum distribution P0(pz). Under gravity, p̂z(t) = p̂z(0) + mgt, so P (pz, t) =

P0(pz −mgt), giving

FC(p̂z) =

∫
dpz

[∂gP (pz, t)]
2

P (pz, t)

= [∂gpz(t)]
2

∫
dpz

[∂pzP0(pz)]
2

P0(pz)

≡ (mt)2F pzC , (4.24)

where F pzC is the CFI associated with resolvable small shifts in the momentum distribution.

Now, we consider a CFI associated with shifts in a general q-parameter space, defined as

F qC ≡
∫ ∞
−∞

dq
[∂qP (q)]2

P (q)
, (4.25)

where we consider a Gaussian probability distribution P (q) = 1
σ
√
π
e−

(q−q0)2

σ2 , with standard

deviation ∆q = σ/
√

2, which also satisfies
∫∞
−∞ P (q)dq = 1. We calculate [∂qP (q)]2 =

4(q − q0)2P (q)2/σ4 and we obtain

F qC =
4

σ5
√
π

∫ ∞
∞

(q − q0)2e−
(q−q0)2

σ2 dq =
2

σ2
. (4.26)

Hence, for a Gaussian probability distribution, the CFI associated with shifts in that

parameter space is given by the inverse of the probability distribution’s variance, i.e.

F qC =
1

Var(q)
. (4.27)

Thus, for the Gaussian state we consider here Var(p̂z(t)) = Var(p̂z(0)) = ~2/(2σ2), and for

the CFI associated with shifts in momentum distribution we have F pzC = 1/Var(p̂z), thus

FC(pz)|2Tπ = 8(mTπσ/~)2. Adding this additional CFI to FC(Ĵz) gives FC(Ĵz, p̂z)|2Tπ =

F sc
Q + 8(mTπσ/~)2, in perfect agreement with our numerics. Note that this additional

information is not the result of a phase shift so, unlike a standard KC interferometer, it

is not affected by additional phase noise.

Our simulations also find near-perfect correlations between internal and momentum

states, so a measurement that only resolves momentum (and not Ĵz) also has CFI approx-

imating FC(Ĵz, p̂z)|2Tπ , since an atom’s internal state is inferred from its final momentum.

Our analysis therefore holds for interferometers that do not change internal states, such as

Bragg-scattering-based interferometers, provided ~k0 � δp, where δp is the wavepacket’s

initial momentum width [22,106]. In our simulations ~k0 ≈ 14δp.
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Figure 4.3: Fisher information (FI) for the state |Ψ(t)〉 = ÛKC(t)|Ψ0〉, where T1 = t and

T2 = 0 for t ≤ Tπ, otherwise T1 = Tπ and T2 = t − Tπ, with initial Gaussian motional

state (a) 〈z|ψ0〉 = exp
(
−z2/2σ2

)
/(πσ2)1/4 and (b) 〈z|ψ0〉 = e−( 1

4
+i)z2/2σ2

/[π(2σ)2]1/4.

FI has units k2
0T

4
π , so when FI > 1 a given measurement scheme achieves a sensitivity

better than that predicted by the semiclassical limit Eq. (4.2). The QFI FKC
Q gives the

maximum possible FI. Here σ = 10L and Tπ = 100t0, whilst the length (L = k−1
0 ) and

time (t0 = m/~k2
0) units depend on k0.

4.4.3 CFI for Position Distribution Measurement

Although the momentum distribution cannot always be resolved, a measurement of

the position distribution might be possible. Here, the CFI is

FC(Ĵz, ẑ) =
∑
s=a,b

∫
dz

[∂gPs(z)]
2

Ps(z)
, (4.28)

where Ps(z) = |〈s|〈z|Ψ(t)〉|2. Fig. [4.3(a)] shows this is slightly better than the population-

difference measurement, although significantly worse than the momentum measurement.

Arguing as before, since the position distribution shifts due to ẑ(t) = ẑ(0)+p̂z(0)t/m+1
2gt

2,

the additional CFI is (t2/2)2F zC , where F zC =
∫
dz[∂zP (z)]2/P (z) is the CFI associated

with resolvable shifts in the position distribution. Since

Var(ẑ(t)) = Var(ẑ(0)) +
t2

m2
Var(p̂z(0))

+
t

2m
Cov(p̂z(0), ẑ(0)), (4.29)

and F zC = 1/Var(ẑ) for Gaussian states as we showed earlier, and using Var(ẑ(0)) =

σ2/2, Var(p̂z(0)) = ~2/(2σ2), Cov(p̂z(0), ẑ(0)) = 0 we obtain FC(Ĵz, ẑ)|2Tπ = F sc
Q +
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8(σmT 2
π )2/[(σ2m)2 + (2~Tπ)2] for the initial Gaussian state considered in Fig. [4.3(a)],

in agreement with numerics.

We can increase FC(Ĵz, ẑ) with an initial state that decreases Var(ẑ(2Tπ)) at the in-

terferometer output. This is not achieved by reducing Var(ẑ(0)), but rather via an initial

state with nontrivial correlations between position and momentum such that Cov(p̂z, ẑ)

counteracts the wavepacket’s ballistic expansion. Fig. [4.3(b)] shows the QFI and CFI

for initial state 〈z|ψ0〉 = e−( 1
4

+i)z2/2σ2
/[π(2σ)2]1/4. The imaginary term provides the

position-momentum correlations and doubling the spatial width increases the ability of

the wavepacket to be focused. This initial state could be engineered by applying a har-

monic potential for a short duration (compared to motional dynamics), creating phase

gradient ψ(z)→ ψ(z)e−iz
2/σ2

t , for constant σt which depends on trap frequency and dur-

ation [135]. Then FC(Ĵz, ẑ) saturates the QCRB at T1 = T2, at the cost of reduced

FC(Ĵz, p̂z).

4.5 Optimum Measurements

Since measurements in different bases yield different sensitivities, is there an access-

ible measurement basis that saturates the QCRB? Our above analysis suggests yes and,

depending on the initial state, this optimum basis lies somewhere between position and

momentum. We confirm this intuition by revisiting a particle in a gravitational field. We

rewrite

|ψ(t)〉 = Ûg|ψ0〉 = exp
(
−igĜ′0(t)

)
|ψ0(t)〉, (4.30)

where

Ĝ′0(t) = ÛpĜ0(t)Û †p =
t

~
(mẑ − 1

2 p̂zt), (4.31)

Ûp = exp
[
−itp2/(2m~)

]
, and |ψ0(t)〉 = Ûp|ψ0〉 describes free-particle evolution. We can

interpret Ĝ′0(t) as the generator of displacements in Q̂ = c1ẑ+ c2p̂z, where the coefficients

ci are real and satisfy 1
2c1 + tmc2 = 1, since [Ĝ′0(t), Q̂] = i. Hence, the probability

distribution |〈q|ψ(t)〉|2 = |〈q − g|ψ0(t)〉|2, where Q̂|q〉 = q|q〉. If |〈q|ψ0(t)〉|2 is Gaussian,

then measurements of Q̂ saturate the QCRB, since

FC(Q̂) =
1

Var(Q̂)
= 4Var(Ĝ′0(t)) = FQ. (4.32)

The first equality holds due to Eq. (4.27), while the last one is true due to Eq. (3.133).

The second equality is justified as follows, for any two observables satisfying [Ĝ′0(t), Q̂] = i,

the uncertainty relation holds Var(Q̂)Var(Ĝ′0(t)) ≥ 1/4. However, the equality is being
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Figure 4.4: Fisher information (FI) for the state |Ψ(t)〉 = ÛKC(t)|Ψ0〉, where T1 = t and

T2 = 0 for t ≤ Tπ, otherwise T1 = Tπ and T2 = t− Tπ, with a harmonic potential applied

at t = 2Tπ and initial Gaussian motional state 〈z|ψ0〉 = exp
(
−z2/2σ2

)
/(πσ2)1/4. We

artificially turned off gravity at t = 2Tπ (which holds FKC
Q constant) to clearly show the

effect of harmonic trapping. Specifically, the application of this harmonic potential can be

used to saturate the QCRB with either a position distribution or momentum distribution

measurement. Here σ = 10L, Tπ = 100t0, and ω = 3π/(2Tπ). FI has units k2
0T

4
π , and

length (L = k−1
0 ) and time (t0 = m/~k2

0) units depend on k0.

satisfied here, because he have considered a Gaussian state. To measure Q̂, we mix ẑ and

p̂z by applying the potential V (z) = 1
2mω

2z2, since ẑ(t) = ẑ(0) cosωt + [p̂(0)/mω] sinωt.

Subsequently measuring position yields a combination of position and momentum inform-

ation. This scheme could be implemented using the following procedure:

1. At t = 2Tπ, apply the unitary Ûs = |a〉〈a| + |b〉〈b|e−ik0ẑ, which removes any mo-

mentum mismatch between the two modes. A state-selective Bragg transition achieves

this.

2. Then apply the potential V (z) = 1
2mω

2(z − z0)2, where z0 = ~k0Tπ/m is the mat-

terwave’s centre-of-mass displacement at the interferometer output.

3. Finally, at some later time, we apply a beam splitter ÛBS = 1√
2
[1̂ + (|a〉〈b| − h.c.)]

immediately before measurement.

Fig. [4.4] shows FC(Ĵz, ẑ) and FC(Ĵz, p̂z) for this scheme. Both CFIs oscillate between

F sc
Q and the QFI, so a measurement in either the position or momentum basis saturates

the QCRB if made at the appropriate time. This improved sensitivity does increase the

interferometer time. However, the period of CFI oscillations is negligible compared to Tπ

for sufficiently large ω.
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4.6 Improved Interferometry

In KC interferometry, the π pulse ensures that the wavepackets spatially overlap at

t = 2Tπ. However, Fig. [4.3] and Fig. [4.4] reveal that spatial overlap is not required

for a momentum measurement, making the mirror pulse unnecessary. More interestingly,

removing the π pulse significantly increases the spatial separation, and therefore the QFI,

for the same interrogation time. More precisely, setting T1 = 2Tπ and T2 = 0 in Eq. (4.15)

gives FQ(T ) = 4Var(Ĝ0(T )) + 4k2
0T

4
π , an increase of 3F sc

Q over symmetric KC interfero-

metry.

We numerically solved the Schrödinger equation for the mirrorless Mach-Zehnder

(i.e. Ramsey) configuration, Fig. [4.1(b)]. Fig. [4.5(a)] shows that a momentum meas-

urement is always nearly optimal, and at t = 2Tπ, FC(Ĵz, p̂z)/F
sc
Q ≈ 4.4. Unfortunately,

this improved sensitivity has a price. A lack of spatial overlap means that information

is encoded in high-frequency interference fringes in the momentum distribution, requiring

high-resolution momentum measurements. Following Refs. [136–140], we model imperfect

resolution by convolving the momentum distribution at t = 2Tπ with a Gaussian of width

σp before constructing FC(Ĵz, p̂z), Fig. [4.5(b)]. This imperfect resolution may be due to

limitations on the detection system, or other sources of classical noise. The mirrorless

configuration is considerably more sensitive to imperfect momentum resolution than KC

interferometry, where FC(Ĵz, p̂z) begins to degrade only when σp is comparable to the

initial wavepacket’s momentum width. Furthermore, in the limit of a “bad” momentum

measurement (σp → ∞), the CFI goes to zero, whereas the CFI for KC interferometry

approaches F sc
Q . Nevertheless, if high-resolution measurements are available (or actively

developed), as reported in Ref. [141] for instance, our result suggests that pursuing a

mirrorless configuration could yield substantial sensitivity gains.

4.7 Discussion and Outlook

An important experimental consideration is achieving high-resolution momentum meas-

urements. Time-of-flight imaging is a standard technique, where ballistic expansion con-

verts the momentum distribution into a position distribution [142,143]. However, the ex-

pansion time needed for sufficient momentum resolution might be significantly longer than

the interrogation time, in which case longer interrogation times are a better route to im-

proved sensitivities. Bragg spectroscopy is perhaps a more promising approach [144,145].

Reference [35] reports state-of-the-art gravimetry with a Bose-Einstein condensate
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Figure 4.5: (a) FI of the mirrorless configuration for the same initial state and parameters

as in Fig. [4.3(a)]. We normalize time by Tπ = 100t0 only for comparison with Fig. [4.3].

Note that FC(Ĵz) and FC(Ĵz, ẑ) are almost zero throughout the entire evolution, since

there is no spatial overlap of the wavepackets and consequently no interference in Ps or

the position distribution. (b) FC(Ĵz, p̂z) constructed from convolving probability distribu-

tions with a Gaussian of width σp (units ~k0). The vertical line marks the initial state’s

momentum width: δpz = ~/
√

2σ ≈ 0.07~k0. The momentum resolution required to ex-

tract all the information is ∆p = ~/(2∆x), where ∆x = ~k0T/m is the spatial separation

between the two atomic wave-packets. For our parameter values ∆p ≈ 3×10−3~k0, which

perfectly agrees with the numerical results. FI units: k2
0T

4
π .

(BEC), well-described by a pure motional state, and parameters: σ = 40µm, Tπ = 130ms,

k0 = 1.6×107 m−1, δpz = 0.18~k0. We estimate that 4Var(Ĝ0(T )) is ∼ 7% of F sc
Q , so there

is little gain in making optimal measurements, Eq. [(4.16)]. However, 4Var(Ĝ0(T )) ∼ F sc
Q

if σ or δpz were increased by an order of magnitude. This suggests that creating initial

(pure) states with large spatial extent, such as quasi-continuous atom lasers [116, 146],

could yield substantial sensitivity gains. Additionally, compact and/or high-bandwidth

devices could benefit from optimal measurements, since shorter interrogation times in-

crease Var(Ĝ0(T )) relative to F sc
Q .

For KC interferometers with thermal (mixed) states, Eq. (4.16) is only an upper bound

for the QFI [86]. A calculation of FQ and FC for thermal sources gives values substantially



80

greater than F sc
Q [147], in qualitative agreement with our above analysis, showing that

current thermal-atom gravimetry is suboptimal. However, the QFI and CFI are also

smaller than Eq. (4.16) for thermal sources, suggesting that BECs possess metrological

potential beyond what is possible with thermal sources.

Our approach to evaluating matterwave interferometry could significantly influence

the design of future state-of-the-art gravimeters. Typical interferometer design assumes a

particular form for the measurement signal (e.g. the population difference at the output

varies sinusoidally with g) and looks no further if there is agreement with simple ‘best case’

formulae such as Eq. (4.2). In contrast, a Fisher analysis gives the full metrological poten-

tial of any given dynamical scheme without enforcing such a priori assumptions by simply

considering the available data. Our matterwave gravimetry analysis opens up new routes

to improved sensitivity – beyond those few implied by Eq. (4.2). This includes engineer-

ing states with high QFI, i.e. large Var(Ĝ0(T )), and improving information extraction at

the interferometer output. Our mirrorless scheme gives a substantial sensitivity boost if

high-resolution momentum measurements are available. In the experimental setup of [35],

they considered a BEC of 87Rb atoms, with Bragg laser pulses of λ = 780 nm realizing

the MZ interferometer, and total interrogation time t = 130 ms. For these parameter

values, our mirrorless scheme would result in a ∆x ≈ 0.8 mm spatial separation of the

two atomic wave-packets at the end of the interferometer. From this, we can identify

the momentum resolution, ∆p = ~/(2∆x) ≈ 0.8 × 10−4~k0, required to distinguish the

fringes in momentum space and obtain all the available information, as shown by the CFI

in Fig. [4.5(b)]. This performance is achievable by further developing the 2 × 10−4~k0

resolution measurement of [141]. A Fisher analysis could prove beneficial for evaluating

other atom-interferometer-based sensors which produce a complicated output signal, such

as schemes utilizing Kapitza-Dirac scattering [148–153], or propagation in crossed wave-

guides [154]. In the next two chapters we are going to consider entanglement-enhanced

schemes, in order to enhance the sensitivity of quantum sensors based on atom interfero-

meters, which are limited by the atom shot-noise.
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Chapter 5

Quantum Non Demolition

Measurements of a BEC

In this chapter, we theoretically investigate the use of a quantum non-demolition

(QND) measurement scheme, to enhance the sensitivity of atom interferometry with Bose-

condensed atoms. In particular, we are concerned with enhancing existing high-precision

atom interferometry apparatuses, so we restrict ourselves to dilute atomic samples, and

the use of free-propagating light, or optical cavities in the weak-coupling regime. We find

the optimum parameter regime that balances between spin squeezing and atomic loss, and

find that significant improvements in sensitivity are possible. Finally, we consider the use

of squeezed light, and show that this can provide further boosts to the sensitivity.

5.1 Introduction

Atom interferometers are powerful tools for making precision measurements of inertial

quantities. A lot of interest has therefore developed in finding ways of improving their

performance to gain advantage in different applications. In Chapter 4, we analysed possible

routes of improving the performance of these devices. It has been shown that Bose-

condensed atomic sources can outperform thermal sources due to their narrow momentum

linewidth, despite their reduced atomic flux [34,109,115,146,155]. The use of non-classical

atomic states such as spin-squeezed states can offset this reduction in flux even further,

by allowing for sensitivities beyond the shot-noise limit (SNL) [39, 48, 49, 156]. In this

chapter, we investigate the use of quantum non-demolition measurements in collections

of Bose-condensed atoms, to generate quantum states that could be used to enhance

their precision, in a range of metrology schemes. So far, the use of light to perform
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QND measurements of the collective atomic spin has shown significant spin-squeezing

[58,60–62,64,157–160], but these experimental demonstrations have been restricted to cold

thermal atoms. In this chapter, we focus on Bose-condensed sources, with the motivation

of implementing this quantum enhancement technique on existing high-precision, large

space-time area atomic gravimetry set-ups, such as [22]. In particular, the requirement

that the Bose-Einstein condensate (BEC) is expanded before the atomic beam-splitting

process dictates a minimum spatial size of the source, and prevents excessively elongated

samples such as in [159]. Furthermore, we focus on using freely propagating light, and find

the optimum parameter regime which balances the spin-squeezing and atomic loss caused

by spontaneous emission. We also investigate the effect of BEC interactions in the final

sensitivity and we show that we can appropriately adjust the parameter regime, in such a

way that we can get the same amount of spin squeezing and avoid their deleterious effect

in the sensitivity. Additionally, we consider the use of squeezed light to further enhance

the sensitivity. Finally, we examine the use of optical cavities, but restrict ourselves to

cavities that are assembled outside the vacuum chamber, so are inherently low-finesse with

weak atom-light coupling due to the large cavity volume.

This chapter is structured as follows. In section 5.2, we quantify how spin-squeezing via

QND measurements improves the sensitivity. In section 5.3, we introduce a simple model

of QND squeezing, which allows us to make some simple analytic scaling predictions. In

section 5.4, we present our full model including a freely-propagating multimode optical

field and decoherence due to spontaneous emission. In section 5.5, we derive approximate

analytic solutions to this model, and in section 5.6 we analyse the system numerically.

In section 5.7, we examine how the BEC interactions affect the dynamics, while in 5.8

we investigate how the use of squeezed light enhances the sensitivity. In section 5.9 we

investigate the use of an optical cavity.

5.2 Using QND Measurements to Enhance the Sensitivity

of a Mach-Zehnder Interferometer.

We have already seen that atom interferometers with the Mach-Zehnder (MZ) config-

uration are commonly used for inertial sensing and more particularly for measuring the

gravitational acceleration. In Chapter 3, we presented an elegant way, in order to describe

the operations of such an interferometer, as rotations of the pseudo-spin operators, Ĵx,

Ĵy, Ĵz, around the Bloch sphere. Here, we will use the second quantization formalism,
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in order to move from the single spin operator to the many particle case, Eq. (2.46), and

describe the collective angular momentum operator

Ĵj =
1

2

∫
ψ̂†(z)σjψ̂(z) dz, (5.1)

where σj is the jth Pauli matrix, and

ψ̂(z) =

ψ̂1(z)

ψ̂2(z)

 , (5.2)

where ψ̂n(z) with n = 1, 2 are the bosonic field operators that annihilate a particle at

point z from internal state |1〉 and |2〉 respectively. We have only considered the dynamics

in the z direction, as this captures the important physics due to the propagation of the

optical field, similarly with what we did in Chapter 2, Sec. [2.6.3]. The field operators

satisfy the usual commutation relations as presented in Chapter 2, Eq. (2.50), which we

present here for convenience[
ψ̂i(z), ψ̂

†
j(z
′)
]

= δi,jδ(z − z′) (5.3a)[
ψ̂i(z), ψ̂j(z

′)
]

=
[
ψ̂†i (z), ψ̂

†
j(z
′)
]

= 0. (5.3b)

In Chapter 3, we showed that we can estimate the phase shift between the two arms

of a MZ interferometer with sensitivity

∆φ =
ξ√
N
, (5.4)

where we had introduced the spin squeezing parameter, which we also present here

ξ =
√
N

√
Var(Ŝ(φ))

|∂φ〈Ŝ(φ)〉|
. (5.5)

The spin squeezing parameter would help us to identify the cases, where we have spin-

squeezing and consequently we can surpass the shot-noise limit (SNL). This is the limit

that we obtain, when we use N = Na uncorrelated atoms, e.g. a coherent spin state (CSS),

and we make the common measurement of a population difference at the output of the

interferometer, i.e. Ŝ1 = Ĵz for Ŝ. Namely, for this case we obtain ∆φ = 1√
Na

, where we

also considered small phase shifts φ ≈ 0.

The use of input states with quantum correlations such that ξ = ξs < 1 gives sensit-

ivities better than the SNL. We should point out here that we consider a scheme, where

the preparation of the entanglement-enhanced state and the interferometer sequence are

two completely separate stages of the whole procedure. Essentially, we initially prepare a
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spin-squeezed state, which would be used as the input state of the interferometer. This is

the reason why, we will explicitly denote in the following that φ = 0 in the atomic vari-

ables, which would anyway be the point of interest, since we expect that the interferometer

would create a very small phase shift between the two arms.

We can create appropriate correlations by generating atom-atom entanglement, but

this can also be done by creating entanglement between the atoms and some auxiliary

field, such as an optical beam. By measuring both fields together, it is possible to create

a signal with reduced fluctuations and therefore increased sensitivity. Specifically, by

measuring the combined signal

Ŝ2 = Ĵz(0)− Ĵ inf
z , (5.6)

where Ĵ inf
z = GŜb represents an inference of the population difference, based on measure-

ments of some optical observable Ŝb. The constant G is a proportionality factor, which is

found by minimizing the variance of the total signal Var(Ŝ2) with respect to G

G =
Cov

(
Ĵz(0), Ŝb

)
Var(Ŝb)

, (5.7)

which gives

Var(Ŝ2) = Var(Ĵz(0))− Cov2(Ĵz(0), Ŝb)

Var(Ŝb)
. (5.8)

Hence, creating atom-light entanglement and measuring the appropriate light observable in

such a way that Cov2(Ĵz(0),Ŝb)

Var(Ŝb)
> 0, yields a reduced signal variance Var(Ŝ2) < Var(Ĵz(0)) =

Var(Ŝ1), increasing the sensitivity over purely measuring the population difference between

the two interferometer modes. As aforementioned, we consider the case where we examine

the spin squeezing parameter of the atomic ensemble, before entering the interferometer,

namely Eq. (5.5) for φ = 0 would give

ξs2 =

√
Na

√
Var(Ŝ2(0))

|〈Ĵx〉|
, (5.9)

Hence, if we use an atomic state with ξs2 < 1, as the input state of the interferometer

that would result in a performance surpassing the SNL (∆φ < 1/
√
N). If the Hamiltonian

responsible for the atom-light entanglement commutes with Ĵz(0), then this is an example

of a QND measurement, as there is no measurement back-action on the observable being

measured. In the next section, we model the atom-light interaction and quantify how the

appropriate choice of Ŝb improves the sensitivity.
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5.3 Simple Model: Single Mode Light Fields

In order to demonstrate how QND measurement squeezing affects the sensitivity, we

begin with a simplified model, where we make the single mode approximation for both

the atomic and optical fields. We assume an ensemble of atoms with two ground states,

each interacting with a different light field, far-detuned from their corresponding excited

states, as described in Fig. [5.1]. The simplified Hamiltonian for the system is

Figure 5.1: Simplified scheme showing QND entanglement via atom-light interaction. An

optical mode represented by annihilation operator b̂1(2) interacts with an ensemble of Bose-

condensed atoms (annihilation operator â1(2)).

Ĥint = −~χsm(â†1â1b̂
†
1b̂1 + â†2â2b̂

†
2b̂2), (5.10)

where χsm indicates the interaction strength between the atoms and the light, in our simple

model. Also, âj =
∫
u∗0j(z)ψ̂j(z)dz annihilates an atom from the ground motional state

of the BEC (spatial wavefunction u0j(z)), and b̂j annihilates a photon from the optical

mode interacting with atomic state |j〉, with j = 1, 2. The atomic and light operators

satisfy [âi, â
†
j ] = δij and [b̂i, b̂

†
j ] = δij respectively. As both â†j âj and b̂†j b̂j commute with

the Hamiltonian, the solutions to the Heisenberg equations of motion for the system are

âj(t) = âj(0)eiχsmb̂
†
j(0)b̂j(0)t (5.11a)

b̂j(t) = b̂j(0)eiχsmâ
†
j(0)âj(0)t. (5.11b)

Examining the form of Eq. (5.11b), we see that the phase of the optical mode is correlated

with the population of the corresponding atomic mode. This motivates us to examine Ŷbj ,

where Ŷbj = i
(
b̂j − b̂†j

)
is the phase quadrature of the light field. After making the small

angle approximation χsmtâ
†
j âj << 1 we find

Ŷj(t) ≈ Ŷj0 − χsmâ
†
j âjtX̂j0, (5.12)

where Ŷj0 = i(b̂j(0)−b̂†j(0)) and X̂j0 = b̂j(0)+b̂†j(0), and notice that Ŷj(t) ∝ N̂aj . Hence, we

can make an inference about the atomic population difference, by measuring the difference
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of the two phase quadratures. In order to calculate the strength of these correlations, we

choose Glauber coherent states |αj〉 and |βj〉, with Im(αj) = Im(βj) = 0 as the initial

state for the atomic and optical modes respectively. This corresponds to an atomic state

with the expectation value of the spin aligned to the x-axis, but with a fluctuating total

number. The choice of a Glauber coherent state rather than a coherent spin state was for

computational convenience. It has previously been shown that for large atom number, this

state provides almost identical spin-squeezing predictions [161]. As there is no physical

process that couples parts of the Hilbert space corresponding to different values of the

total atom number, whether this state is a true number superposition, or an incoherent

mixture of total atom number has no observable consequence [162]. This state can be

obtained by beginning with all the atoms in one state, and applying a rotation around the

y-axis (i.e. and atomic beam-splitter). Setting Ŝb = Ŷ2 − Ŷ1 we find

Var(Ŝb(t)) ≈ 2 + 4χ2
smNphNat

2, (5.13)

and

Var(Ŝ2(t)) =
Na

4

(
1−

χ2
smNaNpht

2

χ2
smNaNpht2 + 1/2

)
, (5.14)

where Nph = |β1|2 = |β2|2 = |β0|2 is the expectation value of the number of photons.

Using this in Eq. (5.9) we find

ξs2 = eχ
2
smNpht

2

(
1−

χ2
smNaNpht

2

χ2
smNaNpht2 + 1/2

)1/2

, (5.15)

where we have used that 〈Ĵx(t)〉 ≈ Na
2 e
−χ2

smNpht
2
, assuming small exponents χ2

smNpht
2 <<

1. We notice in Fig. [5.2] that we obtain better sensitivities for our signal compared to the

SNL, indicating that we have created a spin squeezed state. We find the optimum value for

the number of photons Nopt
ph = 1

2χ2
smt

2 , which gives the minimum value
(
ξsm
s2

)
min

=
√

e
Na

.

This section demonstrates that this kind of atom-light interaction creates an atomic

spin squeezed state and consequently boosts the interferometer’s performance. In the

following section, we model the system more rigorously, using the freely propagating light

field and including the effects of atomic spontaneous emission.

5.4 Detailed Model Describing Atom-Light Interaction

We now consider a more detailed model that more accurately captures the relevant

physics. In particular, in order to model propagating laser beams, we require a multi-mode

model for the optical fields (see Fig. [5.3]). We also include spontaneous emission from
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Figure 5.2: Simple model: Analytical (red line) and numerical calculation (blue dots) of

ξs2 , with respect to the collective parameter χ2
smNpht

2. The numerical calculation was

implemented by using the truncated Wigner method, which we analyse in more detail in

the following sections. The black dashed line and black dotted line represent the SNL and

the Heisenberg limit respectively. The error bars were calculated by taking the standard

deviation over many different iterations of the system dynamics.

the excited atomic states, which will limit the amount of QND measurement squeezing in

practice.

5.4.1 Equations of Motion Describing Atom-Light Interaction

We assume an ensemble of Bose-condensed atoms with two electronic states |1〉 and |2〉,

coupled to excited states |3〉 and |4〉 respectively, Fig. [5.4]. The coupling is achieved by far-

detuned lasers, which are described by annihilation operators b̂1(z, t) and b̂2(z, t), satisfying

the commutation relations [b̂i(z, t), b̂
†
j(z
′, t)] = δijδ(z − z′) for i, j = 1, 2. We assume both

optical fields have narrow linewidths compared to the natural linewidths of the atomic

transitions, with central frequencies given by ωL1 = ω13 −∆1 and ωL2 = ω24 −∆2, where

∆1 and ∆2 are the detunings from the |1〉 → |3〉 and |2〉 → |4〉 transitions, respectively.

We have examined this case of atom-light interaction in Chapter 2, Sec. [2.6.3], where we

had derived the corresponding interaction Hamiltonian, Eq. (2.82). Here, we add the free
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Local Oscillator

Homodyne detection

Figure 5.3: Schematic of the free-space QND measurement scheme. After interacting

with the atomic ensemble, the freely propagating optical field is measured via homodyne

detection. As mentioned in the text, we consider the preparation of the spin-squeezed state

and the interferometric sequence as two completely separate stages. This figure depicts

only the preparation stage.

atom and light Hamiltonians, as well as we adjust the notation of Eq. (2.82) appropriately

Ĥtot = ~
∫ ∞
−∞

dz
(
ω13ψ̂

†
3(z, t)ψ̂3(z, t) + ω24ψ̂

†
4(z, t)ψ̂4(z, t)

)
− i~c

∫ ∞
−∞

b̂†1(z, t)∂z b̂1(z, t)dz − i~c
∫ ∞
−∞

b̂†2(z, t)∂z b̂2(z, t)dz

+ ~g13

∫ ∞
−∞

(
ψ̂†1(z, t)ψ̂3(z, t)b̂†1(z, t) + h.c

)
dz

+ ~g24

∫ ∞
−∞

(
ψ̂†2(z, t)ψ̂4(z, t)b̂†2(z, t) + h.c

)
dz , (5.16)

where ψ̂i(z, t) is the field operator, which annihilates an atom from atomic state |i〉 at

position z, and g13 = d13
~

(
~ωL1
2ε0A

)1/2
and g24 = d24

~

(
~ωL2
2ε0A

)1/2
are the atom-light coupling

constants, where d13 = −e〈3|r̂|1〉 and d24 = −e〈4|r̂|2〉 are the dipole moment matrix

elements for the atomic transitions |1〉 → |3〉 and |2〉 → |4〉 respectively. A is the transverse

quantization area of the light beam and c is the speed of light. For simplicity, in the

following we will present the Heisenberg equations of motion just for one two-level system

{|1〉 → |3〉, b̂1(z, t)}, since the two systems are de-coupled in the sense that the Heisenberg

equations of motion for |1〉 → |3〉 and |2〉 → |4〉 are independent. The corresponding

equations hold for the second two-level system {|2〉 → |4〉, b̂2(z, t)} as well.

We incorporate spontaneous emission as a Langevin term in the Heisenberg equation of

motion, as we analysed in Chapter 2, Sec. [2.8]. Namely we couple the atoms being in their

excited state to a reservoir of vacuum electromagnetic modes, which is then traced over,

described by the Hamiltonian Ĥbath = ~
∫∞
−∞ dz

∫∞
−∞ dω ω d̂

†(ω, z)d̂(ω, z), where d̂(ω, z)
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Figure 5.4: Atomic energy diagram of the two 2-level systems. Each atom is placed in

a superposition of electronic states |1〉 and |2〉, with excited states |3〉 and |4〉. Two

independent lasers (annihilation operator b̂1 and b̂2) are detuned from the |1〉 → |3〉 and

|2〉 → |4〉 transitions by detuning ∆1 and ∆2, respectively.

is the continuous in space and frequency annihilation operator of the bath satisfying

[d̂(ω, z), d̂†(ω′, z′)] = δ(ω − ω′)δ(z − z′). Hence, using Eq. (2.103) after appropriately

adjusting the notation, we obtain the equation of motion for ψ̂3(z, t) in the presence of

this Langevin term

∂tψ̂3(z, t) = − i
~

[
ψ̂3(z, t), Ĥtot

]
−
(γ3

2
ψ̂3(z, t) +

√
γ3d̂1in(z, t)

)
(5.17)

d̂1in(z, t) =
1√
2π

∫ ∞
−∞

dωe−iω(t−t0)d̂0(ω, z), (5.18)

where γ3 is the spontaneous emission rate from the excited state and d̂1in(z, t) is the

standard Langevin noise term depending on the value of the bath operator at the initial

time point t0, d̂(ω, z, t = t0) = d̂0(ω, z). After moving to a rotating reference frame,

with respect to the central frequency of the light field, ωL1 , we adiabatically eliminate

the excited state field operator ψ̂3, [163]. Thus, the Heisenberg equations of motion for

ψ̂1(z, t) and b̂1(z, t) are

∂tψ̂1(z, t) = ig2
13

∆1 + iγ3

2

∆2
1 +

γ2
3
4

b̂†1(z, t)b̂1(z, t)ψ̂1(z, t) + g13

√
γ3

∆1 − iγ3

2

b̂†1(z, t)d̂1in(z, t)

(5.19a)(
1

c
∂t + ∂z

)
b̂1(z, t) = i

g2
13

c

∆1 + iγ3

2

∆2
1 +

γ2
3
4

ψ̂†1(z, t)ψ̂1(z, t)b̂1(z, t) +
g13

c

√
γ3

∆1 − iγ3

2

ψ̂†1(z, t)d̂1in(z, t).

(5.19b)

We solve the equation for the light field by making the substitution z → z + ct. As

the timescale for the atomic dynamics is much slower than the timescale for the light to

cross the atomic sample, we make the approximation that the light moves between two
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arbitrary points zB to zC instantaneously, i.e b̂†(zB, t)b̂(zB, t) = b̂†(zC , t)b̂(zC , t), as long as

there is no atom-light interaction in [zB, zC ]. In addition, as our system is a Bose-Einstein

condensate, we assume that all the atoms are in the ground motional state of the trap,

which allows us to make the single mode approximation ψ̂1(z, t) = u01(z)â1(t). Assuming∫ zR
zL
|u01(z)|2dz ≈ 1 for points zL and zR sufficiently far to the left and right of the atomic

sample respectively, we can write

b̂1(zR, t) = b̂01(t)ei
g213
c

(Ω+iΓ)â†1(t)â1(t) +
g13

c

√
γ3

∆1 − iγ3/2
â†1(t)q̂1in(t), (5.20)

where we have considered the same motional function for the Langevin noise d̂1in(z, t) =

u01(z)q̂1in(t). We have also defined b̂01(t) = b̂1(zL, t), and Ω ≡ ∆1

∆2
1+γ2

3/4
, Γ3 ≡ γ3/2

∆2
1+γ2

3/4
for

notation simplicity. In order to find a simpler form for the atomic equation, Eq. (5.19a),

we make the approximation that b̂†1(z, t)b̂1(z, t) ≈ b̂†1(zL, t)b̂1(zL, t), i.e. to a good approx-

imation the number of photons in the mode does not change. Hence, after making the

single mode approximation again we obtain

∂tâ1(t) = ig2
13 (Ω + iΓ) b̂†01(t)b̂01(t)â1(t) + g13

√
γ3

∆1 − iγ3

2

b̂†01(t)q̂1in(t) . (5.21)

5.4.2 Measurement of the Optical Observables

As in Sec. [5.3], we notice that Eq. (5.20) indicates correlations between the atomic

number and the phase of the light. We can define the phase quadrature for our multi-mode

light field by selecting one specific mode. Specifically, we define Ŷb1 = i
(
b̂1 − b̂

†
1

)
where

b̂1 =

∫ τ

0
u∗LO(t)b̂1(zD, t)dt (5.22)

where zD is the position of the photo-detector. Also, uLO(t) corresponds to the temporal

mode shape of the local oscillator used in the homodyne detection [164], satisfying∫ τ

0
|uLO(t)|2dt = c (5.23)

which ensures [b̂1, b̂
†
1] = 1 and consequently [X̂b1 , Ŷb1 ] = −2i, where X̂b1 = b̂1 + b̂

†
1 is the

corresponding amplitude quadrature of b̂1. The most appropriate choice of local oscillator

for this scheme is one with constant intensity with the frequency matched to the carrier

frequency of our optical field, i.e.

uLO(t) =

√
c

τ
, (5.24)

where we have transformed to the same rotating frame as Eq. (5.19b).
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5.5 Approximate Analytic Solutions

We can obtain an analytical estimate of the squeezing parameter, ξs2 , after making

some approximations. Here, we briefly present the basic intermediate steps we made in

order to find out ξs2 , with and without spontaneous emission. A much more detailed

presentation of these calculations can be found in the Appendices[B.1 - B.3.4]. For simpli-

city, we assume that the atom-light interaction strengths as well as the detunings are the

same for the two atomic transitions, i.e g13 = g24 = g and ∆1 = ∆2 = ∆ respectively. We

also consider that initially the atoms and the light fields are in coherent states with the

same amplitudes for the two atomic levels â1(2)(0)|α1(2)〉 =
√

Na
2 |α1(2)〉 and for the light

fields b̂01(t)|β1〉 = β0|β1〉, b̂02(t)|β2〉 = β0|β2〉, where we also assume that β0 = β∗0 .

5.5.1 No Spontaneous Emission

Ignoring the effect of spontaneous emission (i.e. γ3 = 0), vastly simplifies the problem

and allows easy comparison with the simple single-mode model of Sec. [5.3]. In this case,

the calculation of the atomic expectation values we are interested in is quite straightfor-

ward

〈N̂a1(t)〉 =
Na

2
, 〈N̂2

a1
(t)〉 =

Na

2

(
1 +

Na

2

)
. (5.25)

We can also find the phase quadrature operator by making the small angle approximation

g2

c∆ â
†
1(t)â1(t) << 1

Ŷ1(τ) ≈ Ŷ1in(τ)− g2

√
cτ∆

â†1(τ)â1(τ)

∫ τ

0

(
b̂01(t) + b̂†01(t)

)
dt, (5.26)

where Ŷ1in(τ) = i
√
c√
τ

∫ τ
0

(
b̂01(t)− b̂†01(t)

)
dt. Here, we clearly notice that Ŷ1 ∝ N̂a1 . That

supports our choice for the light signal to be Ĵ inf
z ∝ Ŝb = Ŷ2 − Ŷ1. Now, using Eq. (5.25)

and (5.26) we can calculate

Var(Ŝb) ≈ 2Var(Ŷ1(τ)) ≈ 2 + 4χ2
nsNaNph (5.27)

Cov(Ĵz(τ), Ŝb(τ)) = Cov(Ŝb(τ), Ĵz(τ)) ≈ χnsNa

√
Nph (5.28)

Var(Ŝ2(τ)) ≈ Na

4

(
1−

χ2
nsNphNa

χ2
nsNphNa + 1/2

)
, (5.29)

where here Nph = β2
0τ . Also, we have defined χns ≡ g2

c∆ , where the subscript denotes no

spontaneous emission. We finally find the quantum enhancement parameter

ξns
s2 (τ) ≈ eχ2

nsNph

(
1−

χ2
nsNphNa

χ2
nsNphNa + 1/2

)1/2

, (5.30)
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where we used that 〈Ĵx(t)〉 ≈ Na
2 e
−χ2

nsNph for χ2
nsNph << 1. By inspection of Eq. (5.30),

we see that the parameters that affect the sensitivity of our signal are the total number of

photons Nph, the quantization area of the light field A (through g), the detuning ∆, and

the total number of atoms Na. We also notice that we can always increase the sensitivity of

our signal by just increasing χnsNphNa up to a point that the increase of eχ
2
nsNph becomes

dominant. This is essentially the point that 〈Ĵx〉 (denominator of Eq. (5.9)) has decreased

so much that the sensitivity starts decaying. Following that strategy, we can always achieve

better sensitivity than the SNL, as seen in Fig.[5.5]. Here, we find the minimum of ξns
s2 by

taking the derivative with respect to the collective parameter ν = χ2
nsNph:

(ξns
s2 )min =

√
e

Na
. (5.31)

We see that the minimum depends on the inverse of the number of atoms, while the

optimum number of photons for which we take that minimum is

Nopt
ph =

1

2χ2
ns

. (5.32)

5.5.2 Spontaneous Emission

With the inclusion of spontaneous emission (γ3 > 0), the calculation of the atomic ex-

pectation values is much more complicated. We begin by ignoring the effect that quantum

fluctuation in the optical field has on the spontaneous emission. That is

e−g
2Γ
∫ t
0 b̂
†(z,t′)b̂(z,t′)dt′ ≈ e−g2Γβ2

0t (5.33)

such that

〈N̂a1(t)〉 ≈ Na

2
ε(t), (5.34)

where ε(t) ≡ e−2g2Γβ2
0t indicates how fast we lose atoms from our system. Following the

same strategy as before, we find

Var(Ŝb(τ)) ≈ 2 + 4χ2
1NphNaε(τ) (5.35)

Cov(Ĵz(τ), Ŝb(τ)) = Cov(Ŝb(τ), Ĵz(τ)) ≈ χ1

√
NphNaε(τ) (5.36)

Var(Ŝ2(τ)) ≈ Na

4
ε(τ)

(
1−

χ2
1NphNaε(τ)

χ2
1NphNaε(τ) + 1/2

)
, (5.37)

where we have defined χ1 ≡ g2Ω
c and ε(τ) = 1

τ

∫ τ
0 ε(t)dt, which is the time average of the

decay. Note that χ1 = χns in the no spontaneous emission case (γ3 = 0). By comparing



93

0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

(a)

0.2 0.4 0.6 0.8 1 1.2

0

5

10

V
(S

2
)

(b)

0.2 0.4 0.6 0.8 1 1.2

ns
2 N

ph

0

1

2

3

4

5

s
2

10-3

(c)
numerical analytical

Figure 5.5: (a) 〈Ĵx〉/〈N̂a1〉 (b) Var(Ŝ2) and (c) ξs2 with respect to the collective parameter

ν = χ2
nsNph. (a): The decay is due to over-squeezing the state, since we do not consider

spontaneous emission here. This causes the squeezing parameter to reach a minimum value

(c). The black dashed line in (b), points to zero, just to reassure the Var(S2) is always

positive. In (c) the black dotted line represents the Heisenberg limit. The parameter values

are A = 10−10 m2, ∆ = 102 GHz, Na = 106. The error bars are barely distinguishable for

all lines.

Eq. (5.29) with (5.37) we realise that, except than the apparent effect of particle loss that

the atomic spontaneous emission has on the dynamics of the system, there is an additional

effect on the variance of the signal, caused by the emergence of the time averaged decay

rate in the denominator of Eq. (5.37), which cannot be reproduced from Eq. (5.29), by

simply making the substitution Na → Naε(t). Using that 〈Ĵx(t)〉 ≈ Na
2 e
−(χ2

1+2χ2)Nph for

(χ2
1 + 2χ2)Nph << 1, the spin-squeezing parameter is

ξs2 ≈ e(χ2
1+χ2)Nph

(
1−

χ2
1NphNaε(τ)

χ2
1NphNaε(τ) + 1/2

)1/2

, (5.38)

where we have defined χ2 ≡ g2Γ
c and now the decay factor can be expressed as ε(τ) =

e−2χ2Nph . We can also find for the time average of the decay factor that ε(τ) = 1−ε(τ)
2χ2Nph

.

By inspecting Eq. (5.38) it is clear that the case with spontaneous emission is more

complicated. We notice again that we can increase the sensitivity by increasing the term
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χ2
1NphNa ∝

NphNa
A2∆2 (for ∆ >> γ3), but now we are restricted by the atomic loss rate ε =

exp{(−2χ2Nph)} ∝ exp
{(

Nph

A∆2

)}
(for ∆ >> γ3). Hence, we have to find the appropriate

parameter regime that balances between spin squeezing and atomic loss.
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Figure 5.6: (a) 〈Na1〉, (b) Var(S1) (green dashed line) and Var(S2) (blue solid line) (c) ξs2

numerical (blue squares) and analytical (red asterisks) with respect to number of photons.

In (a) the black dotted line shows the initial atomic population, while the black dashed

line in (c) represents the SNL. The parameter values are A = 10−6 m2, ∆ = 102 GHz,

Na = 106.

We present simulations of our analytical results for ξs2 , Fig. [5.6(c)]-[5.8(c)], for three

different quantization area values, A =
(
10−3 m

)2
, A =

(
10−4 m

)2
and A =

(
10−5 m

)2
.

For each different area value, we essentially change the number of photons and detuning

appropriately in order to obtain best sensitivities . For A =
(
10−3 m

)2
we notice that we

never obtain enhanced sensitivity (compared to SNL), since the loss of atoms exceeds the

resulting squeezing, Fig.[5.6(c)]. As we decrease A, the atom-light interaction strengthens,

increasing the sensitivity of our signal Fig.[5.7, 5.8].

In order to find the minimum of ξs2 , we express Eq. (5.38) in terms of the dimensionless
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Figure 5.7: (a) 〈Na1〉, (b) Var(S1) (green dashed line) and Var(S2) (blue solid line) (c)

ξs2 numerical (blue solid line) and analytical (red dashed line) with respect to number

of photons. In (a) the black dotted line shows the initial atomic population, while the

black dashed line in (c) represents the SNL. The parameter values are A = 10−8 m2,

∆ = 102GHz, Na = 106.

parameters µ ≡ χ2
1
χ2

= g2Ω2

cΓ , λ ≡ χ2Nph and ζ ≡ Naµ. Hence, we can now write ξs2 as

ξs2 = eλ(1+µ)

(
1− ζε(τ)

ζ − ζε(τ) + 1

)1/2

, (5.39)

where the decay can now be expressed as ε(τ) = e−2λ. We work in a parameter regime

where µ << 1, such that

ξs2 ≈ eλ
(

1− 2ζλe−2λ

1 + ζ − ζe−2λ

)1/2

. (5.40)

In order to simplify things further, we consider the case where ∆ >> γe. In that

case Ω → 1
∆ and Γ → γ3

2∆2 , thus µ → 2g2

cγ3
. That means that µ only depends on the

atomic properties and the quantization area of the light A (through g) and consequently

ζ → 2g2

cγ3
Na. On the other hand λ → g2γ3

2c
Nph

∆2 for ∆ >> γ3. Hence, if we fix the value

of ζ, by choosing a specific value for the number of atoms Na and the area A, we only

need to optimize ξs2 with respect to λ which is proportional to Nph/∆
2 in the regime

∆ >> γ3. In Fig. [5.9], we followed that procedure for several different values of ζ
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Figure 5.8: (a) 〈Na1〉, (b) Var(S1) (green dashed line) and Var(S2) (blue solid line) (c)

ξs2 numerical (blue solid line) and analytical (red dashed line) with respect to number

of photons. In (a) the black dotted line shows the initial atomic population, while the

black dashed line in (c) represents the SNL. The parameter values are A = 10−10 m2,

∆ = 102 GHz, Na = 106.

and found the minimum of ξs2 with respect to λ using Eq. (5.40). We notice that the

sensitivity increases as we increase ζ, which means either increasing Na or decreasing

the area. Just to clarify here that by decreasing the area we also increase the atomic

loss rate, which leads to loss of sensitivity. In that case we should also change the other

parameters (Nph/∆
2) appropriately, in order to counteract that effect, resulting at the

end in better sensitivities. On the other hand, the increase of Na does not affect the loss

rate of atoms and it solely improves the sensitivity. We should mention here that there are

similar analytical calculations available in the literature [165,166], but they are limited in

the small atomic loss and Gaussian state regime, while our calculations go beyond these

assumptions. In the following, we are going to present analytical and numerical results

in the case of a phase squeezed light field, as well as numerical calculations including

interactions amongst the atoms and the introduction of a cavity, which to our knowledge

have not been examined before.
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Figure 5.9: (a) Minimum value of ξs2 with respect to ζ (bottom x-axis) and A (top

horizontal-axis), (b) optimum λ (left vertical-axis) and optimum number of photons Nopt
ph

(right y-axis) with respect to ζ. In (a) the black dashed line represents the SNL.

5.6 Numerical Solutions

We can solve for the dynamics of the system numerically by using the truncated Wigner

(TW) method [75]. The reader can find a detailed discussion about TW method in Ap-

pendix [C]. From the Heisenberg equations of motion we can move to Fokker-Plank equa-

tions (FPEs), by using correspondences between quantum operators and Wigner variables.

After truncating third and higher order terms we can map the FPEs into stochastic dif-

ferential equations (SDE), which can be solved numerically with respect to the Wigner

variables. We make the following correspondences â1(t) → α1(t), b̂1(z, t) → β1(z, t) and

q̂1in(t) → qin(t). We also consider the initial conditions α1(0) = α10 + η1, β01(t) =

β0 + wb1(t) and qin(t) = wq1(t). η1 is complex Gaussian noise satisfying η1 = 0 and

η∗1η1 = 1
2 , wx(t) is a complex Wiener noise satisfying wx(t) = 0 where x = b1, q1. Also,

wb1(t)wb1(t′) = 1
2cδ(t−t

′) and wq1(t)wq1(t′) = 1
2δ(t−t

′), where the bar represents averaging

with respect to a large number of stochastic trajectories.

We consider the D2 transition line of 87Rb (52S1/2 → 52P3/2) for both atomic trans-

itions, where the transition frequency is ω13 = ω24 = ωa = 2πc/λ and λ = 780 nm. The

spontaneous emission rate of the excited state is γ3 = γ4 = 38.11 MHz [167].
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More particularly, we numerically examine the SDEs coming from Eq. (5.20) and

(5.21) for the light and the atoms respectively. For the atomic ensemble of each two

level system we consider a single mode field, while for the two light fields we make multi-

mode simulations. Our numerical calculations give us the ability to examine the true

dynamics of the system, namely we consider the atomic spontaneous emission taking place

during the unitary dynamics, which generates the spin squeezing. Most importantly,

our numerical method enable us to introduce new features in our system, considering

the particle interactions of the two BECs Sec. [5.7], as well as examine the cavity case

Sec. [5.9] and explore how they affect the final sensitivity, by numerically examining the

new more complicated dynamics. In Fig. [5.6]-[5.9], we present the numerical simulations

corresponding to the analytical results analysed in the previous section. We notice that

our analytical and numerical results have almost perfect agreement, indicating that the

approximations we made through the derivations do not have any significant effect in the

final results.

5.7 BEC Interactions

So far the formalism we have developed could be applied equivalently to both BECs

and cold thermal atoms homogeneously coupled to the light field, since essentially the only

assumption we have made is that we work under the simple mode approximation for the

atomic ensembles of the two 2-level systems. In this section, we examine how interactions

amongst the particles of two BECs could affect the dynamics of the QND measurement

scheme and how that could change the results we have already presented. We consider

that these interactions are described by a Hamiltonian of the same form with the second

term of the BEC Hamiltonian we presented in Chapter 2, Eq. (2.56). However, here we

have two different BECs, described by ψ̂1(r) and ψ̂2(r) corresponding to the ground states

of each two level system, i.e.

Ĥ int
bec =

∑
i,j=1,2

Uij
2

∫ ∞
−∞

ψ̂†i (r)ψ̂†j(r)ψ̂i(r)ψ̂j(r) dz, (5.41)

where Uij = 4π~2

m aij is the non-linear interaction potential and aij is the s-wave scattering

length between |i〉 and |j〉, with i, j = 1, 2. In the previous sections we worked under

the assumption that the light field propagates only along the z-axis and hence we could

analyse the dynamics of the atom-light interactions in the 1-D case. However, here that we

focus on the interactions amongst the atoms of the two BECs, we develop a 3-D analysis,

since we consider that each atomic ensemble forms a sphere of radius rBEC. We make the
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single mode approximation for both BECs, as we did previously

ψ̂1(z, t) = u01(r)â1(t), ψ̂2(z, t) = u02(r)â2(t). (5.42)

Substituting that back in Eq. (5.41) we obtain

Ĥ int
bec = ~χ11â

†
1(t)â†1(t)â1(t)â1(t) + ~χ22â

†
2(t)â†2(t)â2(t)â2(t) + 2~χ12â

†
1(t)â1(t)â†2(t)â2(t),

(5.43)

where we defined

χij =
Uij
2~

∫ ∞
−∞
|u0i(r)|2|u0j(r)|2 d3r. (5.44)

Alternatively we can use the number density of atoms in order to write∫ ∞
−∞
|u0i(r)|2|u0j(r)|2 d3r =

1

NiNj

∫ ∞
−∞

ni(r)nj(r) d3r. (5.45)

Assuming constant number density we finally find

χ11 =
2π~
mV

a11 χ22 =
2π~
mV

a22, (5.46)

which represents the strength of the intra-particle interactions in each BEC. If we consider

that there are no inter-particle interactions, namely the two BECs are separate, then

χ12 = 0, while if we assume that they are perfectly overlapping then χ12 = 2π~
mV a12. The

Hamiltonian in Eq. (5.43) would add the following terms in the atomic equations of motion

for the two 2-level systems

∂tâ1(t) = −2i
(
χ11â

†
1(t)â1(t) + χ12â

†
2(t)â2(t)

)
â1(t) (5.47)

∂tâ2(t) = −2i
(
χ22â

†
2(t)â2(t) + χ12â

†
1(t)â1(t)

)
â2(t). (5.48)

Hence, now we can numerically examine the full dynamics of the system, with the BEC

interactions incorporated, using again the TW method. We can essentially do that by

transforming the above operator equations of motion into a FPE and map the result to a

SDE, as we did earlier. We add the resulting terms in the SDEs of the previous sections, in

order to examine the full dynamics. In our simulations we considered the same scattering

lengths as in [120, 168], namely a11 = 100.4 a0, a22 = 95.00 a0 and a12 = 97.66 a0, where

a0 is the Bohr radius. We also assumed that the area of the atomic ensemble should be

smaller or equal than the transverse area of the light field. In our numerical calculations

we used ABEC = 10−11m2, corresponding to a radius rBEC = 2µm for the BEC.

In the previous sections, where we had not yet added the BEC interactions, we noticed

that for fixed values of the area (A), the detuning (∆) and the number of atoms (Na), we
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can find the minimum of the squeezing parameter, by adjusting the number of photons.

That means that the change of the total time of interaction was equivalent with the change

of the light intensity. However, now that we consider interactions amongst the atoms, the

time would play a more crucial role in the dynamics, since after some time the atom

interactions would become significant resulting in decrease of the final sensitivity. This is

shown in Fig. [5.10(a)], where we notice that considering intra-particle interactions in two

separate BECs degrades the sensitivity, while the case of two overlapping BECs perfectly

coincides with the no interaction case, since the total interaction strength amongst the

atoms is smaller compared to the two separate BECs case. As aforementioned, the number

of photons interacting with the atomic ensemble, is what really matters, since it determines

the level of squeezing we obtain in the QND measurement scheme. Hence, we can easily

find an appropriate regime, in order to avoid the deleterious effects of atom interactions

to the final sensitivity, by increasing the light intensity and appropriately decreasing the

total interaction time. In that way, we consider the same number of photons, offering the

same level of spin squeezing, while everything happens faster, which means that there is

not enough time for the atom interactions to damage the final sensitivity, as shown in

Fig. [5.10(b)].

5.8 Squeezed Light

Up to this point we have only considered classical light sources. That is, we have

assumed that the incoming light is in a Glauber coherent state, with Var(Ŷ1in) = 1. It is

possible to increase the sensitivity of our final signal, by considering a squeezed incoming

light, where Var(Ŷ1in)sq = e−2r and r is the squeeze factor [164]. In that case our analytical

calculation for the spontaneous emission case results in

Var(Ŝb)sq ≈ 2Var(Ŷ1(τ))sq ≈ 2e−2r + 4χ2
nsNaNph, (5.49)

while the covariances remain the same. Hence, the squeezing parameter becomes

ξs2 ≈ e(χ2
1+χ2)Nph

(
1−

χ2
1NphNaε(τ)

χ2
1NphNaε(τ) + e−2r/2

)1/2

. (5.50)

In Fig. [5.11] we notice that we obtain better sensitivity for all three area values

compared to the coherent incident light (Fig. [5.6(c)-5.8(c)]). In Fig. [5.12] we show the

numerical and analytical min(ξs2) for the three different area values, with respect to the
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Figure 5.10: ξs2 with respect to time considering three different cases, (i) no atom in-

teractions (blue solid line with open circles), (ii) atom interactions where the two BECs

perfectly overlap (red dashed line with asterisks) and (iii) atom interactions, where the

two BECs are separate (black dash-dotted line with squares). In (a) we consider smal-

ler light intensity and larger total interaction time compared to (b), i.e. in (a) we have

β2
0 = 1012 photons/s and τ = 1ms, while in (b) β2

0 = 1014 photons/s and τ = 0.01ms. The

other parameter values are: Na = 106, ∆ = 1011, A = 10−10m2, ABEC = 10−11m2. The

black dotted lines denote the SNL.

degree of optical squeezing in the incoming light, S, defined by

S = 10 log


√

Var(Ỹb1)√
Var(Yb1)

 dB , (5.51)

where Var(Yb1) = 1 is the variance for a coherent state and Var(Ỹb1) = e−2r. Using

squeezed incoming light gives an exponential rate of decrease for ξs for all cases (for

A = 10−6 that holds for ' 5dB). In addition, for a light field with improvement ' 5dB we

see that we can surpass the SNL even for the A = 10−6m2 case, while that was impossible

when we used a coherent initial state for the light field, Fig. [5.6](c). Finally, we notice in

Fig [5.12] that our analytical approximative model (red stars) given by Eq. (5.50) agrees

well with our numerical results (blue circles).
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Figure 5.11: We consider squeezed incoming light and we examine the numerical (blue

solid line) and analytical (red dashed line) evolution of ξs2 with respect to the number of

photons for all three area values. The brown squares in (a) and brown dash-dotted lines

in (b) and (c) show the min(ξs2) of the corresponding cases in Fig. [5.6] - [5.8]. The black

dotted lines denote the SNL. The other parameter values are r = ln 10, ∆ = 102 GHz,

Na = 106.

5.9 Cavity Dynamics

We can further boost the sensitivity of our signal with the addition of an optical cavity,

as it essentially increases the atom-light coupling, Fig. [5.13]. We consider a dual-frequency

cavity with resonant frequencies ωc1 and ωc2 detuned from the two atomic transitions

|1〉 → |3〉 and |2〉 → |4〉 by detunings ∆1 and ∆2 respectively. In the Hamiltonian of our

system, Eq. (5.16) we interchange the continuous light field annihilation operators b̂1(z, t)
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of the minimum value of ξs2 with respect to the improvement in dB of the incoming light

field, for the three different area values. The dashed line represents the SNL. The other

parameter values are ∆ = 102 GHz, Na = 106.

and b̂2(z, t) with the cavity mode annihilation operators ĉ1 and ĉ2, giving

Ĥc
tot = ~ωc1 ĉ

†
1ĉ1 + ~ωc2 ĉ

†
2ĉ2

+ ~
∫ ∞
−∞

dz
(
ω13ψ̂

†
3(z, t)ψ̂3(z, t) + ω24ψ̂

†
4(z, t)ψ̂4(z, t)

)
+ ~gc1

∫ ∞
−∞

dz
(
ψ̂†1(z, t)ψ̂3(z, t)ĉ†1(t) + h.c

)
+ ~gc2

∫ ∞
−∞

dz
(
ψ̂†2(z, t)ψ̂4(z, t)ĉ†2(t) + h.c

)
(5.52)

The coupling strength constants are defined as gc1 = d13
~

(
~ωc1
2ε0V

)1/2
and gc2 = d24

~

(
~ωc2
2ε0V

)1/2

where V = AL is the volume of the cavity, A is the light quantization transverse area and

L is the cavity length. Using the standard input output formalism, which we analysed in

Chapter 2, Sec. [2.9], we obtain the equation of motion for ĉ1

∂tĉ1 = − i
~

[
ĉ1, Ĥ

c
tot

]
− κ

2
ĉ1 +

√
κb̂1in(t) , (5.53)

where κ is the cavity photon decay rate, and b̂1in(t) =
√
cb̂1(zL, t) where c is the speed

of light and b̂1(zL, t) is the continuous in space annihilation operator of the incoming

light field used in the previous sections. b̂1in(t) also satisfies the commutation relation

[b̂1in(t), b̂1in(t′)] = δ(t− t′). Another important quantity is the light field leaking out of the

cavity

b̂1out(t) =
√
κĉ1(t)− b̂1in(t) . (5.54)
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Figure 5.13: QND measurement interaction boosted by an optical cavity. After interacting

with the atomic ensemble, the light exiting the cavity b̂1(2)out is measured via homodyne

detection.

In this case, b̂1in(t) is an input light field that coherently drives the dynamics of the cavity,

but now the mode of the cavity, ĉ1, is the one that interacts with the atomic ensemble

and is entangled with the atomic ground-state number operator. Again, we incorporate

spontaneous emission following the same method as in Sec. [5.4], i.e. we use Eq. (5.17)

in order to eliminate ψ̂3(z, t) from the equations of motion for ψ̂1(z, t) and ĉ1. After

making the single mode approximation for ψ̂1(z, t) and d̂1in(z, t), using again the same

mode functions for both of them, and moving to a rotating frame with respect to the

cavity resonance frequency we obtain

∂tâ1(t) = ig2
c1(Ω + iΓ)c̃†1(t)c̃1(t)â1(t) + gc1

√
γ3

∆1 − iγ3/2
c̃†1(t)q̃1in(t) (5.55a)

∂tc̃1(t) =
[
ig2
c1(Ω + iΓ)â†1â1 −

κ

2

]
c̃1(t) + gc1

√
γ3

∆1 − iγ3/2
â†1(t)q̃1in(t) +

√
κ b̃1in(t), (5.55b)

where c̃1(t) = ĉ(t)eiωc1 t, b̃1in(t) = b̂1in(t)eiωc1 t, q̃1in(t) = q̂1in(t)eiωc1 t.

To investigate the dynamics, we use the TW method again, making the appropriate cor-

respondences, in order to numerically examine the dynamics of our system. In Fig. [5.14]

we plot the time evolution of the number of atoms and the number of cavity photons, as

well as the intensity of the input and output fields. We see that the cavity comes into its

steady state after time t � 1/κ. As such, the rate of incoming photons should be larger

than the rate of loss, i.e. 〈b̂†1in
b̂1in〉 � κ, to ensure 〈N̂c1〉 = 〈ĉ†1ĉ1〉 � 1. In our numerical

simulations, we have fixed the total interaction time τ = 10−4 >> 1/κ = 10−6 and we

change the number of cavity photons, which is the parameter affecting the dynamics of

our system, by just changing the intensity of the incoming light field 〈b̂†1in
b̂1in〉.

We measure a combined signal of the same form as in the free space case, but now we
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Figure 5.14: Cavity dynamics: time evolution of (a) mean number of atoms in state |1〉,

〈Na1〉, (b) mean number of cavity photons 〈Nc1〉, (c) Intensity of input light (red solid

line with asterisks) and intensity of the leaking output light field from the cavity (blue

solid line). The vertical black dashed line is drawn at the time point 1/κ. We notice

that we need τ � 1/κ, in order to reach the cavity steady state. Other parameter values:

A = 10−8m2, ∆ = 102 GHz, Na = 106 and κ = 1 MHz.

measure an observable of the output field, b̂1out(t), since we do not have any direct access to

the cavity mode. The output field contains information about atomic observables through

Eq. (5.54). Similarly with Sec. [5.4.2] we use as our light observable the difference of the

phase quadratures of a specific mode of the output fields.

We plot ξs2 for the same area values as for Fig. [5.6-5.8] with κ = 1MHz. Here, we

noticed that for ∆ = 102GHz and area values smaller than A = 10−8m2 we have to

decrease the incoming light intensity at a level that we tend to a regime where 〈N̂c1〉 → 1.

We can avoid that by just increasing appropriately the detuning ∆ = 104GHz, in order

to obtain the same interaction strength. Assuming a cavity of length L = 10 cm, this

corresponds to a finesse of ∼ 104. Our choice of cavity parameters is motivated by a

cavity that could be added to an existing atom interferometry set-up, and can be installed

outside the vacuum system. We use a range of different intensities for the incoming light

field to determine the best sensitivity. Comparing Fig. [5.6(c)-5.8(c)] with Fig. [5.15] it is
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apparent that we achieve better sensitivities by adding a cavity, than just using free space

light fields. Although we don’t have any analytical results for the case of the cavity, due to

the complexity of that model, we examined numerically if the dynamics of the system has

the same behaviour as in the free space case. We concluded that we can find the optimum

of the sensitivity using the same procedure as in Sec. [5.6]. Namely for a particular value

of A (or equivalently V = AL) and Na we can find the minimum of ξs2 with respect to the

remaining parameters Nc1/∆
2
1. Here we have one parameter more, the photon decay rate

from the cavity, κ. We notice that we have better sensitivities for smaller values of κ, thus

for larger cavity quality factors (see Fig. [5.16]). However, in the cavity case we are more

constrained on the parameter values we could use, as they should satisfy 〈b̂†1in
b̂1in〉 > κ

and τ > 1/κ as we discussed earlier.
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Figure 5.15: Cavity: ξs2 with respect to N inp
b1

for different values of A. The brown dotted

lines show the min(ξs2) of the corresponding cases in Fig. [5.6(c)-[5.8(c)]. The parameter

values are Na = 106, k = 1 MHz and ∆ = 102 GHz, except (c) where we used ∆ = 104 GHz,

for the reasons discussed in the main text.
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for the cavity case. We also plot the free space case (black dashed line). The black dotted

line represents the SNL. The other parameter values are Na = 106 and ∆ = 102 GHz,

except for the area values A = 10−9m2 and A = 10−10m2 in all cavity lines where we used

∆ = 104GHz, for the reasons we mentioned in the main text.

5.10 Conclusions

We have analysed the creation of spin-squeezing in an ensemble of Bose-condensed

atoms via a quantum non-demolition measurement scheme, considering both freely propagat-

ing light, and optical cavities. We found that the determining factor in the quality of

spin-squeezing produced was the cross-sectional area of the optical beam used to probe

the spin of the atomic system, with small areas leading to higher atom-light coupling,

and a larger phase shift on the light for a given level of spontaneous emission. Of course,

varying the intensity, detuning, or duration of the incoming light also affects the level of

spin squeezing. However, for a given area, fixing two of these parameters, while adjusting

the remaining one would always lead to the same optimum. For the D2 transition in 87Rb

atoms, we found that for the case of freely propagating light, no squeezing was possible

when the cross-sectional area of the atom-light interaction was larger than ∼ 10−6 m2

due to loss of atoms caused by spontaneous emission, regardless of the intensity or detun-

ing of the incoming light. For a potential experimental setup, where we consider the D2

transition in 106 87Rb atoms and we can achieve a quantization area of the laser beam

∼ 3× 10−11 m2, with laser power 0.25 mW, atomic resonance detuning 100 GHz and total

interaction time τ = 100 ns, we conclude to a squeezing value of ∼ 0.1, which corresponds
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to a potential improvement of atom interferometric sensitivity of ∼ 10. This is equivalent

to increasing the number of atoms by a factor of 100. The use of optical squeezing im-

proved the level of quantum enhancement further, and relaxed the restrictions on the area

of the light. Finally, we considered the use of an optical cavity. For reasonably achievable

cavity parameters, we found approximately an order of magnitude increase over what was

achievable in the free space case.
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Chapter 6

Improving One-Axis Twisting

Using Cavity Feedback

6.1 Introduction

In this chapter we examine the creation of spin-squeezed states using the non-linear

one-axis-twisting (OAT) Hamiltonian. Spin squeezed states created via the OAT dy-

namics, were first introduced by [49] and originally realised by atom-atom interactions.

In [61, 62] they created spin squeezed states, using effective OAT dynamics, realised by

the interaction of an atomic ensemble with a far detuned light field mode of a cavity.

Here, we show how we can transform from the QND measurement scheme with the cavity,

we examined in the previous chapter, to such a system that effectively reproduces OAT

dynamics. Hence, we employ the same techniques as in Chapter 5, in order to examine

numerically the dependence of the spin squeezing parameter and consequently the final

sensitivity, to the other parameters of the system. We also compare the effective OAT

dynamics that is being reproduced by the cavity scheme, with a simple model that pro-

duces the original OAT dynamics. Through our analysis we clarify the differences between

those two models and we identify the sources of noise that limit the performance of the

cavity model. Our analysis incorporates atomic spontaneous emission, as well as other

decoherence mechanisms, such as photon shot noise, which is an inherent feature of the

cavity OAT scheme. Hence, we aim to find the optimum parameter regime that balances

out the level of spin-squeezing and all the other decoherence processes, and finally provides

us with the best available sensitivity of that scheme. Our numerical analysis gives us the

ability to compare the performance of the effective OAT scheme with the cavity QND

measurement model, as both systems depend on the same parameters. This comparison
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shows that the QND measurement scheme gives better results compared to the cavity

OAT dynamics working in the same parameter regimes. In addition, we try more com-

plicated schemes, in order to find any additional improvements. Firstly, in the cavity

OAT scheme we measure the light leaking out of the cavity, and we use that signal in

order to extract some information about the atomic ensemble, similarly with the process

we followed in the QND measurement scheme. This is a hybrid scheme, which takes ele-

ments from both cavity OAT and QND measurement dynamics. This complicated scheme

provides us with results surpassing the sensitivity obtained from the QND measurement

and the cavity OAT scheme separately. We also present further improvements by using

squeezed incoming light for all schemes under consideration (cavity QND measurement,

cavity OAT, combined), where we optimized over the light squeeze factor and angle, in

order to find optimal results.

6.2 Simple One-Axis Twisting Scheme

Figure 6.1: Husimi Q representation of a state produced by applying the OAT Hamilto-

nian, Eq. (6.1), on a maximal Ĵx eigenstate, for four different values of the squeezing

strength χoatt.

For a coherent spin state (CSS) aligned in the x-axis, as the initial state of the atomic

ensemble, the well-known OAT Hamiltonian is given by

Ĥoat = ~χoatĴ
2
z . (6.1)

As shown in Fig. [6.1], this Hamiltonian generates a rotation of each spin around the

z-axis with rate proportional to Ĵz creating a shearing of the initial CSS. The noise is not

suppressed along the z-direction, but instead we have to make a rotation of Ĵz around the
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x-axis by an angle α, in order to find the optimally squeezed direction

Ĵα = e−iĴxαĴze
iĴxα = Ĵz cosα+ Ĵy sinα. (6.2)

There are available analytical results giving the angle α with respect to the number of

atoms N and the squeezing strength χoatt [49]

α(N,χoatt) = −1

2
arctan

[
4 sin(χoatt) cos(χoatt)

N−2

1− cos(2χoatt)
N−2

]
, (6.3)

where for N >> 1 it reduces to [169]

α(N,χoatt) ≈ −
1

2
arctan

(
N−1/3

)
. (6.4)

We can realise the OAT dynamics given by Eq. (6.1), by considering a simple model

of two 2-level systems. We are motivated to consider the two 2-level system configuration

instead of just using Eq. (6.1), in order to have a direct connection between the system

considered here and the QND measurement scheme examined in Chapter 5, Fig. [5.4]. In

the following, we will show that these two descriptions are equivalent. We know that the

z component of the angular momentum operator, as well as the total number of atoms are

given by

Ĵz =
1

2

(
N̂a1 − N̂a2

)
(6.5)

N̂ = N̂a1 + N̂a2 . (6.6)

Using these two equations in Eq. (6.1) we obtain

Ĥoat =
1

2
~χoat

(
N̂2
a1

+ N̂2
a2
− 1

2
N̂2

)
. (6.7)

Also by considering a constant total number of particles, we can eliminate the last term

of the above Hamiltonian, by just making an appropriate rotation

Ĥoat = Ĥ1 + Ĥ2 =
1

2
~χoat

(
N̂2
a1

+ N̂2
a2

)
, (6.8)

where

Ĥi =
1

2
~χoatN̂

2
ai , (6.9)

with i = 1, 2. Hence, this Hamiltonian, Eq. (6.8), which is realised by a two 2-level system

is equivalent with Eq. (6.1). Similarly with Chapter 5, we can see that the Hamiltonians

of the two 2-level systems are de-coupled, so we can examine the dynamics of only the one
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system and the corresponding results would hold for the second as well. Hence, we find

the equation of motion for the atomic operator of the first 2-level system

∂tâ1 = −iχoat

(
N̂a1 +

1

2

)
â1. (6.10)

From the above result, we can deduce that the original OAT dynamics is based on the

dependence of the energy shift of the atomic ground state on the actual number of atoms

being in the ground state. This is how the atom-atom interactions create an entangled

state. As we are going to see in the following section, in the effective OAT scheme this kind

of interaction and entanglement generation is produced with the help of a cavity mode and

an incoming coherent light field, which is frequency detuned from the cavity resonance.

This detuning means that the number of photons entering the cavity depends on the

number of atoms being in the ground state. Also, the atom-light interaction produces an

energy shift of the atomic ground state that is proportional to the number of photons in

the cavity, which as mentioned above also depends on the number of atoms. This is how

the interaction between light and atoms effectively reproduces the OAT dynamics and

creates an entangled state.

6.3 One-Axis Twisting via Cavity Feedback

We can create OAT dynamics effectively by considering atom-light interactions using

a cavity mode. We actually consider the exact same system as in Sec. [5.9], but instead

of moving to a rotating frame in order to cancel the cavity resonance frequency, we rotate

our system in order to create detuning between the cavity and the incoming light field

frequencies. Hence, we do that by simply transforming Eq. (5.55b) into a rotating frame

with frequency ∆c1 = ωL1 − ωc1

∂tc̃
′
1(t) =i

[
∆c1 + g2

c1(Ω + iΓ)â†1â1 + i
κ

2

]
c̃′1(t) +

+ gc1

√
γ3

∆1 − iγ3/2
â†1(t)q̃′1in

(t) +
√
κ b̃′1in

(t), (6.11)

where c̃′1(t) = ĉ(t)eiωL1
t, b̃1in(t) = b̂1in(t)eiωL1

t, q̃1in(t) = q̂1in(t)eiωL1
t and ωL1 is the central

frequency of the incoming light. The atomic equation, Eq. (5.55a), remains the same,

which we present here for convenience

∂tâ1(t) = ig2
c1(Ω + iΓ)c̃′†1 (t)c̃′1(t)â1(t) + gc1

√
γ3

∆1 − iγ3/2
c̃′†1 (t)q̃′1in

(t). (6.12)

The first term in Eq. (6.12) represents the differential energy shift of the atomic ground

state |1〉, due to the interaction with the cavity mode. In addition, in Eq. (6.11), where we
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now have a cavity detuning, the second term in the right hand side indicates a frequency

shift of the cavity resonance, depending on the atom population in state |1〉. In that way,

the number of photons transmitted into the cavity depends on N̂a1 . The spin correlations

amongst atoms are generated from the fact that the atomic energy shift of each atom

depends, as aforementioned on the number of photons and consequently on the total

number of atoms in the ground state. Putting it differently, Eq. (6.11) indicates that

the number of intra-cavity photons has a linear dependence on the number of atoms, i.e.

N̂c1 ∝ N̂a1 . Substituting that into Eq. (6.12) provides unitary dynamics similar with

Eq. (6.10), which is produced by a Hamiltonian of the form Ĥ ∝ N̂2
a1

, indicating effective

OAT dynamics. This is how the spin-spin effective interaction is realised, via atom-light

interactions using a cavity mode. In the following, we are going to examine in more detail

how the equations of motion relates N̂c1 with N̂a1 linearly.

In order to do so, we consider the simple case of no spontaneous emission (γ3 = 0,

Ω = 1
∆ and Γ = 0). Also, we are actually interested on how the quantum fluctuations

in the number of atoms and photons affect the unitary dynamics of the system. This is

the reason why we consider, that both number operators can be decomposed in a large

constant expectation value and small quantum fluctuations, i.e. N̂a1 = 〈N̂a1〉+ δN̂a1 and

N̂c1 = 〈N̂c1〉 + δN̂c1 . Finally, after making those substitutions, in Eq. (6.11) and (6.12),

and transforming to an appropriate rotating frame, in order to eliminate the constant

expectation values, 〈N̂a1〉 and 〈N̂c1〉, we obtain

∂tc̃
′
1(t) = i

[
∆c1 +

g2
c1

∆
δN̂a1 + i

κ

2

]
c̃′1(t) +

√
κ b̃′1in

(t) (6.13a)

∂tâ1(t) = i
g2
c1

∆
δN̂c1 â1(t). (6.13b)

As we pointed out in Chapter 5, the number of photons inside the cavity is determined

by balancing between the intensity of the incoming laser beam (b̂†1in
b̂1in) and the rate

of photons leaking out of the cavity (κ). The cavity reaches its steady state after time

τ >> 1/κ. We can find the cavity operator at its steady state

c̃′1 =

√
κb̂1in

κ
2 + i(∆c1 +

g2
c1
∆ δN̂a1)

, (6.14)

which gives the steady state photon number operator

N̂c1 =
κb̂†1in

b̂1in

κ2

4 + (∆c1 + δx̂)2
, (6.15)

where for simplicity we defined δx̂ =
g2
c1
∆ δN̂a1 . In the even simpler case where we do

not have any atoms, the relationship between the number of intra-cavity photons and
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the cavity detuning would be given by the Lorentzian N̂c1 =

√
κb̂†1in

b̂1in

κ2

4
+∆2

c1

. For ∆c1 = κ/2

we obtain the steepest slope between N̂c1 and ∆c1 , meaning that around ∆c1 = κ/2

we obtain the strongest linear dependence between them. We are interested on that

point, because if we incorporate again the atoms we want to focus on the regime where

N̂c1 ∝ ∆c1 − δx̂ ∝ ∆c1 − δN̂a1 , since that would reproduce the OAT dynamics. For the

parameter values we examine here δx̂ << 1, so we can expand N̂c1 with respect to δx̂

around zero, and we keep terms up to first order in δx̂

N̂c1 = N̂c1(0) +
∂N̂c1

∂δx̂

∣∣∣∣∣
0

δx̂. (6.16)

After calculating the derivative and using ∆c1 = κ/2 as explained earlier, we find

N̂c1 =
2b̂†1in

b̂1in

κ
−

4b̂†1in
b̂1in

κ2
δx̂. (6.17)

From here we can calculate the photon number expectation value

〈N̂c1〉 = 2
β2

0

κ
, (6.18)

since 〈δx̂〉 = 0. We now decompose the incoming intensity light operator b̂†1in
b̂1in = β2

0 +

δ
(
b̂†1in

b̂1in

)
, in order to obtain

δN̂c1 =
2

κ
δ
(
b̂†1in

b̂1in

)
−

4g2
c1

κ2∆

[
β2

0 + δ
(
b̂†1in

b̂1in

)]
δN̂a1 . (6.19)

Hence, now we notice the aforementioned linear dependence between the quantum fluc-

tuations of the number of cavity photons and atoms, which effectively realises the OAT

dynamics. We also see that the quantum fluctuations of the incoming light disrupt the

linear relationship between those two, and that would have deleterious effects in the fi-

nal spin-squeezing, as we are going to analyse later. We can compare the effective OAT

dynamics produced by the cavity feedback scheme, with the original OAT dynamics, by

comparing the corresponding atomic equations of motion. In order to do so, we substitute

Eq. (6.19) into (6.13b), and we find the atomic equation of motion for the cavity case

∂tâ1(t) = i

[
2g2
c1

κ∆
δ
(
b̂†1in

b̂1in

)
−

4g4
c1

κ2∆2

[
β2

0 + δ
(
b̂†1in

b̂1in

)]
δN̂a1

]
â1. (6.20)

We also go back to the atomic equation of motion for the simple model, Eq. (6.10), and

we decompose N̂a1 = 〈N̂a1〉 + δNa1 as we are interested on the quantum fluctuations of

the field, and move to an appropriate rotating frame, in order to eliminate the large mean

value (〈N̂a1〉), as we did earlier. Hence, for the simple model we obtain

∂tâ = −iχoatδN̂a1 â1. (6.21)
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Comparing Eq. (6.20) with (6.21) we notice that the corresponding χoat term in the cavity

case would be an operator depending on the noise of the incoming light field

χ̂coat =
4g4
c1

κ2∆2

[
β2

0 + δ
(
b̂†1in

b̂1in

)]
(6.22)

with expectation value given by

〈χ̂coat〉 =
4g4
c1β

2
0

κ2∆2
, (6.23)

where we used that
〈
δ
(
b̂†1in

b̂1in

)〉
= 0 and the superscript c denotes explicitly that we

refer to the cavity case. We can separately define the noisy part as

δχ̂coat =
4g4
c1

κ2∆2
δ
(
b̂†1in

b̂1in

)
, (6.24)

in order to be able to write χ̂coat in a more elegant form

χ̂coat = 〈χ̂coat〉+ δχ̂coat. (6.25)

Importantly, we also notice that there is an additional term in the atomic equation of

motion of the cavity scheme, which we denote as

δω̂ =
2g2
c1

κ∆
δ
(
b̂†1in

b̂1in

)
, (6.26)

which is being generated by the quantum fluctuations of the incoming light as well. Hence,

we can now write Eq. (6.20) in a more convenient form

∂tâ1(t) = −i〈χ̂coat〉δN̂a1 â1 +−iδχ̂coatδN̂a1 â1 + iδω̂â1 (6.27)

We can easily notice now that the second and third terms in Eq. (6.27) differentiate the

cavity scheme from the simple OAT dynamics, Eq. (6.21), and they are both stemming

from the quantum fluctuations of the incoming light field. In the next section, where we

will examine the dynamics of our system numerically using the TW method, we will show

how these two terms affect the sensitivity of the cavity model compared to the simple

scheme. We will show that, by comparing both models through simulating the simple

OAT scheme with a noisy χoat term as in Eq. (6.22), and by adding an additional noise

source in the corresponding equation of motion, as Eq. (6.27) indicates.

6.4 Numerical Solutions

We numerically examine the dynamics of our system using again the TW method. We

follow the same strategy with Chapter 5, Sec. [5.6], in order to determine correspondences
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between quantum operators and Wigner variables as well as their initial conditions, as

explained in Appendix [C]. Here we calculate the squeezing parameter

ξs =
√
N

√
Var(Ŝ(0))

|〈Ĵx〉|
, (6.28)

using as our signal Ŝ = Ĵα, which is the rotated Ĵz angular momentum component, with

respect to angle α, over the x-axis, as explained in Sec. [6.2]. Here, we essentially consider

that we prepare a spin squeezed state using the cavity OAT scheme, before the atomic

ensemble enters an atom interferometer. This is the reason why, we again considered that

φ = 0, as we did in Chapter 5. We determine the angle α, by numerically minimizing

Var(Ĵα) over α, using a gradient descent algorithm. We firstly examine the simple case

with no spontaneous emission, namely we use the SDEs coming from Eq. (6.13a) and

(6.13b) for the cavity case and Eq. (6.21) for the simple model. In both schemes we use

parameter values, in order to reach the minimum value of ξs, due to over-squeezing the

state. In Fig. [6.2], we notice that the cavity scheme qualitatively reproduces the OAT
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Figure 6.2: ξs with respect to 〈χ̂coat〉t for the original OAT dynamics (blue line) and for

the cavity scheme (red line). The black dashed line denotes the SNL.

dynamics, as expected. However, the level of squeezing that produces is almost an order

of magnitude less than the one generated by the simple model, as well as the optimum

value occurs a bit slower, i.e. for a larger value of 〈χ̂coat〉t.

Aiming to find the reason of the decreased performance in the cavity case, we also

present the relationship between the Wigner variables corresponding to δN̂c1 and δN̂a1
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Fig. [6.3(a)]. Each blue dot corresponds to a different trajectory of the Wigner variables,

while the red line depicts a linear fit amongst them. It is clear that the blue dots indicate

a linear dependence between the fluctuations of the number of cavity photons and atoms,

which is the source of the effective OAT dynamics. However, this linearity is not perfect,

due to the aforementioned two new contributions in the dynamics, caused by the noise

of the incoming light field, as indicated by Eq. (6.19). We can numerically calculate the

Wigner variable corresponding to χ̂coat, by evaluating the slope of the linear fit between the

Wigner variables δNc1 and δNa1 at each time point. We notice that this calculation results

in a noisy behaviour of χ̂coat, which lies around its expectation value given by Eq (6.23),

as depicted in Fig. [6.3(b)].
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Figure 6.3: (a) Scatter plot of the Wigner variables δNc1 and δNa1 at a specific time point.

The red line is a linear fit corresponding to the blue dots, while the black lines were found

by applying ±2σfit to the linear fit, where σfit is the standard deviation of the distribution

of the blue dots. (b) χcoat as a Wigner variable with respect to time. It is calculated by

taking the slope of the linear fit of the blue dots in (a) at each time point. The red line

denotes its expectation value calculated by Eq. (6.23), while the black lines were found by

applying ±2
g2
c1
∆ σslope to the mean value, where σslope is the error of the slope of the linear

fit at each time point, which was calculated numerically.

The disagreement between the two models, shown in Fig. [6.2], should be coming from

the differences between their atomic equations of motion. As we identified in the previous

section, in the cavity model we have two additional terms, compared to the simple model.

Firstly, χoat is no more just a constant number, but instead it has a noisy part depending

on the noise of the incoming light field. We also have the presence of an entirely new term
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in the dynamics, δω̂, again depending on the noise of the incoming light.

We can compare those two contributions by taking the ratios of Eq. (6.26) and (6.24),

where δω̂
δχ̂coat

= κ∆
2g2
c1

>> 1 for all parameter regimes we examined. Hence, we expect

that δω̂ will dominate and that this is the noise term, which mainly damages the linear

relationship between δN̂c1 and δN̂a1 and consequently decreases the final sensitivity of the

cavity model. We can also show that, by numerically examining the simple OAT scheme

incorporating those new terms in the corresponding equation of motion, and explore how

they affect the dynamics of the system. We essentially examine the evolution of the SDE

coming from Eq. (6.27). In Fig. [6.4], we explore all different combinations of adding those

noise contributions in the simple OAT model, namely we examine the case where we only

add the δχ̂coat noise (blue stars), or only the δω̂ term (red stars), as well as the case where

we incorporate both noise terms (green line) and we compare them with the lines shown

in Fig. [6.2]. We notice that the δχ̂coat term does not have a visible effect in the sensitivity,

while all the damage comes from δω̂, as expected. We can also see that the line produced

from the original OAT dynamics with the δω̂ noise incorporated produce almost identical

results with the cavity case, with the only difference being that the cavity line is slightly

shifted in the horizontal axis, due to the time needed to reach its steady state. Hence,

this analysis indicates that the cavity model indeed produces effective OAT dynamics, but

noise coming from the incoming light field acts as mechanism of decoherence, which limits

the final sensitivity that could be achieved by this scheme, compared with the original

OAT dynamics.

Now we move to the more complicated case, where we incorporate atomic spontaneous

emission, by examining the numerical evolution of the SDEs coming from Eq. (6.11) and

(6.12). In Fig. [6.5], we simulate the dynamics of the cavity. We notice a similar picture

with the QND case, namely atomic loss is present, as well the cavity reaches its steady

state after some time τ >> 1/κ.

After incorporating the effect of spontaneous emission, we can find parameter regimes,

which provide us with better sensitivity, balancing between the squeezing strength χ̂oatt

and the atomic loss rate. We numerically examine the squeezing parameter for different

interaction area values, as we did in the QND case. In Fig. [6.6], we present the evolution

of ξs with respect to the squeezing strength 〈χ̂coat〉t. We also find the value of angle α,

which denotes the optimum direction of angular momentum operators with less noise,

at each time point, by minimizing Var(Ĵα), as explained earlier, and we compare that

with the analytical result found by Eq. (6.3). We do that for three different area values
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Figure 6.4: ξs with respect to 〈χ̂coat〉t for the cavity (magenta dotted line) and the simple

model. Here, we examine several different cases for the simple model, namely simple model

without any noise (black dotted line), simple model with only δχ̂oatc incorporated (blue

stars), simple model with only δω incorporated (red stars), and simple model with both

noises incorporated (green line). The black dashed line denotes the SNL.

A = 10−8m2, A = 10−6m2, A = 10−4m2. We notice that for A = 10−8m2 we almost

get the minimum of ξs due to over-squeezing the state (≈ 10−1), as shown in Fig. [6.2].

However, for the other two area values we get worse performance, due to the deleterious

effects of spontaneous emission. We also notice that in all three cases, the optimum angle

takes small values, indicating that the optimum measurement is close to the z-direction,

which is the conventional measurement for an atom interferometer.

From investigating the equations of motion, as well as numerically examining the

dynamics of the system we found that the atomic loss rate is proportional to
β2

0
V κ∆2 . We

notice that the squeezing strength and the atomic loss rate follow the same relationship

patterns as in the QND case, Sec. [5.6, 5.9]. Hence, we are going to employ the same

method in order to find the optimum parameter regime, namely for a fixed number of

atoms, volume and lifetime of the cavity, Na, V , κ respectively, we find the optimum

squeezing with respect to N inp
ph /∆

2, where N inp
ph = β2

0t.

In Fig. [6.7 (a)], we notice that for the same parameter values of Na, V and κ, the QND

scheme produces significantly improved level of squeezing, compared to the cavity OAT

dynamics. In addition, we see that the OAT line cannot surpass the minimum we found
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Figure 6.5: Dynamics for the cavity one-axis twisting scheme with atomic spontaneous

emission incorporated. (a) Atom number expectation value with respect to time. (b)

Mean cavity photon number with respect to time. (c) Input and output light intensities

with respect to time. The black dashed vertical line denotes the time 1/κ. Parameter

values: Na = 106, ∆ = 102MHz, κ = 1 MHz, A = 10−6m2.

for the no spontaneous emission case (≈ 10−1) in Fig. [6.2], in contrast to the QND case,

where its minimum due to over-squeezing is close to the Heisenberg limit (≈ 2 × 10−3)

Fig. [5.2].

6.5 Combined Scheme

One additional mechanism of decoherence, existing in the cavity OAT scheme, is the

photons leaking out of the cavity. This is true since they contain information about the

atomic ensemble, due to the atom-light interaction. We can extract this extra information

by measuring a light observable following a similar strategy with Chapter 5. Hence, we

measure the combined signal

Ŝ3 = Ĵα(0)− Ĵ inf
α , (6.29)

where Ĵα is calculated via Eq. (6.2) and Ĵ inf
α = GαŜ

α
b is an inference we can make by

measuring an appropriate light observable. As in the previous chapter, we consider that
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Figure 6.6: Left column: ξs with respect to 〈χ̂coat〉t. Right Column: α with respect to

〈χ̂coat〉t. (a), (b) A = 10−4m2, (c), (d) A = 10−6m2, (e), (f) A = 10−8m2. The black

dashed line denotes the SNL. The other parameter values are: L = 10cm, ∆ = 102MHz,

Na = 106 and κ = 1 MHz.

the preparation stage of the entanglement-enhanced state is completely separate from the

interferometer stage. Hence, we choose Gα in such a way, in order to minimize the variance

of the combined signal Var(Ŝ3), thus Gα =
Cov(Ĵα(0),Ŝαb )

Var(Ŝαb )
. However, here we can not extract

this extra information by simply measuring the difference of the phase quadrature of the

two light fields, because the dynamics is much more complicated compared to the scheme

in Chapter 5. This is the reason why we use Ŝαb = X̂
(2)
θ − X̂

(1)
θ where X̂

(i)
θ with i = 1, 2 is

the generalised quadrature

X̂
(i)
θ = eiθ b̂iout + e−iθ b̂†iout

. (6.30)

We remind the reader here that we have already introduced the generalised quadrature

in Chapter 3, Sec. [3.2.2], but in that case we used the index φsq rather than θ, because

we were examining the concept of quadrature squeezing in different phase-space reference

frames. So, here θ determines a new reference frame, rotated with respect to the original
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Figure 6.7: (a) min(ξs) with respect to the cavity volume V . For a specific value of V ,

Na = 106 and κ = 1 MHz, we find the minimum of ξs with respect to N inp
ph /∆

2. (b) We

present the optimum values of N inp
ph /∆

2 at which the minimum of ξs occurs. The black

dashed line denotes the SNL.

one, as was depicted in Fig.[3.7]. For example, for θ = 0 and θ = π/2 we obtain the

amplitude and phase quadratures respectively. In the next section, where we will examine

the case of using squeezed incoming light we will use φsq again, in order to specifically

denote the angle over which we squeeze the quadrature. We calculate X̂θi using a specific

mode of the outgoing light field

b̂i =

∫ τ

0
u∗LO(t)b̂ioutdt, (6.31)

where uLO(t) =
√

1
τ , since here we do not consider a spatial dependence for the light field,

and consequently b̂†iout
b̂iout represents the number of photons per time.

We numerically examine the time evolution of our system again using the SDEs created

from Eq. (6.11) and (6.12), but now our final signal would be Ŝ3(α, θ), which depends on

the two angles α and θ. We determine those angles by numerically minimizing Var(Ŝ3)

over both α and θ, by using a two parameter gradient descent algorithm. In Fig.[6.8], we

show the time evolution of ξs, α and θ for the three different area values we examined

previously as well, A = 10−8m2, A = 10−6m2, A = 10−4m2. We additionally present the

corresponding lines for the cavity QND measurement and cavity OAT schemes. We notice

that the combined model offers significant improvements over the cavity OAT scheme for
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all area values, as well as it shows smaller improvements even compared to the cavity

QND measurement case. We also can see a similar behaviour of α for the combined and

the OAT cavity scheme.
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Figure 6.8: First column: ξs with respect to 〈χ̂coat〉t for the combined scheme (black line),

the cavity QND measurement scheme (red dashed line) and the cavity OAT scheme (blue

dashed line). Second column: α/π with respect to 〈χ̂coat〉t, for the combined scheme (black

line) and for the cavity OAT scheme (blue dashed line). Third column θ/π with respect

to 〈χ̂coat〉t. In the first row we used A = 10−4m2, in the second row A = 10−6m2, and

finally in the third row A = 10−8m2. The black dotted line denotes the SNL. The other

parameter values are: L = 10cm, ∆ = 102MHz, Na = 106 and κ = 1 MHz.

We aim to compare the combined scheme with both cavity OAT and QND schemes, in

a more clear way, by finding the corresponding optimum parameter regimes, following the

same procedure as previously. Namely, we consider a fixed value for Na, V and κ and we

optimize ξs over
N inp

ph

∆2 . We use the same parameter values as in Fig. [6.7 (a)] and we compare

the QND and cavity OAT schemes with the combined one, Fig. [6.9]. We find that the

complicated scheme surpasses the level of squeezing provided by solely the OAT and QND

schemes for all cavity volume values and for the range 10−9m3 < V < 10−5m3 respectively.

For smaller values of the cavity volume the OAT dynamics reaches its minimum due to

over-squeezing (as we noticed in Fig. (6.2)), which also seems to damage the sensitivity of
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Figure 6.9: (a) min(ξs) with respect to the cavity volume V . For a specific value of V ,

Na = 106 and κ = 1 MHz, we find the minimum of ξs with respect to N inp
ph /∆

2. (b) We

present the optimum values of N inp
ph /∆

2 at which the minimum of ξs occurs.

the combined scheme, giving slightly worse results than the QND dynamics.

6.6 Squeezed Light

In our analysis we have been considering classical incoming light up to this point,

which means that Var(X̂
(i)
φsq

) = Var(Ŷ
(i)
φsq

) = 1 for all values of φsq and for both light

fields i = 1, 2. Now, we try squeezed incoming light with reduced noise in one direction,

Var(X̂
(i)
φsq

) = e−2r, at the expense of corresponding increase in the perpendicular direction

Var(Ŷ
(i)
φsq

) = e2r, where r and φsq are the squeeze factor and angle respectively, as analysed

in Chapter 3, Sec. [3.2.2].

In the free space light field case in Chapter 5, we found that the final sensitivity

increases exponentially with the squeeze factor r, Fig. [5.12]. However, we do not have the

same situation here, namely the sensitivity increases with respect to r up to an optimum

value. We find that value by minimizing ξs over r in both QND and OAT schemes, using

a gradient descent algorithm. Due to the different source of squeezing of the QND and

OAT dynamics, we should squeeze different quadratures of the incoming light in each
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scheme, in order to enhance more the final sensitivity of the atomic state. In the QND

dynamics, information about the atomic state population is encoded in the phase of the

light field, while in the OAT dynamics the squeezing comes from correlations between the

number of intra-cavity photons with the number of atoms in the ground state. Hence,

we can further boost the final sensitivity, if we use incoming light with squeezed phase

quadrature φsq = π/2 in the former, and squeezed amplitude quadrature φsq = 0 in the

latter. The dynamics of the combined scheme, is much more complicated hindering us from

developing a similar logic about the value of φsq we should use there. Ideally, we should

optimize over all four related parameters, r, φsq, α and θ, in order to find the optimum

case for the combined scheme using squeezed light. However, the fact that two of those

parameters, r and φsq, determine the dynamical evolution of the system, while the other

two α and θ, determine the final signal we measure, which has to be optimized at each

time point, makes the optimization over all four parameters an impenetrable task. This is

the reason why, we tried to make a simplification by using a constant value for the squeeze

factor in the combined scheme, r = 1, since we noticed that most of the optimal squeeze

factor values in the QND and OAT schemes are close to one. Also, we used the best

result we obtained from using a grid of ten different values for φsq, while we appropriately

optimized over α and θ using a two parameter gradient descent algorithm at each time

point. For V = (10−9, 10−8, 10−5) m3 the optimum squeeze angle was φsq/π = 0.33,

while for V = (10−7, 10−6) m3 we found φsq/π = 0.44.

In Fig. [6.10] we notice that the use of squeezed light provides us with further im-

provements in all quantum enhanced schemes under consideration. Although, we used

a simplified procedure in order to find the optimum case for the combined scheme with

squeezed light, it still provides us with the better performance, even if it almost coincides

with the corresponding QND measurement scheme.

6.7 Conclusions

In this chapter, we examined the effective OAT dynamics produced via a cavity feed-

back scheme, as well as we explored new more complicated schemes that could offer in-

creased sensitivity. We firstly compared this cavity model with the original OAT dynamics.

Using the TW method, in order to numerically examine both schemes, we concluded that

noise contributions in the cavity scheme, coming from the photon noise of the incoming

field, limit the level of squeezing we can achieve compared with the original OAT model.

This analysis nicely agrees with similar work already existing in the literature, but our
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Figure 6.10: min(ξs) with respect to V , where we optimized over Nph/∆
2, using squeezed

light (solid lines). We compare them with the corresponding cases of no squeezed light

(dotted lines). The black dashed line denotes the SNL. We used the following parameter

values: Na = 106, κ = 1 MHz.

numerical method helps to acquire a deeper insight of how OAT dynamics is being repro-

duced in the cavity case, as well as how the aforementioned noise contributions damage

the final sensitivity. In addition, our analysis enabled us to make a direct comparison

of the cavity OAT scheme with the QND measurement model using a cavity, presented

in the previous chapter. Again, we found for the cavity OAT scheme the same relation-

ship patterns amongst parameters of the system that we have found for the QND case.

Our results show that the QND measurement scheme achieves better performance for the

same parameter values. We also considered a hybrid scheme that combines characteristics

from both OAT and QND models, which outperforms both of them, giving slightly better

results compared to the QND measurement model.

For a potential experimental setup we consider the D2 transition of an ensemble of

106 87Rb atoms inside a cavity with volume V = 10−8m3. We also consider the following

experimental values: detuning from the atomic resonance ∆ = 100 GHz, power of the

incoming laser beam 25 nW, cavity lifetime κ = 1 MHz and total interaction time τ =

0.1 ms. The effective OAT scheme gives a squeezing factor of ∼ 0.14, leading to potential

sensitivity improvement of ∼ 7, which is equivalent with increasing the number of atoms

by a factor of ∼ 50. For the same experimental values the combined scheme provides us

with a squeezing factor ∼ 0.078, which results in a sensitivity improvement of a factor of
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∼ 13, which corresponds to an increased number of atoms by a factor of ∼ 150, which is a

slightly better result compared to the one offered by the QND measurement scheme. We

improved the performance of all three schemes further, by using squeezed incoming light

with optimized squeezing factor and angle values.



128

Chapter 7

Conclusions and Outlook

In this thesis we have examined different ways of enhancing the sensitivity of atom

interferometers with a focus on atom gravimeters. These devices provide us with a prom-

ising alternative to current classical gravimeters, since they are not susceptible to long

term drifts, as their function does not depend on any mechanical object. Although, they

have shown comparable or even better performance than spring and falling corner cube

gravimeters respectively, they have not been able to surpass the precision offered by su-

perconducting gravimeters. This, as well as the demand for increased precision by several

geophysical applications have been the main reasons for exploring methods to increase the

sensitivity of atom gravimeters. Considerable efforts have been made in that direction fo-

cused on finding methods of increasing the phase shift at the output of the interferometer,

by increasing the total interferometer time or the space-time area.

The performance of current atom gravimeters is limited by experimental imperfections,

such as noise in the laser pulses realising the optical elements of the interferometer and vi-

brations. However, after surpassing those noise limits we reach the fundamental shot-noise

limit (SNL), which constraints all atom interferometers that use uncorrelated states. Many

entanglement schemes have been realised experimentally and have shown tremendous sens-

itivity improvements over the SNL. However, many of these schemes are incompatible with

the classical routes of improvement of atom interferometers, namely large atom flux, long

interrogation times and large space-time areas. This results in devices that can surpass

the shot-noise limit, but for less quantum resources and consequently they cannot offer

better sensitivities than current state of the art gravimeters.

The two main purposes of this thesis are to enhance the performance of atom gra-

vimeters by 1) developing a theoretical model that describes the dynamics of an atomic

ensemble propagating into the gravitational field, and using metrics from estimation the-
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ory, in order to rigorously quantify the performance of these devices and by 2) exploring

entanglement-enhanced schemes that are compatible with current state of the art atom

gravimeters.

7.1 Sensitivity of Current Atom Gravimeters

In Chapter 4, we examined the quantum mechanical evolution of a particle passing

through a Kasevich-Chu (KC) interferometer. Additionally, we used the quantum Fisher

information (QFI) as our metric, in order to quantify the metrological potential of this

device. Our analysis showed that the semi-classical approaches that estimate the grav-

itational acceleration, by taking into account only the resulted phase difference between

the two arms of the interferometer are unable to capture the full dynamics of the system.

Through our model we were able to reproduce all phase differences coming from those ap-

proaches, but we also found an additional source of metrological information, due to the

effect of the gravitational field on the atomic wave-function itself. That means that there

is more metrological potential than what is currently considered. This additional source of

information is related to variations of the position and momentum atomic distribution, due

to the motion of the particle in the gravitational field. After looking over all the available

information that the configuration of a KC interferometer contains, we wanted to quantify

how much of this information we can attain by making a particular measurement. For

this reason, we used the classical Fisher information (CFI) as our metric. We showed

that the common population difference measurement optimally extracts the information

related to the phase difference between the two arms of the interferometer. Hence, now

that we had proved that there is additional metrological information, this measurement is

not any longer optimal. For this reason, we tried different innovative measurements, such

as the position and momentum distributions of the atom that could retrieve the inform-

ation coming from the effect of the gravitational field on the atomic wave-function. We

showed that such a measurement could be optimal depending on the initial motional state

of the atom. Hence, our analysis extends the possible routes of sensitivity improvement

of atom gravimeters, by adding considerations related to the variance of the momentum

and position distributions of the initial motional state. Our work also provides us with

a rigorous way to quantify the performance of atom gravimeters that could inspire and

affect the design of future devices, as we will analyse in the following, Sec. [7.3].
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7.2 Quantum Enhanced Atom Interferometers

In Chapters 5 and 6, we explored quantum entanglement schemes that could enhance

the sensitivity of atom interferometers limited by the SNL. We focused on schemes that are

compatible with current state of the art devices and hence they could be easily employed

in them. This is the reason why, we considered atom-light interaction schemes, in order

to create entanglement and spin-squeezed states. Essentially, the main idea is to devote

some time in order to prepare the spin-squeezed states and then use these states as the

input of the interferometer, in order to increase the final sensitivity.

More particularly, in Chapter 5 we examined a quantum non-demolition (QND) meas-

urement scheme by considering the interaction of a BEC with a free propagating light

field. Using free light field instead of a cavity mode would be easier to implement in a

current working gravimeter, but for completeness we also examined the case of a weak

interacting cavity that could be attached to the current construction of such a device. We

also took into account the atomic spontaneous emission, which has deleterious effects in

the final sensitivity. We analysed the final sensitivity with respect to all the parameters

of the system and we found which of them play a significant role in the dynamics, by

balancing between the level of spin-squeezing and atomic loss. We also found that the use

of a light field with squeezed phase quadrature, rather than a coherent state laser beam

could further boost the final atomic sensitivity. Finally, we showed that the use of a low

finesse cavity enhances the atom-light interaction and provides us we better spin-squeezing

compared with the free light case. Our analysis provides us with a numerical and an ap-

proximative analytical model that describes the dynamics of a QND measurement scheme.

This model helps us to determine the final sensitivity as a function of the parameters of

the system and in such a way we can find the optimal parameter regime with respect

to the level of spin-squeezing, under which we should work given the available quantum

resources and decoherence processes.

In Chapter 6, we examined the second method of creating spin-squeezed states through

atom-light interactions, namely we realised effective one-axis-twisting (OAT) dynamics by

using a cavity feedback. Firstly, we compared the cavity OAT scheme, with the conven-

tional OAT dynamics, namely we simply used the OAT Hamiltonian (∝ Ĵ2
z ). We noticed

that the cavity OAT scheme indeed offers similar behaviour with the simple OAT model,

but its sensitivity is degraded by almost one order of magnitude due to the photon-shot

noise of the incoming light field, which drives the dynamics of the system. Here, we also
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showed that we can easily convert the dynamics of our system, from a cavity QND meas-

urement scheme to a cavity feedback OAT dynamics scheme, by simply adding a detuning

between the frequencies of the incoming light field and the cavity mode. In such a way,

we showed that it was possible to create correlations amongst the atoms and consequently

produce a spin squeezed state. Again, we considered the effect of atomic spontaneous emis-

sion in the total dynamics of the system and we applied the same method as Chapter 5,

in order to find relationship patterns amongst all system parameters and balance between

spin-squeezing and atomic loss. Interestingly, we found that the same relationship pat-

terns with the QND case hold. Hence, using our numerical models it was easy to compare

the two different schemes, working in the same parameter regime. It is clear that for the

same area, atom number and cavity lifetime values and by optimizing over the remain-

ing parameters with respect to the final level of squeezing, the QND scheme provides us

with much better sensitivities compared to the cavity OAT case. Finally, we considered

a scheme that combined both dynamics, namely in the cavity OAT scheme we measured

the photons leaking out of the cavity and in such a way we gained more information about

the atomic state, increasing the final sensitivity. Because of the increased complexity of

the dynamics we did not just measure the phase quadrature of the outgoing light field as

we did in Chapter 5, but instead we optimized with respect to the final level of squeezing

over the angles that determine the measured light field quadrature and the optimal dir-

ection of spin-squeezing. The results were impressive finding better performances for all

parameter values compared to solely considering cavity OAT dynamics, but more import-

antly we found a parameter regime, where this combined scheme offered better sensitivities

even compared to the QND case. Finally, we investigated the use of squeezed light in all

entanglement-enhanced schemes and we found additional further improvements.

7.3 Future Work

We believe that the work presented in this thesis would have contributions in boosting

the performance of future atom gravimeters. Our results presented in Chapter 4 could offer

short and long term improvements to the performance of these devices. Firstly, we can have

quick-wins in the precision of current atom gravimeters by engineering appropriate atomic

motional states and making innovative measurements, in order to extract all the available

information, being offered by the configuration of a KC interferometer. In addition, in

Chapter 4 we showed that a modified scheme from the conventional KC design, could

offer improved metrological information, which as we showed can be optimally extracted
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by measuring the final momentum distribution of the atoms. Hence, this evidence suggests

that we need to completely rethink how sensors are designed. Most quantum sensors are

based on a conventional two mode operation, where we have a phase shift between the two

arms of an atom interferometer, which we measure by observing the quantum interference

of matter-waves. Although, this design is quite helpful for our human intuition, in order

to understand the dynamics of the system, this conventional scheme does not necessarily

provide us with the optimal metrological potential given the available quantum resources

and experimental constraints under consideration. That means that the construction of

a sensor should be designed by trying to answer the following question: “How could

we use the available set of tools, in order to build a sensor that has optimal metrological

potential, i.e. the largest possible value for the quantum Fisher information, given relevant

experimental constraints?”. For example, in the case of the KC interferometer we have

three laser pulses with equal timings amongst each other, we could however apply many

laser pulses, with their parameters determined by optimizing the sensitivity. The only

constraints would be for the total interferometer time and the specification of the lasers

to meet realistic experimental values. The resulted scheme would probably be extremely

complicated and unintuitive to our understanding. However, we could use the classical

Fisher information as our metric, in order to find measurements that optimally extracts

all the available information. Although the work presented in Chapter 4 focuses on the

performance of atom gravimeters, similar formalisms can be developed in order to quantify

and optimize the performance of different quantum sensors, where their function is based

on atom interferometers.

Given that we are at the situation, where the performance of an atom interferometer

is limited by the SNL, the work presented in Chapters 5 and 6 would offer crucial con-

tributions, in order to find improved entanglement-enhanced schemes. Our analysis of

the QND measurement and the effective OAT schemes sheds light on what is the optimal

regime we could work in both schemes, balancing between squeezing strength and de-

coherence processes. We tried to find the optimum parameter regimes in both schemes

that give the best squeezing, by finding relationship patterns amongst the parameters of

the system, as well as suggesting several modifications that could enhance the level of

spin-squeezing in both models, such as using squeezed incoming light or combining the

OAT and QND schemes. Although, we managed to find parameter regimes and alternat-

ive schemes in order to present improvements compared to current cavity OAT and QND

measurement schemes, the dynamics of these systems are extremely complicated and re-
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quire a more systematic analysis. Hence, these human intuitive strategies we employed

cannot find the absolute optimum spin-squeezing we could achieve, given the available

quantum resources and decoherence processes. For example, in the entanglement schemes

we considered in this thesis, we have assumed from the very beginning that we split the

total time into preparation time, where we create the spin-squeezed state, and interrog-

ation time where the atoms pass through the interferometer. However, this method is

not the optimal one, since there is common criticism that the time taken to prepare the

quantum entanglement could often be better spent by simply increasing the interrogation

time of the interferometer, thus increasing the precision through conventional methods. In

that sense, using the spin-squeezing parameter, or again the QFI as our metrics, we could

find the optimal entanglement-enhanced scheme, by optimizing over all parameters of the

system, with respect to these metrics. The complexity of these schemes requires the use

of more advanced multi-parameter optimization algorithms, which would find the optimal

entanglement-enhanced design given the specific system under consideration (available

quantum resources and experimental limitations).
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Appendix A

Optimal Matterwave Gravimetry

A.1 QFI of a Particle in a Gravitational Field

Here, we give a more detailed derivation of Eq. (4.10a). Approximating the gravita-

tional field as a linear potential mgẑ, the state of the particle after time T is |Ψ(T )〉 =

Ûg(T )|Ψ0〉, where

Ûg(T ) = exp

[
− iT

~

(
p̂2

2m
+mgẑ

)]
. (A.1)

In order to isolate the contribution due to the gravitational field g, we make use of the

Baker-Campbell-Hausdorff (BCH) formula:

eX̂+Ŷ = eX̂eŶ e−
1
2 [X̂,Ŷ ]e

1
6(2[Ŷ ,[X̂,Ŷ ]]+[X̂,[X̂,Ŷ ]]), (A.2)

where X̂ and Ŷ are operators satisfying the commutation relations

[[[X̂, Ŷ ], X̂], X̂] = [[[X̂, Ŷ ], X̂], Ŷ ] = [[[X̂, Ŷ ], Ŷ ], Ŷ ] = 0. (A.3)

This is true for X̂ = − iT
~

p̂2

2m and Ŷ = − iT
~ mgẑ, where[

X̂, Ŷ
]

=
igT 2

~
p̂z, (A.4a)[

Ŷ ,
[
X̂, Ŷ

]]
=
img2T 3

~
, (A.4b)[

X̂,
[
X̂, Ŷ

]]
= 0. (A.4c)

Thus, Eq. (A.2) gives:

e−
iT
~ ( p̂2

2m
+mgẑ) = e−

iT
~

p̂2

2m e−
iT
~ mgẑe−

igT2

2~ p̂ze
img2T3

3~ . (A.5)

We use Eq. (A.2) again with the choice X̂ = −iT
~ mgẑ and Ŷ = − igT 2

2~ p̂z, where
[
X̂, Ŷ

]
=

− img2T 3

2~ , which allows us to combine exp[−i(T/~)mgẑ] and exp
[
−igT 2p̂z/(2~)

]
into a

single exponential:

e−
iT
~ mgẑe−

igT2

2~ p̂z = e−igĜ0(T )e−
img2T3

4~ , (A.6)
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where Ĝ0(T ) = T
~
(
T
2 p̂z +mẑ

)
. Thus, the evolution operator Ûg(T ) can be written as:

Ûg(T ) = e
− iT~

(
p̂2

2m
+mgẑ

)

= e−i
T
~

p̂2

2m e−igĜ0(T )ei
mg2T3

12~ . (A.7)

We can ignore exp
[
img2T 3/(12~)

]
, since this is just a global phase factor, and so the state

of the particle after time T is

|Ψ(T )〉 = e−
iT
~

p̂2

2m e−igĜ0(T )|Ψ0〉. (A.8)

It is now simple to compute the derivative of |Ψ(T )〉 with respect to g:

|∂gΨ(T )〉 = −ie−
iT
~

p̂2

2m Ĝ0(T )e−igĜ0(T )|Ψ0〉. (A.9)

Consequently,

〈∂gΨ(T )|∂gΨ(T )〉 = 〈Ψ0|Ĝ0(T )2|Ψ0〉, (A.10a)

〈Ψ(T )|∂gΨ(T )〉 = −i〈Ψ0|Ĝ0(T )|Ψ0〉. (A.10b)

Substituting these into Eq. (3.116) gives our final expression for the QFI, Eq. (4.10a).

A.2 QFI of a Particle After KC Interferometry

Here we provide a derivation of Eq. (4.15). The total evolution of a particle due to KC

interferometry is given by the unitary operator

ÛKC = Ûφ3
π
2
Ûg(T2)Ûφ2

π Ûg(T1)Ûφ1
π
2
, (A.11)

where Û
φ1,3
π
2

and Ûφ2
π denote π/2 (50/50 beam splitting) and π (mirror) pulses, respectively,

and the evolution due to the gravitational field, Ûg(T ), was derived above [see Eq. (A.7)].

This assumes that the π/2 and π pulses are instantaneous (strictly, occur on times much

shorter than the interrogation times T1 and T2).

To begin, the final π/2 pulse does not change the QFI, whilst the first π/2 pulse simply

gives a new initial state for the particle [see Eq. (4.12)]:

|Ψ′0〉 = Ûφ1
π
2
|Ψ0〉

=
1√
2

(
|ψ0〉|a〉 − iei(k0ẑ−φ1)|ψ0〉|b〉

)
, (A.12)

where |Ψ0〉 = |a〉|ψ0〉 and φ1 is the phase of this first laser pulse. Consequently, the QFI

can be computed from the product of operators Ûg(T2)Ûφ2
π Ûg(T1), provided expectations

are taken with respect to the state |Ψ′0〉.
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As in Appendix [A.1], our goal is to isolate the g-dependence of the evolution. We first

consider the product Ûg(T2)Ûφ2
π , where [see Eq. (4.12)]

Ûφ2
π = −i

(
e−i(k0ẑ−φ2)|a〉〈b|+ ei(k0ẑ−φ2)|b〉〈a|

)
, (A.13)

and φ2 is the phase of this mirror pulse. The BCH formula Eq. (A.2) implies that

eX̂eŶ e−
1
2

[X̂,Ŷ ]e
1
6(2[Ŷ ,[X̂,Ŷ ]]+[X̂,[X̂,Ŷ ]]) = eŶ eX̂e

1
2

[X̂,Ŷ ]e−
1
6(2[X̂,[X̂,Ŷ ]]+[Ŷ ,[X̂,Ŷ ]]). (A.14)

The application of Eq. (A.14) with X̂ = −igĜ0(T2) and Ŷ± = ±ik0ẑ gives

e−igĜ0(T2)e±ik0ẑ = e±ik0ẑe−igĜ0(T2)e∓i
1
2
gk0T 2

2 , (A.15)

where we have used
[
X̂, Ŷ±

]
= ∓igk0T

2
2 /2. Therefore, after neglecting the global phase

factor exp
[
img2T 3

2 /(12~)
]

in Ûg(T )

Ûg(T2)Ûφ2
π = −ie−

iT2
~

p̂2

2m

(
e−i(k0ẑ−φ2)e−igĜ0(T2)ei

1
2
gk0T 2

2 |a〉〈b|

+ ei(k0ẑ+φ2)e−igĜ0(T2)e−i
1
2
gk0T 2

2 |b〉〈a|
)

= −ie−
iT2
~

p̂2

2m

(
e−i(k0ẑ−φ2)ei

1
2
gk0T 2

2 |a〉〈b|+ ei(k0ẑ+φ2)e−i
1
2
gk0T 2

2 |b〉〈a|
)
e−igĜ0(T2).

Note that Ĝ0(T2) acts only on the motional state of the particle and therefore commutes

with any operators that act on the internal states |a〉 and |b〉.

Now, the internal states |a〉 and |b〉 are the eigenvectors of Ĵz = 1
2 (|a〉〈a| − |b〉〈b|)

satisfying Ĵz|a〉 = 1
2 |a〉 and Ĵz|b〉 = −1

2 |b〉. Therefore, for an arbitrary operator Ô which

solely acts on the motional state of the particle:

eÔĴz |a〉 = e
1
2
Ô|a〉, eÔĴz |b〉 = e−

1
2
Ô|b〉. (A.16)

This allows us to write

〈a|e−i
1
2
gk0T 2

2 = 〈a|e−igk0T 2
2 Ĵz = 〈a|e−igĜe , (A.17a)

〈b|ei
1
2
gk0T 2

2 = 〈b|e−igk0T 2
2 Ĵz = 〈b|e−igĜe , (A.17b)

where Ĝe = k0T
2
2 Ĵz. Therefore,

Ûg(T2)Ûφ2
π = e−

iT2
~

p̂2

2m Ûφ2
π e−igĜee−igĜ0(T2). (A.18)

Next, we again use Eq. (A.14) with X̂ = −igĜ0(T2) and Ŷ = − iT1
~

p̂2

2m , where[
X̂, Ŷ

]
= − igT1T2

~
p̂z, (A.19a)[

X̂,
[
X̂, Ŷ

]]
= − img

2T1T
2
2

~
, (A.19b)
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to obtain

e−igĜ0(T2)e−i
T1
~

p̂2

2m = e−i
T1
~

p̂2

2m e−igĜ0(T2)e−ig
T1T2

~ p̂zei
m
2~g

2T1T 2
2 , (A.20)

and therefore (ignoring the global phase factor exp
[
img2T1T

2
2 /(2~)

]
)

Ûg(T2)Ûφ2
π Ûg(T1) = e−i

T2
~

p̂2

2m Ûφ2
π e−igĜee−i

T1
~

p̂2

2m e−igĜ0(T2)

× e−ig
T1T2

~ p̂ze−igĜ0(T1). (A.21)

We combine the final three exponentials into one, using Eq. (A.2)

Ûg(T2)Ûφ2
π Ûg(T1) = e−i

T2
~

p̂2

2m Ûφ2
π e−i

T1
~

p̂2

2m e−ig(Ĝ0(T )+Ĝe), (A.22)

where T = T1 + T2 and we have neglected all the global phases produced during the

calculation.

Including the first and second π/2 pulses (although the second pulse is not needed

for calculating the QFI), we arrive at the following simplified expression for the full KC

interferometer evolution

ÛKC = Û0e
−ig(Ĝ0(T )+Ĝe)Ûφ1

π
2
, (A.23)

where Û0 = Ûφ3
π
2
e−i

T2
~

p̂2

2m Ûφ2
π e−i

T1
~

p̂2

2m is independent of g. The state of the particle after

interrogation time T is therefore

|Ψ(T )〉 = ÛKC|Ψ0〉 = Û0e
−ig(Ĝ0(T )+Ĝe)|Ψ′0〉, (A.24)

which is Eq. (4.13). Taking the derivative with respect to g gives

〈∂gΨ(T )|∂gΨ(T )〉 = 〈Ψ′0|(Ĝ0(T ) + Ĝe)
2|Ψ′0〉, (A.25a)

〈Ψ(T )|∂gΨ(T )〉 = −i〈Ψ′0|(Ĝ0(T ) + Ĝe)|Ψ′0〉. (A.25b)

The QFI is therefore

FKC
Q = 4Var

(
Ĝ0(T ) + Ĝe

)
, (A.26)

where the variance is taken with respect to |Ψ′0〉. We use Eq. (A.12) to relate this to

expectations taken with respect to the initial state |Ψ0〉

FKC
Q = 4Var(Ĝ0(T )) +

1

4
k2

0

(
T 2 − 2T 2

2

)2
, (A.27)

which is Eq. (4.15).
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A.3 FC(Ĵz) of KC Interferometer

To calculate the CFI FC(Ĵz), Eq. (4.19), we need to determine expressions for the

probabilities Pa(T ) and Pb(T ) that the particle is detected in state |a〉 and |b〉, respectively,

at the interferometer output. This first requires expressing ÛKC in a more convenient form.

To begin, we use Eq. (A.14) with X̂ = −iT2
~

p̂2

2m and Ŷ± = ±ik0ẑ to obtain

e−i
T2
~

p̂2

2m e±ik0ẑ = e±ik0ẑe−i
T2
~

p̂2

2m e∓i
k0T2
m

p̂ze−i
~k2

0T2
2m , (A.28)

where we used [X̂, Ŷ±] = ∓ ik0T2
m p̂z and [Ŷ±, [X̂, Ŷ±]] =

i~k2
0T2

m . This allows us to commute

e−i
T2
~

p̂2

2m and Ûφ2
π :

e−i
T2
~

p̂2

2m Ûφ2
π = Ûφ2

π e−i
T2
~

p̂2

2m e−2i
k0T2
m

p̂z Ĵze−i
~k2

0T2
2m , (A.29)

where we have again used Eq. (A.16). Neglecting the global phase factor exp
[
−i~k2

0T2/(2m)
]
,

we can therefore write Eq. (A.23) in the convenient form

ÛKC = ÛintÛextÛ
φ1
π
2
, (A.30)

where

Ûint ≡ Ûφ3
π
2
Ûφ2
π e−2i

k0T2
m

p̂z Ĵze−igĜe , (A.31)

Ûext ≡ e−i
T
~

p̂2

2m e−igĜ0(T ). (A.32)

Ûext only acts on the external (i.e. motional) degrees of freedom, whereas Ûint acts on both

the internal and motional degrees of freedom. Note that Ûint and Ûext do not commute.

The state of the particle at the output of the interferometer after interrogation time

T is therefore

|Ψ(T )〉 = ÛintÛextÛ
φ1
π
2
|Ψ0〉

=
1√
2

(
Ûint|a〉Ûext|ψ0〉 − iÛint|b〉Ûexte

i(k0ẑ−φ1)|ψ0〉
)
. (A.33)

From Eq. (4.12) we get

Ûφ3
π
2
Ûφ2
π = − 1√

2

(
e−i(φ2−φ3)|a〉〈a|+ ei(φ2−φ3)|b〉〈b|

)
(A.34)

− i√
2

(
e−i(k0ẑ−φ2)|a〉〈b|+ ei(k0ẑ−φ2)|b〉〈a|

)
, (A.35)

where φ2 and φ3 are the phases of the second and the third laser pulses, respectively.
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Using this and Eq. (A.16), we obtain

Ûint|a〉 = − 1√
2

[
e−i(φ2−φ3)|a〉+ iei(k0ẑ−φ2)|b〉

]
× e−i

k0T2
m

p̂ze−ig
k0T

2
2

2 , (A.36a)

Ûint|b〉 = − 1√
2

[
ei(φ2−φ3)|b〉+ ie−i(k0ẑ−φ2)|a〉

]
× ei

k0T2
m

p̂zeig
k0T

2
2

2 . (A.36b)

Substituting Eqs. (A.36) into Eq. (A.33) gives

|Ψ(T )〉 = −1

2

[(
e−i(φ2−φ3)e−i

k0T2
m

p̂ze−ig
k0T

2
2

2 Ûext|ψ0〉

+ e−i(k0ẑ−φ2)ei
k0T2
m

p̂ze
i
2
gk0T 2

2 Ûexte
i(k0ẑ−φ1)|ψ0〉

)
|a〉

+ i
(
ei(k0ẑ−φ2)e−i

k0T2
m

p̂ze−ig
k0T

2
2

2 Ûext|ψ0〉

− ei(φ2−φ3)ei
k0T2
m

p̂ze
i
2
gk0T 2

2 Ûexte
i(k0ẑ−φ1)|ψ0〉

)
|b〉

]

Defining |Ψa(T )〉 ≡ 〈a|Ψ(T )〉, the probability of finding the particle in the internal

state |a〉 at the output port of the interferometer is

Pa(T ) = 〈Ψa(T )|Ψa(T )〉

= 1
2 [1 + 1

2(ei(gk0T 2
2−∆Φlaser)〈ψ0|Q̂|ψ0〉+ h.c)], (A.37)

where ∆Φlaser = φ1 − 2φ2 + φ3, as we have already defined in Chapter 2 and

Q̂ ≡ eigĜ0(T )ei
T
~

p̂2

2m ei
k0T2
m

p̂ze−ik0ẑ

× ei
k0T2
m

p̂ze−i
T
~

p̂2

2m e−igĜ0(T )eik0ẑ,

= ei
~k2

0
2m

(T2−T1)e−igk0T (T2−T1)e−ig
k0T

2

2 ei
k0
m

(T2−T1)p̂z . (A.38)

This final simplification follows from repeated application of Eq. (A.14), and allows us to

express the probability as

Pa(T ) = 1
2

[
1 + 1

2

(
e−i∆Φlaserei

~k2
0

2m
(T2−T1)e−igk0(T

2

2
−T 2

1 )

× 〈ψ0|ei
k0
m

(T2−T1)p̂z |ψ0〉+ h.c
)]
. (A.39)

If we choose the phases of our laser pulses such that φ1 = φ2 = 0, φ3 = π/2, thereby

operating at the point of maximum sensitivity, we can express the probabilities in the
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following way:

Pa(T ) = 1
2

[
1− i

2

(
Cei(φf−φg) − C∗e−i(φf−φg)

)]
, (A.40a)

Pb(T ) = 1
2

[
1 + i

2

(
Cei(φf−φg) − C∗e−i(φf−φg)

)]
, (A.40b)

where

φf ≡
~k2

0

2m
(T2 − T1), (A.41a)

φg ≡ k0g

(
T 2

2
− T 2

1

)
, (A.41b)

C ≡ 〈ψ0|ei
k0
m

(T2−T1)p̂z |ψ0〉. (A.41c)

φf represents the phase difference due to the non-symmetrical free evolution of the wave-

packets in the two arms of the interferometer, while φg is the phase difference due to

gravity. Expressing C = |C|eiϑ allows us to write Eq. (A.40) in the simplified form of

Eqs. (4.18). Here |C| is interpreted as the fringe contrast and α = φf − φg + ϑ denotes

the total phase shift.

If we measure the population difference of the two internal states, Ĵz, at the output of

the interferometer, the CFI is given by

FC(Ĵz) =
∑
j=a,b

(∂gPj)
2

Pj
=

(∂gPa)
2

PaPb
, (A.42)

where the last equality follows from the relation Pa + Pb = 1 ⇒ ∂gPa = −∂gPb. Noting

that

Pa(T )Pb(T ) =
1

4

(
1− |C|2 sin2 α

)
, (A.43a)

∂gPa(T ) = −1

2
|C|k0

(
T 2

2
− T 2

1

)
cosα, (A.43b)

we arrive at Eq. (4.19).

A.4 Beam Splitter Transformation: Derivation of Eq. (4.12)

A Raman beam splitter is typically modelled by the Hamiltonian

ĤBS =
p̂2

2m
− ~δ|b〉〈b|+ ~Ω

2
(|b〉〈a|ei(k0ẑ−φ) + h.c.), (A.44)

where δ is the two-photon detuning and Ω = Ω1Ω2/∆ is the effective two-photon Rabi

frequency, which depends on the single-photon Rabi frequencies Ω1,2 and the single-photon
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detuning ∆ [170, 171]. The two-photon detuning is typically set to the two-photon res-

onance condition δ = ~k2
0/(2m). Evolution under this Hamiltonian for a duration ∆t is

given by the unitary time-evolution operator

Uφθ = exp

[
−i∆t
~

ĤBS

]
= e−i

(
p̂2

2m~−
~k2

0
2m
|b〉〈b|

)
θ
Ω
−i θ

2

(
|b〉〈a|ei(k0ẑ−φ)+h.c.

)
, (A.45)

where we have defined θ = Ω∆t. If ~Ω is significantly greater than the spread in kinetic

energy of the initial state, we can ignore the first term and obtain

Uφθ = exp

[
−iθ

2

(
|b〉〈a|ei(k0ẑ−φ) + h.c.

)]
= 1̂ cos

(
θ
2

)
− i(|b〉〈a|ei(k0ẑ−φ) + h.c.) sin

(
θ
2

)
, (A.46)

which is Eq. (4.12).

Fig. [A.1] shows the QFI and CFI, when the evolution due to the beam splitter and

mirror pulses is treated as Schrödinger evolution under Hamiltonian Eq. (A.44). This

evolution was solved numerically for different values of ∆t. We used the same initial state

as Fig. [2(a)]. We set Ω such that Ω∆t = π/2 for the two beam splitter pulses, and the

duration of the interaction was doubled for the mirror pulse, resulting in Ω(2∆t) = π. We

find excellent agreement with the ideal beam splitter case as long as ∆t � Tπ. In the

regime ∆t ∼ Tπ, there is significant motional dynamics during the beam splitter period,

and our approximation is no longer valid. For example, for the maximum value of ∆t

simulated (∆t = 0.4Tπ), the total interferometer sequence time, which is the time from

the commencement of the first beam splitter to the conclusion of the second beam splitter,

is 3.6Tπ (compared to 2Tπ for instantaneous beam splitters). For typical experiments, such

as Ref. [35], ∆t/Tπ ∼ 10−4.
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Figure A.1: (a) QFI and CFI computed using Eq. (A.44) rather than Eq. (A.46) as a

function of ∆t. Provided ∆t/Tπ � 1, Eq. (A.46) (shown by dashed lines of the appropriate

colour) is an excellent approximation to the true dynamics. Fisher information is presented

in units of k2
0T

4
π .



160

Appendix B

Quantum Non Demolition

Measurements of a BEC

B.1 Introduction

We consider the combined signal

Ŝ2(τ) = Ĵz(τ)− Ĵ inf
z (τ), (B.1)

where

Ĵ inf
z (τ) = GŜb(τ) Ŝb(τ) = Ŷ2(τ)− Ŷ1(τ). (B.2)

For simplicity in the following we will present the time dependence explicitly only in our

final results or when it is considered necessary. The variance of Ŝ2 would be given by

Var(Ŝ2) = Var(Ĵz) +G2Var(Ŝb)− 2GCov(Ĵz, Ŝb), (B.3)

since Cov(Ĵz, Ŝb) = Cov(Ŝb, Ĵz). We minimise Var(Ŝ2) with respect to G

G =
Cov(Ĵz, Ŝb)

Var(Ŝb)
. (B.4)

Inserting that back in Eq. (B.3) we get

Var(Ŝ2) = Var(Ĵz)−
Cov2(Ĵz, Ŝb)

Var(Ŝb)
. (B.5)

So, in order to calculate Var(Ŝ2) we need the covariance between Ĵz and Ŝb, Cov(Ĵz, Ŝb),

and the variance of the phase quadrature of the light field Var(Ŷ1), since Var(Ŷ1) = Var(Ŷ2)

and Cov(Ŷ2, Ŷ1) = 0, thus Var(Ŝb) = 2Var(Ŷ1). At the end we calculate the squeezing

parameter, which in our case (θ = 0) is given by

ξs2 =
√
Na

√
Var(Ŝ2)

〈Ĵx〉
. (B.6)
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B.2 No Spontaneous Emission

B.2.1 Atomic Expectation Values

The atomic equations with no spontaneous emission are given by

â1(t) = â1(0)ei
g2

∆

∫ t
0 b̂
†
01(t′)b̂01(t′)dt′ (B.7)

â†1(t) = â†1(0)e−i
g2

∆

∫ t
0 b̂
†
01(t′)b̂01(t′)dt′ . (B.8)

Hence, the atomic population operator is independent of time

N̂a1(t) = â†1(t)â1(t) = â†1(0)â1(0). (B.9)

We consider that our total state initially is given by the product

|Ψ〉 = |α1〉 ⊗ |α2〉 ⊗ |β1〉 ⊗ |β2〉 ⊗ |0〉, (B.10)

meaning that the atomic ensemble, as well as the two light fields are in coherent states

while the bath is described by the vacuum state, giving the following expectation values

â1(0)|α1〉 =

√
Na

2
|α1〉, b̂01(t)|β1〉 = β0|β1〉, q̂1in(t)|0〉 = 0|0〉

â2(0)|α2〉 =

√
Na

2
|α2〉 b̂02(t)|β2〉 = β0|β2〉 q̂2in(t)|0〉 = 0|0〉, (B.11)

where we have used again b̂0j(t) = b̂j(zL, t) with j = 1, 2 for simplicity, and we have

considered that α1(0) = α2(0) =
√
Na/2 and b̂01(t) = b̂02(t) = β0. Now it is really simple

to calculate the atomic expectation values in that case

〈N̂a1(t)〉 =
Na

2
, 〈N̂2

a1
(t)〉 = 〈N̂2

a1
(t′)〉 = 〈N̂2

a1
(0)〉 =

Na

2
+
N2
a

4
. (B.12)

B.2.2 Phase Quadrature

The light equation in the case of no spontaneous emission is

b̂1(zR, t) = b̂01(t)ei
g2

c∆
â†1(t)â1(t), (B.13)

We select a specific mode of the light field

b̂1(τ) =

√
c√
τ

∫ τ

0
b̂1(zR, t)dt. (B.14)

Here the atomic population is constant, thus

b̂1(τ) =

√
c√
τ
ei

g2

c∆
â†1(t)â1(t)

∫ τ

0
b̂01(t)dt. (B.15)
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We know that the incident light field obeys the following commutation relation [b̂01(t), b̂†01(t′)] =

1
c δ(t− t

′) . We find the phase quadrature of the specific mode

Ŷ1(τ) ≡ i(b̂1(τ)− b̂
†
1(τ)) = i

√
c√
τ

(
ei

g2

c∆
â†1(t)â1(t)

∫ τ

0
b̂01(t)dt− e−i

g2

c∆
â†1(t)â1(t)

∫ τ

0
b̂†01(t)dt

)
.

(B.16)

We make the small angle approximation

g2

c∆
â†1(t)â1(t) << 1, (B.17)

and we get

Ŷ1(τ) ≈ Ŷ1in(τ)− g2

√
cτ∆

â†1(τ)â1(τ)

∫ τ

0

(
b̂01(t) + b̂†01(t)

)
dt, (B.18)

where

Ŷ1in(τ) = i

√
c√
τ

∫ τ

0

(
b̂01(t)− b̂†01(t)

)
dt. (B.19)

We calculate the expectation value of the phase quadrature

〈Ŷ1(τ)〉 ≈ −g
2Naβ0τ

∆
√
cτ

, (B.20)

where we have used that 〈Ŷ1in(τ)〉 = 0 and assumed that β0 = β∗0 . We calculate the square

of the phase quadrature

Ŷ1
2
(τ) ≈ Ŷ 2

1in
(τ) +

g4

cτ∆2
â†1(τ)â1(τ)â†1(τ)â1(τ)

∫ τ

0

∫ τ

0
dtdt′

(
b̂01(t) + b̂†01(t)

)(
b̂01(t′) + b̂†01(t′)

)
.

(B.21)

For simplicity we calculate separately

Q1 =

∫ τ

0

∫ τ

0
dtdt′

(
b̂01(t)b̂01(t′) + b̂01(t)b̂†01(t′) + b̂†01(t)b̂01(t′) + b̂†01(t)b̂†01(t′)

)
. (B.22)

After using the commutation relation
[
b̂01(t), b̂†01(t′)

]
= 1

c δ(t − t
′) and the delta function

property
∫ τ

0 δ(t− t
′)dt′ = 1 we obtain

〈Q1〉 = 4β2
0τ

2 +
τ

c
. (B.23)

Making use of the same commutation relation and the same property of the delta function

we find that 〈Ŷ 2
1in

(τ)〉 = 1. Thus,

〈Ŷ 2
1 (τ)〉 ≈ 1 +

g4

cτ∆2

(
Na

2
+
N2
a

4

)(
4β2

0τ
2 +

τ

2c

)
, (B.24)
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where we have used Eq. (B.12). For simplicity, we can ignore the last term of Eq. (B.24)

since 4β2
0τ

2 >> τ/2c

〈Ŷ 2
1 (τ)〉 ≈ 1 +

4g4β2
0τ

2

cτ∆2

(
Na

2
+
N2
a

4

)
. (B.25)

From Eq. (B.20) we have

〈Ŷ1(τ)〉2 ≈ g4β2
0N

2
aτ

2

cτ∆2
. (B.26)

Hence, we finally have

Var(Ŷ1(τ)) ≈ 1 + 2χ2
nsNaNph, (B.27)

and

Var(Ŝb) = 2Var(Ŷ1(τ)) ≈ 2 + 4χ2
nsNaNph, (B.28)

where we have defined

χns ≡
g2

c∆
Nph ≡ β2

0τ. (B.29)

B.2.3 Covariances

The covariance of Ĵz(τ) and Ŝb(τ) is defined as

Cov(Ĵz(τ), Ŝb(τ)) = 〈Ĵz(τ)Ŝb(τ)〉 − 〈Ĵz(τ)〉〈Ŝb(τ)〉. (B.30)

We know that 〈Ŝb(τ)〉 = 0 , since Ŝb = Ŷ2 − Ŷ1. Hence,

Cov(Ĵz(τ), Ŝb(τ)) = 〈Ĵz(τ)Ŷ2(τ)〉 − 〈Ĵz(τ)Ŷ1(τ)〉. (B.31)

Using Ĵz(τ) = (N̂a1(τ) − N̂a2(τ))/2, Eq. (B.18) and the atomic expectation values from

Sec. (B.2.1) we obtain

Cov(Ĵz(τ), Ŝb(τ)) ≈ χnsNa

√
Nph. (B.32)

B.2.4 Quantum Enhancement Parameter ξs

Inserting Eq. (B.32) and (B.28) in (B.5) we obtain

Var(Ŝ2(τ)) ≈ Na

4

(
1−

χ2
nsNphNa

χ2
nsNphNa + 1/2

)
. (B.33)

Using the atomic equations of motion we find for small exponents χ2
nsNph << 1

〈Ĵx(τ)〉 ≈ Na

2
e−χ

2
nsNph . (B.34)

Finally, from Eq. (B.6) we obtain

ξnss2 (τ) ≈ eχ2
nsNph

(
1−

χ2
nsNphNa

χ2
nsNphNa + 1/2

)1/2

. (B.35)
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B.3 Spontaneous Emission

B.3.1 Atomic Expectation Values

In the case where we have incorporated spontaneous emission the calculation of the

atomic expectation values is more complicated, since we use the following atomic equations

â1(t) = â1(0)eig
2(Ω+iΓ)

∫ t
0 b̂
†
01(t′)b̂01(t′)dt′+

+
g
√
γ3

∆− iγ3/2
eig

2(Ω+iΓ)
∫ t
0 b̂
†
01(t′)b̂01(t′)dt′

∫ t

0
dt′b̂†01(t′)q̂1in(t′)e−ig

2(Ω+iΓ)
∫ t′
0 b̂†01(t′′)b̂01(t′′)dt′′

(B.36a)

â†1(t) = â†1(0)e−ig
2(Ω−iΓ)

∫ t
0 b̂
†
01(t′)b̂01(t′)dt′+

+
g
√
γ3

∆ + iγ3/2
e−ig

2(Ω−iΓ)
∫ t
0 b̂
†
01(t′)b̂01(t′)dt′

∫ t

0
dt′b̂01(t′)q̂†1in

(t′)eig
2(Ω−iΓ)

∫ t′
0 b̂†01(t′′)b̂01(t′′)dt′′ .

(B.36b)

For simplicity we assume that the intensity operator in the exponentials does not depend

on time, namely is a constant number b̂†01(t)b̂01(t) ≈ β2
0 . We essentially assume here that

the atomic loss is due to the average field intensity. We also ignore the unitary part of the

exponentials, since they would cancel out during the calculation of the atomic expectation

values. So, we finally have

â1(t) =
√
ε(t)â1(0)︸ ︷︷ ︸
Â1(t)

+
g
√
γ3

∆− iγ3/2

√
ε(t)

∫ t

0

√
ε−1(t′)b̂†01(t′)q̂1in(t′)dt′︸ ︷︷ ︸

Â2(t)

(B.37)

â†1(t) =
√
ε(t)â†1(0)︸ ︷︷ ︸
Â†1(t)

+
g
√
γ3

∆ + iγ3/2

√
ε(t)

∫ t

0

√
ε−1(t′)b̂01(t′)q̂†1in

(t′)dt′︸ ︷︷ ︸
Â†2(t)

, (B.38)

where we have defined

ε(t) ≡ e−2g2Γβ2
0t. (B.39)

We calculate the expectation value of atoms in state |1〉

〈N̂a1(t)〉 = 〈â†1(t)â1(t)〉 =
Na

2
ε(t), (B.40)

where ε(t) indicates the atomic rate of loss in our system at time t. Now we are going to

calculate the more complicated expectation value 〈N̂a1(t)N̂a1(t′)〉. We have named each
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term of Eq. (B.37) and (B.38) for simplicity, in order to clearly show which terms finally

survive

〈N̂a1(t)N̂a1(t′)〉 = 〈Â†1(t)Â1(t)Â†1(t′)Â1(t′)〉+ 〈Â†1(t)Â2(t)Â†2(t′)Â1(t′)〉, (B.41)

where all the other terms in this product are zero since 〈q̂1in〉 = 〈q̂†1in
〉 = 〈q̂†1in

q̂1in〉 = 0.

The first term of the above equation is easily calculated

〈Â†1(t)Â1(t)Â†1(t′)Â1(t′)〉 =

(
Na

2
+
N2
a

4

)
ε(t)ε(t′). (B.42)

However the second term is more complicated

〈Â†1(t)Â2(t)Â†2(t′)Â1(t′)〉 = 2g2Γε(t)ε(t′)〈â†1(0)â1(0)〉×

×
∫ t

0

∫ t′

0
dξds

√
ε−1(s)

√
ε−1(ξ)〈b̂†01(s)b̂01(ξ)〉〈q̂1in(s)q̂†1in

(ξ)〉.

(B.43)

We use the commutation relation for the temporal part of the Langevin noise[
q̂1in(s), q̂†1in

(ξ)
]

= δ(ξ − s). (B.44)

We also make use of the following property of the delta function∫ t′

0
dξf(ξ)δ(ξ − s) = f(s)Θ(t′ − s), (B.45)

where Θ(t′ − s) is the Heaviside step function and using 〈b̂†01(s)b̂01(s)〉 = β2
0 we obtain

〈Â†1(t)Â2(t)Â†2(t′)Â1(t′)〉 = g2ΓNaβ
2
0ε(t)ε(t

′)

∫ t

0
ds ε−1(s)Θ(t′ − s). (B.46)

For t ≥ t′ we have

〈Â†1(t)Â2(t)Â†2(t′)Â1(t′)〉 =
Na

2
ε(t)

(
1− ε(t′)

)
, (B.47)

and using Eq. (B.41), (B.42) and (B.47) we get

〈N̂a1(t)N̂a1(t′)〉 =
N2
a

4
ε(t)ε(t′) +

Na

2
ε(t), (B.48)

while for t < t′ we have

〈Â†1(t)Â2(t)Â†2(t′)Â1(t′)〉 =
Na

2
ε(t′) (1− ε(t)) , (B.49)

and

〈N̂a1(t)N̂a1(t′)〉 =
N2
a

4
ε(t)ε(t′) +

Na

2
ε(t′). (B.50)
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We notice that we obtain the same result for the double integral with respect to t and t′

for both cases, t ≥ t′ and for t < t′∫ τ

0

∫ τ

0
dt dt′ 〈N̂a1(t)N̂a1(t′)〉 =

N2
a

4
I2

1 +
Na

2
I1τ, (B.51)

but distinguishing between the two cases would be important when we calculate the cov-

ariance of Ĵz(τ) and Ŝb(τ). For simplicity, we have also defined

I1(τ) ≡
∫ τ

0
dt ε(t) =

1− ε(τ)

2g2Γβ2
0

. (B.52)

We can now calculate ∫ τ

0
dt〈N̂a1(t)〉 =

Na

2
I1. (B.53)

B.3.2 Phase Quadrature

In the case of spontaneous emission the photon operator is given by the following

equation

b̂1(zR, t) = b̂01(t)ei
g2

c
(Ω+iΓ)â†1(t)â1(t) +

g

c

√
γ3

∆− iγ3/2
â†1(t)q̂1in(t). (B.54)

Again, we define the phase quadrature operator of a specific mode of the light field

Ŷ1(τ) = i(b̂1(τ)− b̂
†
1(τ)), (B.55)

where

b̂1(t) =

√
c√
τ

∫ τ

0
b̂01(t)dt. (B.56)

Making the small angle approximation g2 (Ω + iΓ) â†1â1/c << 1 we obtain

Ŷ1 ≈ Ŷ1in −
g2Ω√
cτ

∫ τ

0

(
b̂01(t) + b̂†01(t)

)
â†1(t)â1(t)dt− g2Γ√

cτ

∫ τ

0

(
b̂01(t)− b̂†01(t)

)
â†1(t)â1(t)dt +

+ i
gΩ
√
γ3√
cτ

∫ τ

0
dt
(
q̂1in(t)â†1(t)− q̂†1in

(t)â1(t)
)
− i

gΓ
√
γ3√
cτ

∫ τ

0
dt
(
q̂1in(t)â†1(t) + q̂†1in

(t)â1(t)
)
,

(B.57)

where

Ŷ1in(τ) ≡ i
√
c√
τ

∫ τ

0
dt
(
b̂01(t)− b̂†01(t)

)
. (B.58)

We calculate the expectation value of Ŷ1(τ)

〈Ŷ1(τ)〉 ≈ −2β0Ωg2

√
cτ

∫ τ

0
dt〈N̂a1(t)〉. (B.59)
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From Eq. (B.53) we get

〈Ŷ1〉2 ≈
g4Ω2β2

0N
2
aI

2
1

cτ
. (B.60)

Now we are going to calculate 〈Ŷ 2
1 〉, where for simplicity we keep only the terms coming

from the the first two terms of Eq. (B.57), since they are the dominant terms

〈Ŷ 2
1 〉 ≈ 1 +

4g4Ω2

cτ
β2

0

∫ τ

0

∫ τ

0
dtdt′〈N̂a1(t′)N̂a1(t)〉. (B.61)

Substituting Eq. (B.51) in (B.61) and using (B.60) we obtain

Var(Ŷ1(τ)) ≈ 1 + 2χ2
1NphNaε(τ), (B.62)

where we have defined χ1 ≡ g2Ω
c and ε(τ) = 1

τ

∫ τ
0 ε(t)dt which is the time average of the

decay. We notice that χ1 = χns in the no spontaneous emission case (γ3 = 0). As we

mentioned before Var(Ŝb) = 2Var(Ŷ1), thus

Var(Ŝb(τ)) ≈ 2 + 4χ2
1NphNaε(τ). (B.63)

B.3.3 Covariances

Again, the covariance of Ĵz and Ŝb is given by Cov(Ĵz(τ), Ŝb(τ)) = 〈Ĵz(τ)Ŷ2(τ)〉 −

〈Ĵz(τ)Ŷ1(τ)〉, which gives

Cov(Ĵz(τ), Ŝb(τ)) =
2g2Ωβ0√

cτ

∫ τ

0
dt
(
〈N̂a1(τ)N̂a1(t)〉 − 〈N̂a1(τ)N̂a2(t)〉

)
, (B.64)

since

〈N̂a1(τ)N̂a1(t)〉 = 〈N̂a2(τ)N̂a2(t)〉 〈N̂a1(τ)N̂a2(t)〉 = 〈N̂a2(τ)N̂a1(t)〉. (B.65)

Now we have to be a bit more careful, compared to the no spontaneous emission case,

because we have two different expressions for 〈N̂a1(t)N̂a1(t′)〉 depending on whether t ≥ t′

or t < t′. That’s why we are going to calculate Cov(Ŝb(τ), Ĵz(τ)) as well

Cov(Ŝb(τ), Ĵz(τ)) =
2g2Ωβ0√

cτ

∫ τ

0
dt
(
〈N̂a1(t)N̂a1(τ)〉 − 〈N̂a1(t)N̂a2(τ)〉

)
. (B.66)

For the first covariance, where τ ≥ t we use Eq. (B.48), hence∫ τ

0
dt 〈N̂a1(τ)N̂a1(t)〉 =

N2
a

4
ε(τ)I1 +

Na

2
ε(τ)τ. (B.67)

We calculate the simpler term

〈N̂a1(τ)N̂a2(t)〉 =
N2
a

4
ε(τ)ε(t), (B.68)
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since â1(t) commutes with â2(t′) for all t and t′. Thus,∫ τ

0
dt 〈N̂a1(τ)N̂a2(t)〉 =

N2
a

4
ε(τ)I1. (B.69)

We finally have

Cov(Ĵz(τ), Ŝb(τ)) = χ1

√
NphNaε(τ), (B.70)

where we used again χ = g2Ω
c . For the second covariance we use Eq. (B.50) for t < t′ and

we obtain ∫ τ

0
dt 〈N̂a1(t)N̂a1(τ)〉 =

N2
a

4
ε(τ)I1 +

Na

2
ε(τ)τ (B.71)

∫ τ

0
dt 〈N̂a1(t)N̂a2(τ)〉 =

N2
a

4
ε(τ)I1. (B.72)

Hence, we finally get the same result for both covariances as we expected

Cov(Ĵz(τ), Ŝb(τ)) = Cov(Ŝb(τ), Ĵz(τ) = χ1

√
NphNaε(τ). (B.73)

B.3.4 Quantum Enhancement Parameter ξs

Substituting Eq. (B.63) and (B.73) into Eq. (B.5) we get

Var(Ŝ2(τ)) ≈ Na

4
ε(τ)

(
1−

χ2
1NphNaε(τ)

χ2
1NphNaε(τ) + 1/2

)
. (B.74)

Using the atomic equations we find the expectation value of Ĵx for (χ2
1 + 2χ2)Nph << 1

〈Ĵx(t)〉 ≈ Na

2
e−(χ2

1+2χ2)Nph , (B.75)

where we have defined χ2 ≡ g2Γ/c. Now we can express ε(τ) in a more convenient way

ε(τ) = e−2χ2Nph . Finally, the squeezing parameter is given by

ξs2 ≈ e(χ2
1+χ2)Nph

(
1−

χ2
1NphNaε(τ)

χ2
1NphNaε(τ) + 1/2

)1/2

, (B.76)

where for convenience we present again all the parameter definitions we made throughout

this calculation

χ1 ≡
g2Ω

c
, χ2 ≡

g2Γ

c
, ε(τ) ≡ 1

τ

∫ τ

0
ε(t)dt, ε(τ) = e−2χ2Nph . (B.77)
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Appendix C

Truncated Wigner Method

A classical system consisting of N distinguishable particles, in the d-dimensional case,

can be simply described by 2Nd real numbers. The factor 2 comes from the need to

describe both the position and velocity of each particle. Thus, the dimensionality of this

system increases linearly with N . However, in the quantum case the situation becomes

more complicated. In the case of many indistinguishable particles, considering M available

modes, the general state is given by

|Ψ〉 =
N∑

n1=0

N∑
n2=0

...
N∑

nM=0

Cn1,n2,...,nM (t)|n1, n2, ..., nM 〉, (C.1)

where we have assumed that each mode can be occupied by N particles. We need ∝ NM

complex numbers in order to describe that state. Hence, the dimensionality of this system

grows tremendously faster with the number of particles, compared to the classical case.

Thus, it is apparent that the numerical solution of the dynamics of such a system becomes

easily intractable even for modest values of N and M .

Phase-space methods, which allow us to describe the dynamics of the system by ex-

amining the time evolution of a quasi-probability distribution, could help us deal with

that problem. We find the equation of motion for the corresponding distribution, which is

a partial differential equation (PDE), by determining correspondences between operators

of the master equation and complex variables of the distribution. Luckily, in some cases

the equation of motion for the probability distribution has the form of a Fokker-Plank

equation (FPE), which is used to describe the drift and diffusion of classical distributions.

All FPEs can be mapped to an ensemble of stochastic differential equations (SDEs) [75].

So, we can describe the dynamics of a system with N indistinguishable particles and M

modes using only M different SDEs. Hence, this process leads to the reduction of the

dimensionality of the system, as now it scales with the number of the available modes and
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not with the size of the Hilbert space. In our case, we are going to focus on a specific

phase-space method, the truncated Wigner (TW) approximation.

In this appendix, we start by introducing the Wigner function. We then give a brief

presentation of the tools from stochastic calculus, which are necessary in order to be able

to describe the whole process of moving from the master equation to a PDE and then

to a SDE. We are going to examine the simple example of an anharmonic oscillator, in

order to see in practise how the whole process works. Also, we will see how we can

calculate symmetrically ordered expectation values and how we are going to implement

them numerically. The TW method, and generally phase-space methods, go beyond the

mean field theory we examined in Chapter 2, since they include the quantum fluctuations

of the field under consideration. This is the reason why, we used the powerful method of

the TW approximation in Chapters 5 and 6, where the quantum fluctuations of both the

atomic and light fields play a significant role to the whole dynamics of the system.

C.1 Wigner Function

Commonly, the Wigner function is introduced in the literature [67, 69] as the Fourier

transformation of the symmetric characteristic function χ [ρ̂, λ],

W (α) =
1

π2

∫
d2λeλ

∗α−λα∗χ [ρ̂, λ] , (C.2)

which is defined as the expectation value of the displacement operator

χ [ρ̂, λ] = Tr
[
D̂(λ)ρ̂

]
= Tr

[
ρ̂eλâ

†−λ∗â
]
. (C.3)

Here, ρ̂ is the density matrix of the system under consideration, â is the usual annihilation

operator of a simple harmonic oscillator and λ is a complex number. The Wigner function

can be used in order to calculate symmetrically ordered expectation values [67,69]〈{
(â†)n, âm

}
sym

〉
=

∫
d2αW (α)(α∗)nαm = (α∗)nαm, (C.4)

where {...}sym denotes symmetric ordering, meaning an equally weighted average of every

possible permutation of the non-commuting operators. Also, in the second equality we es-

sentially treat the Wigner function as a probability distribution, since we take the average

of an arbitrary function f(α, α∗) = (α∗)nαm, which depends on the phase-space variables,

over W (α). More precisely, the Wigner function is referred as quasi-probability distribu-

tion, as it is not necessarily positive, but in many cases it is either positive or it is well

approximated by a positive function. In these cases we can calculate the expectation value
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of any symmetrically ordered operator, by randomly sampling α and α∗ from W (α, α∗)

and calculating the corresponding average function, f(α, α∗), over many such samples, as

Eq.(C.4) indicates. We are going to analyse this procedure in more detail in the following

sections.

C.2 Stochastic Calculus

In this section, we give a brief introduction of some concepts of stochastic calculus

that we are going to need, in order to describe the mapping from PDEs of probability

distributions to SDEs, which we will analyse in the following sections. Excellent descrip-

tions presenting these concepts with clarity and at some points in more detail could be

found in the following theses [74, 83]. The interested reader, who wants a more in depth

understanding of those concepts is referred to [75,172].

We begin from the differential equation describing the time evolution of some physical

quantity x(t):

dx

dt
= a(x, t) + b(x, t)ξ(t), (C.5)

where a(x, t) and b(x, t) are considered known functions of x and t, while ξ(t) is a rapidly

fluctuating random term in time. Consequently x(t), which is the variable of interest

would be a random variable. This is the reason why the solution of Eq. (C.5) is called a

stochastic process. The random variable ξ(t) is called white noise and it is an idealization

of a realistic fluctuating signal, since its correlation function is given by a delta function,

〈ξ(t)ξ(t′)〉 = δ(t − t′). That means that ξ(t) and ξ(t′) are statistically independent for

t 6= t′. Also 〈ξ(t)〉 = 0, as any non-zero mean value could be included in a(x, t) [75]. We

expect Eq. (C.5) to be integrable, so we define the integral of white noise as

W (t) =

∫ t

0
dt′ξ(t′). (C.6)

W (t) is called a Wiener process and while it is a continuous function it is non-differentiable,

which means that Eq.(C.5) is not well defined. However, we can write the corresponding

integral equation

x(t)− x(0) =

∫ t

0
a(x(s), s)ds+

∫ t

0
b(x(s), s)ξ(s)ds, (C.7)

which can be now interpreted consistently, but we should define the Ito stochastic integral

first, in order the last term to make sense.
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C.2.1 Ito Integral

The stochastic integral of an arbitrary function g(t) between t0 and t is of Rieman-

Stieltjes type. That means that we should divide our variable t into n sub-intervals, e.g

the ith one is [ti−1, ti], as we used to do in the traditional Rieman integrals. We also

have τi, which are intermediate points of each interval, e.g ti−1 ≤ τi ≤ ti. The stochastic

integral would be given by the limit of the partial sums of all subintervals∫ t

0
g(s)dW (s) = limn→∞

n∑
i=1

g(τi) [W (ti)−W (ti−i)] . (C.8)

For traditional Rieman integrals the choice of τi does not have any effect on the result,

but this is not the case for stochastic integrals. We can choose τi = ti−1, which gives zero

for the ensemble average of the integral [75]∫ t

0
g(s)dW (s) = 0. (C.9)

This choice (τi = ti−1) defines the so-called Ito stochastic integral, which is given by∫ t

0
g(s)dW (s) = limn→∞

n∑
i=1

g(ti−1) [W (ti)−W (ti−i)] . (C.10)

C.2.2 Ito’s Formula

We can now use the Wiener increment

dW (t) = W (t+ dt)−W (t) = ξ(t)dt, (C.11)

in order to write Eq.(C.5) in a more convenient form

dx = a(x, t)dt+ b(x, t)dW (t). (C.12)

In the following we are going to use the so-called Ito differential rules, which we just

present here dW 2 = dt, dtdW = 0 and dW is of the order dt1/2, but the corresponding

derivations can be found in [75]. We also consider that all infinitesimals of order greater

than dt are zero [74]. For a general function f [x(t)], which depends on the stochastic

process x(t), but does not depend explicitly on time t, we find the infinitesimal change by

expanding f [x(t) + dx(t)] around x(t)

df [x(t)] = f [x(t) + dx(t)]− f [x(t)]

= f [x(t)] +
∂f

∂x
[x(t) + dx(t)− x(t)] +

1

2

∂2f

∂x2
[x(t) + dx(t)− x(t)]2 − f [x(t)].

(C.13)
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We substitute Eq. (C.12) in the above equation and use the Ito differential rules, in order

to get

df =

(
a(x, t)

∂f

∂x
+

1

2

∂2f

∂x2
b(x, t)2

)
dt+ b(x, t)

∂f

∂x
dW (t), (C.14)

where as aforementioned, we kept only infinitesimals of order up to dt.

C.2.3 Connection Between Fokker-Planck Equation and SDE

Now, we want to find the connection between a FPE and a SDE. We consider that

the stochastic process x(t) has a probability density function P (x, t), thus the ensemble

average of an arbitrary function of the stochastic process, f(x), would be given by

f(x) =

∫
dxf(x)P (x, t). (C.15)

We find the time evolution of the ensemble average of f(x) using Ito’s formula, Eq. (C.14)

∂f

∂t
=

(
a(x, t)

∂f

∂x
+

1

2

∂2f

∂x2
b2(x, t)

)
, (C.16)

where we used the property of the Wiener process dW (t) = 0 [75]. Using Eq. (C.15)

in both sides of Eq. (C.16) and remembering that f has no explicit time dependence we

obtain ∫
dxf(x)

∂P

∂t
=

∫
dxP (x, t)a(x, t)

∂f

∂x
+

1

2

∫
dxP (x, t)

∂2f

∂x2
b2(x, t). (C.17)

For the first term in the right hand side we integrate by parts and apply vanishing boundary

conditions, namely we obtain∫
dxP (x, t)a(x, t)

∂f

∂x
= −

∫
dxf(x)

∂

dx
[P (x, t)a(x, t)] . (C.18)

Similarly for the second integral in the right hand side of Eq. (C.17) we integrate by parts

twice and set again vanishing boundary conditions, which gives∫
dxP (x, t)

∂2f

∂x2
b2(x, t) =

∫
dx
∂2f

∂x2
f(x)b2(x, t). (C.19)

Hence, we finally get

∂P

∂t
= − ∂

∂x
[P (x, t)a(x, t)] +

1

2

∂2P (x, t)

∂x2
b2(x, t). (C.20)

This is the Fokker-Plank equation with a(x, t) and b2(x, t) being the drift and diffusion

coefficients respectively. Eq. (C.12) and Eq. (C.20) realise two equivalent pictures describ-

ing a stochastic process x(t), in the sense that both descriptions give the same ensemble

averages of physical quantities. Hence, that means that we can map a FPE, Eq. (C.20),

to a SDE, Eq. (C.12).
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C.3 Operator Correspondences

Here, we aim to show how we can move from the master equation, which shows the

time evolution of the density matrix and involves operators, to a PDE, which would give

us the time evolution of the Wigner function and involves only complex variables. So,

we essentially want to find the appropriate operator correspondences, in order to map

the master equation to a PDE. The most clear and understandable way to show this

procedure is to examine a specific example. We consider the well known [83, 173] single-

mode anharmonic oscillator with Hamiltonian

Ĥ = ~ωâ†â+
~Ω

2
â†â†ââ. (C.21)

The master equation is given by

dρ̂

dt
= − i

~

[
Ĥ, ρ̂

]
= −iω(â†âρ̂− ρ̂â†â)− iχ

2
(â†â†ââρ̂− ρ̂â†â†ââ). (C.22)

The Wigner-Weyl representation of an arbitrary operator Â(â, â†) is denoted as A(α, α∗)

and is given by the Fourier transformation of the corresponding symmetric characteristic

function χA(λ) = Tr
[
Âeλâ

†−λ∗â
]
, i.e

A(α, α∗) =
1

π2

∫
d2λeλ

∗α−λα∗Tr
[
Âeλâ

†−λ∗â
]
. (C.23)

Apparently, the Wigner function W (α) is the Wigner-Weyl representation of the density

matrix ρ̂, and consequently the Wigner-Weyl representation of dρ̂/dt is simply the time

derivative of the Wigner function

∂W

∂t
=

1

π2

∫
χ

[
dρ̂

dt
, λ

]
eλ
∗α−λα∗d2λ. (C.24)

Similarly, we are going to find the Wigner-Weyl representation of all operators being

involved in the master equation, Eq. (C.22). Our strategy would be to find a relation

between the characteristic function of the operators of interest and χ [ρ̂, λ], and then

to find their Wigner-Weyl representation with respect to W (α) (which is the Wigner-

Weyl representation for χ [ρ̂, λ]), by making the corresponding Fourier transformations.

We should also point out here that throughout this process we consider λ and λ∗ as two

independent parameters, and that we use the Baker-Campbell-Hausdorff formula, in order

to write D̂(λ) = eλâ
†−λ∗â = eλâ

†
e−λ

∗âe−|λ|
2/2. We firstly calculate the derivative of D̂(λ)

with respect to λ

∂D̂(λ)

∂λ
= â†D̂(λ)− λ∗

2
D̂(λ)⇒ (C.25)

â†D̂(λ) =

(
∂

∂λ
+
λ∗

2

)
D̂(λ) (C.26)
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We also take the derivative with respect to λ∗

∂D̂(λ)

∂λ∗
= D̂(λ)â− λ

2
D̂(λ)⇒ (C.27)

D̂(λ)â = −
(

∂

∂λ∗
+
λ

2

)
D̂(λ) (C.28)

Using Eq. (C.26) we can find the characteristic function of ρ̂â† with respect to χ [ρ̂, λ]

χ
[
ρ̂â†, λ

]
= Tr

[
ρ̂â†D̂(λ)

]
=

(
∂

∂λ
+
λ∗

2

)
χ [ρ̂, λ] . (C.29)

Hence, the Wigner-Weyl representation of ρ̂â† would be

1

π2

∫ ∫
d2λχ

[
ρ̂â†, λ

]
eλ
∗α−λα∗

=
1

π2

∫ ∫
d2λ

(
∂

∂λ
χ [ρ̂, λ]

)
eλ
∗α−λα∗ +

1

2π2

∫ ∫
λ∗χ [ρ̂, λ] eλ

∗α−λα∗d2λ

=

(
α∗ +

1

2

∂

∂α

)
W (α), (C.30)

where in the last step we integrated by parts and we discarded the surface terms. Now,

we are going to use Eq. (C.28), in order to find the characteristic function for the operator

âρ̂

χ [âρ̂, λ] = Tr
[
ρ̂D̂(λ)â

]
= −

(
∂

∂λ∗
+
λ

2

)
χ [ρ̂, λ] . (C.31)

Hence, the Wigner-Weyl representation of âρ̂ is

1

π2

∫ ∫
d2λχ [âρ̂, λ] eλ

∗α−λα∗

= − 1

π2

∫ ∫
d2λ

(
∂

∂λ∗
χ [ρ̂, λ]

)
eλ
∗α−λα∗ − 1

2π2

∫ ∫
λχ [ρ̂, λ] eλ

∗α−λα∗d2λ

=

(
α+

1

2

∂

∂α∗

)
W (α), (C.32)

where again in the final step we integrated by parts. Now, in order to do the same for

the characteristic function of ρ̂â, we firstly need to find a way to commute â with D̂(λ).

Thus, by using the relation
(
â†
)n
â = â

(
â†
)n − n (â†)n−1

, which simply comes from the

basic commutation relation [â, â†] = 1, we find

âD̂(λ) = D̂(λ) (â+ λ) . (C.33)

Following the same procedure, but now for D̂(λ)â†, we obtain

D̂(λ)â† =
(
â† − λ∗

)
D̂(λ) (C.34)
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Using Eq. (C.33) we find the following relation for the characteristic function of ρ̂â

χ [ρ̂â, λ] = Tr
[
ρ̂âD̂(λ)

]
= Tr

[
ρ̂D̂(λ) (â+ λ)

]
= χ [âρ̂, λ] + λχ [ρ̂, λ] , (C.35)

and we can easily calculate the corresponding Wigner-Weyl representation

1

π2

∫ ∫
d2λχ [ρ̂â, λ] eλ

∗α−λα∗

=

(
α+

1

2

∂

∂α∗

)
W (α)− 1

π2

∂

∂α∗

∫ ∫
d2λχ [ρ̂, λ] eλ

∗α−λα∗

=

(
α− 1

2

∂

∂α∗

)
W (α). (C.36)

Similarly using Eq. (C.34) for the characteristic function of â†ρ̂ we have

χ
[
â†ρ̂, λ

]
= Tr

[
ρ̂
(
â† − λ∗

)
D̂(λ)

]
= χ

[
ρ̂â†, λ

]
− λ∗χ [ρ̂, λ] (C.37)

and the corresponding Wigner-Weyl representation is

1

π2

∫ ∫
d2λχ

[
â†ρ̂, λ

]
eλ
∗α−λα∗

=

(
α∗ +

1

2

∂

∂α

)
W (α)− 1

π2

∂

∂α

∫ ∫
d2λχ [ρ̂, λ] eλ

∗α−λα∗

=

(
α∗ − 1

2

∂

∂α

)
W (α). (C.38)

To summarize we present here all the Wigner-Weyl representations we found

ρ̂â† →
(
α∗ +

1

2

∂

∂α

)
W (α) (C.39)

âρ̂→
(
α+

1

2

∂

∂α∗

)
W (α) (C.40)

ρ̂â→
(
α− 1

2

∂

∂α∗

)
W (α) (C.41)

â†ρ̂→
(
α∗ − 1

2

∂

∂α

)
W (α). (C.42)

Finally, we find the characteristic function of the operator â†âρ̂ through ââ†ρ̂, since those

two are related via

χ
[
â†âρ̂, λ

]
= χ

[
ââ†ρ̂, λ

]
− χ [ρ̂, λ] . (C.43)

Now, for the characteristic function of ââ†ρ̂ we have

χ
[
ââ†ρ̂, λ

]
= Tr

[
ρ̂D̂(λ)ââ†

]
, (C.44)
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and using Eq. (C.28), (C.34) and (C.26) we obtain

χ
[
ââ†ρ̂, λ

]
= −

(
∂

∂λ∗
+
λ

2

)[(
∂

∂λ
+
λ∗

2

)
− λ∗

]
χ [ρ̂, λ] , (C.45)

and consequently through Eq. (C.43)

χ
[
â†âρ̂, λ

]
=

[
−
(

∂

∂λ∗
+
λ

2

)(
∂

∂λ
+
λ∗

2

)
+

(
∂

∂λ∗
+
λ

2

)
λ∗ − 1

]
χ [ρ̂, λ] (C.46)

Here, we just present the Wigner-Weyl representations of each resulted term from the

above equation

1

π2

∫ ∫
d2λχ [ρ̂, λ] |λ|2eλ∗α−λα∗ = − ∂

∂α

∂

∂α∗
W (α) (C.47)

1

π2

∫ ∫
d2λ

(
∂

∂λ∗
∂

∂λ
χ [ρ̂, λ]

)
eλ
∗α−λα∗ = −|α|2W (α) (C.48)

1

2π2

∫ ∫
d2λ

(
∂

∂λ∗
λ∗χ [ρ̂, λ]

)
eλ
∗α−λα∗ = −1

2
α
∂

∂α
W (α) (C.49)

1

2π2

∫ ∫
d2λ

(
∂

∂λ
χ [ρ̂, λ]

)
λeλ

∗α−λα∗ = −1

2

(
1 + α∗

∂

∂α∗

)
W (α), (C.50)

where we integrated by parts and discarded all surface terms during all calculations. We

finally present the Wigner-Weyl representation of â†âρ̂

â†âρ̂→
(
α∗ − 1

2

∂

∂α

)(
α+

1

2

∂

∂α∗

)
W (α). (C.51)

We notice that we could have obtained the same result, by simply combining equations

(C.40) and (C.42), in the appropriate order, so as to form â†âρ̂.

Using these correspondences we can transform the master equation, Eq.(C.22), into a

PDE, which describes the time evolution of the Wigner function and involves only complex

variables

∂W

∂t
= i

[
∂

∂α

(
ωαW + Ω

(
|α|2 − 1

2

)
αW

)
− Ω

4

∂3

∂2α∂α∗
(αW )

]
+ c.c. (C.52)

C.4 Truncated Wigner Approximation

Up to this point we haven’t made any approximations yet, and hence Eq. (C.52)

perfectly matches with the master equation Eq. (C.22). However, this is still quite hard

to solve, due to the final term. Hence, we make the truncated Wigner approximation, by

ignoring third order derivatives

∂W

∂t
= i

∂

∂α

(
ωαW + Ω

(
|α|2 − 1

2

)
αW

)
+ c.c. (C.53)
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We notice that this has the form of a Fokker-Planck equation, Eq. (C.20) with no diffusion

term. Hence, this can be mapped to an SDE for the stochastic process of α, as we showed

in Sec. (C.2.3)

i
dα

dt
= ωα+ Ω

(
|α|2 − 1

2

)
α. (C.54)

We can find the corresponding SDE for α∗, by taking the conjugate of the above equa-

tion. The fact that the FPE, Eq. (C.53), does not have a diffusion term, results in no

explicit noise term in the SDE and hence we end up with an ordinary differential equation

Eq. (C.54). However, the initial conditions are stochastic and need to be appropriately

sampled from the initial Wigner function, as we are going to analyse when we will try to

implement numerically the TW method.

C.5 Truncated Wigner for a Multi-Mode Field

In the previous sections we examined the simple case of a single mode field. We can

move to a multi-mode field consisting of M modes, by generalizing the formalism we have

already structured for the single case. We use the following notation for the M -mode

Wigner variable vector [α1, α2..., αM ]T, as well as for the complex number λ we have

[λ1, λ2..., λM ]T. Thus, ∫
d2λ =

M∏
j=1

∫
d2λj . (C.55)

Hence, the M -mode Wigner function would be given by [173]

W (α,α∗) =
1

π2M

∫
d2λeλ

†α−α†λχ [ρ̂,λ] , (C.56)

where α† = (α∗). This can be written in the more clear form

W (α,α∗) =
1

π2M

∫
d2λ1...

∫
d2λM

M∏
j=1

eλ
∗
jαj−λjα∗jχ [ρ̂,λ] , (C.57)

with the multi-mode characteristic function [83]

χ [ρ̂,λ] = Tr

[
ρ̂
M∏
n=1

eλ
∗
nân−λnâ

†
n

]
. (C.58)

We use the field operator ψ̂(x) =
∑M

n=1 φn(x)ân, in order to properly describe a multi-

mode field, and we make the obvious generalization to a multi-mode phase space field

ψ(x) =
∑M

n=1 φn(x)αn. Remember that using the Winger function we can calculate sym-

metrically ordered operator averages, hence we can generalise Eq. (C.4) to

〈{(ψ̂†)n, ψ̂m}sym〉 =

∫
d2α(ψ∗)nψmW (α,α∗) = (ψ∗)nψm. (C.59)
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For the particular case of ψ̂†(x)ψ̂(x) we obtain the very interesting result∫
d2α|ψ(x)|2W (α,α∗) =

〈
ψ̂†(x)ψ̂(x) + ψ̂(x)ψ̂†(x)

2

〉
⇒

|ψ(x)|2 =
〈
ψ̂†(x)ψ̂(x)

〉
+
δ(0)

2
, (C.60)

where we used the commutation relation for the field operator [ψ̂(x), ψ̂(x′)] = δ(x − x′).

This is a very crucial result as it indicates physics beyond the mean field theory. The last

term in the above equation realizes quantum fluctuations as it accounts for half a quantum

per noise mode, something that it is not incorporated in the mean filed theory [173]. We

should mention here that this term δ(0)/2 diverges in case we consider all infinite possible

modes of the field, but in our case we consider a finite number of modes and that means

that this term would give us a finite contribution to the stochastic average, as we will see

in the following sections, where we will discretize our grid. Using the functional derivatives

δ

δψ(x)
=

M∑
n=1

φ∗n(x)
∂

∂αn
(C.61)

δ

δψ∗(x)
=

M∑
n=1

φn(x)
∂

∂α∗n
, (C.62)

we can find the correspondences between the density matrix and the Wigner function for

the multi-mode case [83,173]

ρ̂ψ̂†(x)→
(
ψ∗(x) +

1

2

δ

δψ(x)

)
W (C.63)

ψ̂†(x)ρ̂→
(
ψ∗(x)− 1

2

δ

δψ(x)

)
W (C.64)

ρ̂ψ̂(x)→
(
ψ(x)− 1

2

δ

δψ∗(x)

)
W (C.65)

ψ̂(x)ρ̂→
(
ψ(x) +

1

2

δ

δψ∗(x)

)
W. (C.66)

We consider the multi-mode Hamiltonian

Ĥ =

∫
dxψ̂†(x)Ĥ0ψ̂(x) +

U

2

∫
d3xψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x), (C.67)

where Ĥ0 = − ~2

2m∇
2 + V (x) is the single particle Hamiltonian. Using the operator cor-

respondences we found earlier, we can find the time evolution of the Wigner function,

corresponding to the master equation ∂ρ̂
∂t = − i

~

[
ρ̂, Ĥ

]
i~
∂W

∂t
= −

∫
d3x

{
δ

δψ

[
Ĥsp +

U

2

(
|ψ(x, t)|2 − δ(0)

2

)
ψW

]}
, (C.68)
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where we have truncated third order derivatives. We can map the resulted Fokker-Planck

equation to an SDE as we did in the single mode case

i~
∂

∂t
ψ(x, t) =

[
~2

2m
∇2 + V (x) +

U

2

(
|ψ(x, t)|2 − δ(0)

2

)]
ψ(x, t), (C.69)

where the δ(0) term has no observable consequence in this case, since it just results in a

global phase.

C.6 Numerical Implementation

C.6.1 Single-Mode

In the previous sections we moved from the density matrix description of the system to

the Wigner phase-space representation, and in the special case where the time evolution

of the Wigner function takes the form of a FPE, we can finally map the dynamics of the

system to a SDE. It is conceptually easier to understand the meaning of a SDE, by having

in mind that it is something similar to the Heisenberg equation of motion for a system’s

operator, in the sense that it gives the dynamical evolution of the system, through the

Wigner’s complex variable. As briefly aforementioned at the end of the previous section,

additional noise terms should be included in the initial conditions of the Wigner variables,

to model the quantum mechanical fluctuations. This cannot be done exactly, but a good

approximation would be to stochastically sample the Wigner distribution of the system’s

initial state. Here we consider that our initial state is a Glauber coherent state |α0〉,

since they constitute a good approximation for describing Bose-Einstein condensates, as

analysed in Chapter 2, Sec. [2.5.1]. Firstly, we present the well known expectation values

of the first and second moments of the amplitude and phase quadratures, defined as

X̂ = â+ â† and Ŷ = i(â− â†), for a coherent state |α0〉

〈X̂〉 = 2Re(α0), 〈Ŷ 〉 = −2Im(α0) (C.70)

〈X̂2〉 = 4Re2(α0) + 1, 〈Ŷ 2〉 = −4Im2(α0) + 1. (C.71)

Now, we consider the following initial condition for the Wigner variable

αw(0) = α0 + η, (C.72)

where η is a complex noise term given by

η =
1

2

(
ξ + iξ′

)
, (C.73)
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where the properties of ξ and ξ′ would be determined in such a way, in order Eq.(C.70)

and (C.71) to be satisfied. Making use of the Wigner’s function property of calculat-

ing expectation values of symmetrically ordered operators, we find the corresponding

expectation values for the Wigner variables of the amplitude and phase quadratures,

Xw(0) = αw(0) + α∗w(0) and Yw(0) = i(αw(0)− α∗w(0)). Hence, we have

〈Xw(0)〉 = 2Re(αw(0)), 〈Yw(0)〉 = −2Im(αw(0)) (C.74)

〈X2
w(0)〉 = 4Re2(αw(0)), 〈Y 2

w(0)〉 = −4Im2(αw(0)). (C.75)

From the equality of the expectations values 〈X̂〉 = 〈Xw(0)〉 and 〈Ŷ 〉 = 〈Yw(0)〉, we

find ξ = 0 and ξ′ = 0 respectively. Moreover, from the equality of the second moment

expectation values 〈X̂2〉 = 〈X2
w(0)〉 and 〈Ŷ 2〉 = 〈Y 2

w(0)〉 we obtain that ξ2 = 1 and

ξ′2 = 1 respectively. Hence, ξ and ξ′ are noise terms following a Gaussian distribution

with mean zero and variance one. Thus, we can now find the consequent relations for

η, η = 0 and |η|2 = 1/2. In Fig. [C.1], we depict the Wigner variables of the amplitude

and phase quadratures, using αw(0). We notice that Eq. (C.72) and the corresponding

noise relations, reproduces the expected picture for Glauber coherent states, as we had

introduced in Chapter 3, Fig. [3.6].
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Figure C.1: Scatter plot of the amplitude and phase quadrature using the truncated

Wigner method for 103 different points, considering (a) a vacuum coherent state, and (b)

a coherent state with N = 100.

Now that we have managed to find the appropriate initial conditions for the Wigner

variables, we can summarize how the whole process works. We begin by sampling random

points from the initial state’s Wigner function and we find the time evolution of each

point using the SDE, Eq. (C.54). So, we obtain many different trajectories, each one
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corresponding to the time evolution of each initial random point. Finally, we have to

take the average over all these trajectories, in order to calculate any expectation value of

symmetrically ordered operators Eq. (C.4).

C.6.2 Multiple Modes

Now, we are moving to the numerical implementation of the M mode field. We have

already seen that, if we try to calculate expectation values of symmetrically ordered field

operators we encounter the rather awkward situation, where we have a δ(0) term in our

equations, Eq. (C.60). However, as we have already mentioned, that term does not go to

infinity, because we do not consider an infinite number of modes. In order to calculate

the contribution of that term we should move from the continuous to the discretized case,

where we divide our space in M evenly spaced points, since we consider M modes. The

step between these points would be given by ∆x = xi − xi−1, where [i − 1, i] is the i-th

point. Now all integrals can be converted into sums∫ ∞
−∞

f(x)dx→
M∑
i=1

f(xi)∆x. (C.76)

Also, the Dirac function δ(x) is converted to the Kronecker delta δij via

δ(xm − xn)→ δmn
∆x

. (C.77)

So, in our case we can express δ(0) in the discretized case as

δ(0)→ 1

∆x
. (C.78)

Hence, the number operator N̂ =
∫∞
−∞ dxψ̂

†(x)ψ̂(x) can now be written as a discrete sum

N̂ =
M∑
i=1

ψ̂†(xi)ψ̂(xi)∆x. (C.79)

Let’s write now Eq. (C.60) in its descritized form

|ψ(xi)|2 = 〈ψ̂†(xi)ψ̂(xi)〉+
1

2∆x
. (C.80)

We take the sum over i and multiply with ∆x

M∑
i=1

|ψ(xi)|2∆x =

〈
M∑
i=1

ψ̂†(xi)ψ̂(xi)∆x

〉
+

M∑
i=1

1

2∆x
∆x, (C.81)

which finally gives the expectation value of the number of particles of the M mode field

M∑
i=1

|ψ(xi)|2∆x = 〈N̂〉+
M

2
. (C.82)
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After that result and based on the same strategy we developed in the single mode case,

in order to find the initial condition of the Wigner phase space variable we generalize

Eq. (C.72) in the following way

ψ(xi, 0) =
√
Nφ(xi) + η(xi), (C.83)

where now we have the multi-mode noise [83]

η(xi) =
1

2
√

∆x

[
ξ(xi) + iξ′(xi)

]
, (C.84)

where as in the single mode case ξ(xi) and ξ′(xi) are random numbers, which are statist-

ically independent and both have mean zero, but now this is the case for each point of our

grid. Thus, we have [83]

η∗(xn)η(xm) =
1

2
δ(xn − xm) =

δnm
2∆x

. (C.85)

Again, we have chosen the noise properties properly, in order the initial condition Eq. (C.83)

to reproduce the right expectation values. For example, this is true for the initial popu-

lation expectation value, which is given by Eq. (C.82) with 〈N̂〉 = N , since we consider

again a coherent initial state, and because the multi-mode noise term satisfies

M∑
i=1

|η(xi)|2 =
M

2
. (C.86)

C.6.3 Single-Mode Expectation Values

In this subsection we present some expectation values calculated using the single mode

Wigner function. In general, we calculate the expectation value of only symmetrically

ordered operators by using Eq.(C.4). If we are interested on calculating the expectation

value of an operator, which is not originally symmetrically ordered, we can simply use

Eq.(C.4) for the symmetrical version of the operator and then one of the terms which

constitute the symmetrical ordering of the original operator, would be the operator we are

interested on.

Firstly, let’s consider the simple case of an operator consisting of two operators com-

muting with each other, for example Â = â1â2, then this straightforwardly gives 〈Â〉 =

〈â1â2〉 = α1α2, since the symmetric ordering of Â is equal to itself {â1â2}sym = â1â2.

A nice example that clearly shows that, are the amplitude and phase quadratures of the

single mode field, X̂ = 1
2(â+ â†) and Ŷ = − i

2(â− â†), where

〈X̂〉 =
1

2
(α+ α∗) (C.87)

〈Ŷ 〉 = − i
2

(α− α∗). (C.88)
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On the other hand, when we deal with operators that do not commute with each other,

e.g Â = â†â, then we are going to get some corrections terms, coming from their non-

commutability. The most profound example is the number operator N̂ = â†â, where the

expectation value of its symmetric ordering is

〈
{â†, â}sym

〉
=

1

2

〈(
â†â+ ââ†

)〉
(C.89)

= 〈N̂〉+
1

2
, (C.90)

where in the second equality we used the commutation relation [â, â†] = 1. From Eq.(C.4)

we also know that
〈
{â†, â}sym

〉
= |α|2, hence the expectation value for the number operator

is given by

〈N̂〉 = |α|2 − 1

2
. (C.91)

Following the same procedure we calculate 〈N̂2〉. Here, the corresponding symmetric

ordering is more complicated

{
(â†)2, â2

}
sym

=
1

6

(
â†â†ââ+ â†ââ†â+ â†âââ† + ââ†â†â+ ââ†ââ† + âââ†â†

)
. (C.92)

Again, using several times the commutation relation [â, â†] = 1 and obtaining the expect-

ation values of all terms in the above equation, we have〈{
(â†)2, â2

}
sym

〉
= 〈â†ââ†â〉+ 〈â†â〉+

1

2
. (C.93)

After using Eq.(C.4), which gives
〈{

(â†)2, â2
}

sym

〉
= |α|4, and Eq. (C.91) we finally obtain

〈N̂2〉 = |α|4 − |α|2. (C.94)

Let’s calculate the expectation values of the angular momentum operators of a single mode

two component system. For convenience, we write their definitions here

Ĵx =
1

2
(â†1â2 + â1â

†
2) (C.95)

Ĵy = − i
2

(â†1â2 − â1â
†
2) (C.96)

Ĵz =
1

2
(â†1â1 − â†2â2). (C.97)

From these we notice that the expectation values of Ĵx and Ĵy are easily calculated, since

they constitute by products of commuting operators, while for Ĵz we see that the resulted
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correction terms cancel out, hence

〈Ĵx〉 =
1

2
(α∗1α2 + α1α∗2) (C.98)

〈Ĵy〉 = − i
2

(α∗1α2 − α1α∗2) (C.99)

〈Ĵz〉 =
1

2
(|α1|2 + |α2|2). (C.100)

By calculating the expectation values of the squared angular momentum operators we will

get correction terms, since by taking their square we create non-commuting terms

〈Ĵ2
x〉 =

1

4
(α∗1α2 + α1α∗2)− 1

8
(C.101)

〈Ĵ2
y 〉 = − i

4
(α∗1α2 − α1α∗2)− 1

8
(C.102)

〈Ĵ2
z 〉 =

1

4
(|α1|2 + |α2|2)− 1

8
. (C.103)

In Chapters 5 and 6, we needed to calculate the covariances of angular momentum oper-

ators, e.g Cov(Ĵx, Ĵz) = 〈ĴxĴz〉− 〈Ĵx〉〈Ĵz〉, but in order to do so, we should firstly find the

expectation value of their product

〈ĴzĴx〉 =
1

4
(|α1|2 − |α2|2)(α1α∗2 + α∗1α

2)− i

2
〈Ĵy〉 (C.104)

〈ĴzĴy〉 = − i
4

(|α1|2 − |α2|2)(α1α∗2 − α∗1α2) +
i

2
〈Ĵx〉 (C.105)

〈ĴxĴy〉 = − i
4

(α1α∗2 + α∗1α
2)(α1α∗2 − α∗1α2)− i

2
〈Ĵz〉. (C.106)

More precisely, we usually encounter the sum of covariances, of the form Cov(Ĵx, Ĵz) +

Cov(Ĵz, Ĵx), so we need 〈ĴzĴx〉+ 〈ĴxĴz〉 thus the correction terms cancel out.

C.6.4 Multi-Mode Expectation Values

Here, we briefly present some expectation values of symmetrically ordered operators

in the M -mode case. We follow the same strategy with the single mode case, but now we

have to use the commutation relation [ψ̂(xi), ψ̂(xj)] = δ(xi − xj), move to the descritized

case δ(xi − xj) = δij/∆x and then take the corresponding sums in order to form the

expectation values of interest. We have already seen that for the number operator we

obtain

〈N̂〉 =

M∑
i=1

|ψ(xi)|2∆x− M

2
. (C.107)
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For the number squared we have

〈N̂2〉 =

 M∑
j=1

|ψ(xj)|2∆x

2

−M〈N̂〉 − M2 +M

4
. (C.108)

In order to examine the expectation values of the angular momentum operators we need

two multi-mode fields which satisfy [ψ̂a(xi), ψ̂(xj)] = δabδ(xi − xj). Thus, we can now

write

Ĵx =
1

2

∫ (
ψ̂†a(x)ψ̂b(x) + ψ̂a(x)ψ̂†b(x)

)
dx→ 1

2

M∑
j=1

(
ψ̂†a(xj)ψ̂b(xj) + ψ̂a(xj)ψ̂

†
b(xj)

)
∆x

(C.109)

Ĵy = − i
2

∫ (
ψ̂†a(x)ψ̂b(x)− ψ̂a(x)ψ̂†b(x)

)
dx→ − i

2

M∑
j=1

(
ψ̂†a(xj)ψ̂b(xj)− ψ̂a(xj)ψ̂

†
b(xj)

)
∆x

(C.110)

Ĵz =
1

2

∫ (
ψ̂†a(x)ψ̂a(x)− ψ̂†b(x)ψ̂b(x)

)
dx→ 1

2

M∑
j=1

(
ψ̂†a(xj)ψ̂a(xj)− ψ̂

†
b(xj)ψ̂b(xj)

)
∆x,

(C.111)

where we have also written their descritized form. Now, we can calculate their expectation

values

〈Ĵx〉 =
1

2

M∑
j=1

(
ψ†a(xj)ψb(xj) + ψa(xj)ψ

†
b(xj)

)
∆x (C.112)

〈Ĵy〉 = − i
2

M∑
j=1

(
ψ†a(xj)ψb(xj)− ψa(xj)ψ†b(xj)

)
∆x (C.113)

〈Ĵz〉 =
1

2

M∑
j=1

(|ψa(xj)|2 − |ψb(xj)|2) ∆x. (C.114)

Finally, for the squared angular momentum operators we get the obvious generalization

of the single mode case, but now we are going to have a correction term for each mode of

the field [83]

〈Ĵ2
x〉 =

1

4

M∑
j=1

[(
ψ†a(xj)ψb(xj) + ψa(xj)ψ

†
b(xj)

)
∆x
]2
− M

8
(C.115)

〈Ĵ2
y 〉 = −1

4

M∑
j=1

[(
ψ†a(xj)ψb(xj)− ψa(xj)ψ†b(xj)

)
∆x
]2
− M

8
(C.116)

〈Ĵ2
z 〉 =

1

4

M∑
j=1

[(|ψa(xj)|2 − |ψb(xj)|2) ∆x]2 − M

8
. (C.117)
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