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Abstract

We present the first exact diagonalisation study of a rotating Bose-

Einstein condensate stirred by a quadratic anisotropic potential near

the threshold of the first vortex nucleation beyond the lowest Landau

level (LLL) approximation.

Although the nucleation of the first vortex in this system has been

the focus of extensive experimental and theoretical research in both

mean-field studies, as well as in exact diagonalisation ones, they have

all relied on the assumption of the interaction strength being weak

enough so that the system is well described by the LLL approximation.

The LLL approximation accurately predicts the rotation frequency

at which the first vortex penetrates the gas, and correctly describes

the appearance of a quantum phase transition at a critical rotation

frequency Ωc, which leads to quantum correlations between the atoms

and entanglement in the ground state at Ωc.

However, our research shows that the LLL approximation fails at de-

scribing the details of the entangled state and the quantum Fisher

information, which bounds the accuracy of phase measurements in

metrology schemes, even for weak interactions. Our results reveal

a rich system that allows for the engineering of different promising

entangled states for quantum metrology, which are also amenable to

experimental investigation.

Finally, we propose an inteferometric scheme that makes use of these

entangled states, which is shown to have the potential of delivering

nearly Heisenberg-limited precision for the measurement of small ro-

tations. The scheme is conceptually very simple, and it is also within

reach of current experimental technologies.
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Chapter 1

Introduction

The concept of entanglement lies at the very core of quantum mechanics. Once

dubbed as “spooky action at a distance” by Einstein, it can be considered as

the most non-classical feature of the quantum formalism. This central feature

was first recognised by Einstein, Podolsky, and Rosen (Einstein et al., 1935) and

Schrödinger (Schröedinger, 1935) at the beginning of the 20th century. Invari-

ably, due to seemingly bizarre implications of quantum entanglement which are

in drastic contrast with concepts from classical physics, as well as its far reaching

consequences for the locality and reality of quantum mechanics, the topic of en-

tanglement motivated a great deal of discussion and skepticism among scientists

since the early days of quantum mechanics. Already in 1935, Erwin Schrödinger

gave a now very famous example of a thought experiment that highlights some

of the bizarre consequences of entanglement, particularly when there is a macro-

scopic system involved. The experiment is the following. A cat and a radioactive

atom are placed together inside a sealed box with a mechanism which releases

poison when the atom is detected to have decayed, thus killing the cat. If the

atom does not decay yet, the poison is not released and the cat gets to live. In

modern quantum mechanics jargon, we say that the entire system, cat plus atom,

after a duration equal to the half life of the radioactive atom, is in a superposition

state of the cat being alive and dead simultaneously, expressed by the state

ψ =
1√
2

[|1〉|L〉+ |0〉|D〉] , (1.1)

1



where |1〉 represents the state of the undecayed atom, |0〉 is the state of the

decayed one, and live and dead states of the cat are represented by |L〉 and |D〉.
This superposition state is nowadays referred as an entangled Schrödinger’s “cat

state”, or simply a “cat state”.

That an uncertainty originally restricted to the atomic domain translates into

a macroscopic indeterminacy is completely out of our normal experience. After

all, we do not observe simultaneously dead and alive cats in everyday life, or any

other macroscopic superposition for that matter. This is because the indetermi-

nacy implied in the superposition state is finally resolved by the act of observation

or measuring, causing the collapse of the wave function. This resolution in itself

poses a great dilemma for physicists, which is commonly dubbed as the measure-

ment problem in quantum mechanics (Penrose, 2001). The problem consists in

the following: the quantum system which is in a superposition and the measur-

ing device together form a single larger and isolated quantum mechanical system,

and thus its evolution must be dictated by the Schrödinger equation; in the same

way, the act of measuring collapses the wave function of the open sub-system

which is in a quantum superposition, and the full details of this collapse and the

measurement process should in principle be derivable solely from the Schrödinger

equation for the wave function of the composite system. However, up to this

day, there is still disagreement between physicists about whether or not this is

possible. Naturally, all the theoretical debate in the early 20th century was more

than justified.

It took more than thirty years before the work of John Bell (Bell, 1966) opened

the possibility of fundamental questions related to entanglement to be tested ex-

perimentally. He derived a set of inequalities involving correlations in experiments

involving bipartite systems, that when found to be violated by experimental re-

sults, have the implication that entanglement is indeed physical reality. Then,

it took another fifteen years until a convincing experimental test of violation of

the Bell inequalities was performed by (Aspect et al., 1981). After Aspect et al,

many more experimental tests were performed (Kwiat et al., 1995; Ou & Mandel,

1988; Tittel et al., 1998), all of them clearly confirming the predictions of the

quantum theory. However, while these results are very convincing, there are pos-

2



1.1 Quantum metrology

sible loopholes and to date no experiment has simultaneously closed all of these

loopholes.

The leading of all these experimental demonstrations opened the door to the

exploration of many applications of quantum entanglement, which all demon-

strate a “quantum enhancement” over their classical counterparts. Among these

key discoveries we find, quantum cryptography (Bennet et al., 1992; Ekert, 1991),

quantum dense coding (Bennet & Wiesner, 1992), and quantum teleportation

(Bennet et al., 1993; Yurke & Stoler, 1992). All of these discoveries together with

the idea of quantum computation (Deutsch, 1985; Feynman, 1982; Shor, 1995)

gave birth to a new multidisciplinary area called quantum information (Nielsen

& IL, 2000), which has the concept of entanglement as its central focus, being

the primary resource which all of these ideas run on.

Among all these new emergent fields which incorporate entanglement as a

central notion, we find quantum metrology, an exciting area of quantum physics

that deals with accomplishing very precise measurements through the use of en-

tanglement. The research carried out in this thesis pertains to this relatively

new area of quantum mechanics, thus we briefly review some of the concepts

and advances of this field in the next section. For an all-encompassing review of

entanglement in quantum mechanics, (Amico et al., 2008; Horodecki et al., 2009)

provide excellent reading material.

1.1 Quantum metrology

Quantum metrology is the collection of ideas, methods, theories and experiments

that achieve any kind of quantum enhancement for measuring physical quantities

beyond the classical limit (Dunningham, 2006; Giovannetti et al., 2011).

Measurements play an important role in our everyday lives, as well as in tech-

nical applications and fundamental science. We are always in need of knowing

the exact time in order to not miss an important event, at other times we are

deeply concerned about how many pound we put on weight, and particularly in

England, we ought to know how cold or warm it is outside. Likewise, an aeroplane

pilot needs to know the altitude, velocity and orientation of the plane at all times

in order to conduct a safe journey. More importantly, precise measurements are
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crucial to science in order to define standards and prove or disprove scientific

theories; the latter is epitomised by the Michelson-Morley interferometric exper-

iment which helped to disprove the long-debated concept of an “ether” in which

light was supposed to be propagated.

With the advent of modern technology such as transistors, the laser, and

quantum control, the science of measurement has brought incredible achievements

that were once thought to be impossible to attain, such as measurements of the

variation of Earth’s rotation of one part in 105 (Gustavson et al., 2000), atomic

clocks with systematic errors below one part in 1017 (Rosenband et al., 2008),

which in turn allows for the observation of relativistic time dilation at bicycling

speeds (Chou et al., 2010).

However, in spite of the current powerful measuring technologies, all of these

state-of-the-art devices are limited by the standard quantum limit (SQL) of mea-

surements. The SQL or shot noise limit (SNL) is the best precision scaling for

a phase measurement that any device can attain when the measurement process

involves N independent or uncorrelated probes that couple to the parameter that

needs to be estimated, and it is given by 1/
√
N . The way this scaling comes

about in strictly classical measuring devices is a consequence of the central-limit

theorem: by repeating a large N independent measurements and averaging the

outcomes, this average converges to a Gaussian distribution with standard devi-

ation ∆σ/
√
N , thus the precision of the measurement scales as ∼ 1/

√
N . This

limit to precision with uncorrelated resources is typically exemplified as being the

best precision scaling attained by an optical interferometer in which an ordinary

laser beam is inputted in only one port, and which measures the path difference

between the arms of the interferometer which translates into a measurement of

an optical phase φ. The phase sensitivity scales as ∆φ ∼ 1/
√
N , where N is the

mean number of photons that have run through the interferometer. Now, one

could think that any desired precision ∆φ could be attained by increasing the

number of photons N , which is obtained by increasing the power of the laser.

However, when the laser power becomes too large, power fluctuations introduce

additional noise terms that compromise and eventually limit the overall precision

of the interferometer (Caves, 1981). Notably, the SQL is not a fundamental one,
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and it has been known for more than 30 years that it can be surpassed using

“quantum tricks”.

In 1981 Caves (Caves, 1981) showed that when phase-squeezed states are con-

sidered as the input to both ports of the interferometer, the phase precision can

asymptotically approach 1/N , for large numbers of photons N , which is propor-

tional to the optical power of the input states. Later on, Yurke and colleagues

(Yurke, 1986; Yurke et al., 1986) showed that using quantum number states which,

unlike coherent states, do not experience number fluctuations and hence there is

no possibility of squeezing in the conventional sense, it is also possible to surpass

the SQL if these number states are highly entangled and used as the input to

the interferometer. Since then, a vast amount of theoretical proposals (Cable &

Dowling, 2007; Cooper et al., 2010; Dunningham & Hallwood, 2006; Joo et al.,

2011; Mitchell et al., 2004a) and experimental (Kacprowicz et al., 2010; Mitchell

et al., 2004a; Nagata et al., 2007; Okamoto et al., 2008) demonstrations have

been carried out which show the possibility of beating the SQL, particularly by

using quantum entanglement as the main resource. The vast majority of the ex-

perimental demonstrations have been done with photons; however, the prospect

of implementing quantum metrology with matter waves offers several advantages

over the optical systems. One of the most important advantages resides in the fact

that in order to produce squeezing, the particles need to strongly interact among

themselves or through nonlinear terms in the Hamiltonian; however, photons do

not interact with other photons and it is technically very difficult and challenging

to produce a nonlinear medium capable of producing photon squeezing. On the

other hand, atoms interact among themselves all the time almost “for free”, and

usually, the interaction strength is highly tunable by either choosing different

atom species with different scattering lengths or by using dynamic mechanisms

such as Feshbach resonances. Among all the current promising atomic systems

for matter wave metrology, Bose–Einstein condensates are the perfect candidates

for superseding incoherent atomic systems for the use of quantum metrology, just

as optical lasers superseded thermal light sources in high precision metrology. In

the following section we touch upon the topic of Bose–Einstein condensates and

their relevance to quantum metrology. For a very good review on the topic of
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matter wave interferometers as prospects for precision measurements, we refer

the reader to Refs. (Cronin et al., 2009; Robins et al., 2013).

1.2 Bose–Einstein condensation

The description of Bose–Einstein condensation traces its origin back to 1924,

when Satyendra Nath Bose (Bose, 1924) published a paper where he derived

Planck’s law using non-classical arguments for photons which now forms the

basis of the statistical description of identical quantum particles with integer

spin. Einstein translated Bose’s paper to German and had it published on his

behalf. Later on, Einstein adapted Bose’s work and extended the theory for

massive particles (Einstein, 1925). This led to the prediction of the Bose–Einstein

condensation phenomenon, a collection of bosonic particles can be forced to have

a macroscopic occupancy of the lowest single-particle energy level below a certain

finite critical temperature by purly statistical effects. Although creating a Bose–

Einstein condensate (BEC) is quite simple in principle, i.e., cool down a bosonic

gas to extreme low temperatures until the wavefunctions of the particles start

to overlap, overcoming the actual technical problems proved to be extremely

difficult. Even as late as 1994, Steve Chu, one of the pioneers of laser cooling,

stated in a news article: “I am betting on Nature to hide Bose condensation

from us. The last 15 years she’s been doing a great job” (Ketterle, 2002). But,

in 1995, in a series of ground-breaking experiments, Bose–Einstein condensation

was finally achieved by different groups in dilute gases of rubidium (Anderson

et al., 1995), lithium (Bradley et al., 1995), and sodium (Davis et al., 1995).

In order to obtain a Bose–Einstein condensate, the atomic cloud needs to be

cooled down to extremely low temperatures. This can be achieved by a sequential

use of laser cooling followed by evaporative cooling (Pethick & Smith, 2008). In

laser cooling, two counter-propagating lasers which are red-detuned with respect

to an atomic resonance, fire photons upon the atoms which are more likely to

absorb photons that oppose their motion, due to the Doppler effect. The ab-

sorption of a photon leaves the atom in an excited state and causes a momentum

transfer to the atom, which makes it recoil in the opposite direction to its motion.

When the photon is re-emitted in a random direction by spontaneous emission,
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the momentum exchange from this fluorescent radiation averages zero, so the

net total effect is that of damping the motion of the atoms and slowing them

down in the direction of the propagating lasers, similar to the motion of a marble

inside a viscous medium; in fact, this cooling scheme has been dubbed “optical

molasses”. In order to slow down the atoms in all directions, three orthogonal

pairs of counter-propagating lasers are used, so that no matter what direction an

atom moves in this optical molasses, it always feels a force opposing its motion.

As the atoms slow down, they are no longer in resonance with the lasers and con-

sequently the cooling mechanism stops working. Further cooling by this method

can be achieved by tuning the atomic frequency with magnetic fields. However,

there is a limit to how cold the atoms can be cooled down using laser cooling

because the absorption of photons not only gives rise to an opposing force but

it also heats the atoms. An atom at rest is equally likely to absorb a photon

from either direction of the counter-propagating lasers, and since the absorption

events are random and uncorrelated, the atom undergoes a random walk in mo-

mentum space, which effectively causes heating of the cloud. This laser cooling

method can bring the atomic cloud to extremely low temperatures of the order

of ∼ 200 µK, which is still “too hot” to achieve Bose–Einstein condensation by a

factor of 103.

The required low temperatures for observing Bose–Einstein condensation can

be obtained by applying evaporative cooling after having laser cooled down the

atomic cloud. After the laser cooling process, the atoms are transferred to a

magnetic-optical trap (MOT) which uses 3 pairs of circularly polarised lasers and

a non-homogeneous magnetic field in order to tune atomic transitions via the

Zeeman effect, in such a way so that laser radiation will always be absorbed in a

manner that generates a force which keeps the atoms inside the trap. Evaporative

cooling is then achieved by effectively causing a “hole” in the upper part of the

potential allowing high energetic atoms corresponding to energies equal to the

energy level of the trap at the position of the “hole”, to escape the confinement,

thereby removing the high-energetic part of their thermal distribution. As a

result, the rest of the atoms in the trap rethermalise to a lower temperature than

the one they started with. In practice, this “hole” in the trap is realised using

radio-frequency radiation that targets high-energetic atoms in order to flip their
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spin state from a low-field seeking one to a high-field seeking one, causing these

atoms to be expelled from the trap. The fact that the spatial spreading of an

atom’s wave function depends on its energy in the trap, and that the atomic

resonance acquires a larger Zeeman shift as the atom is farther away from the

centre of the trap, allows one to tune the radio-frequency radiation in order to

select the position of the “hole” in the trap. As energetic atoms are lost and the

rest of the gas thermalises, the radio-frequency radiation is slowly adjusted to

allow loss of atoms with lower and lower energy, until the necessary temperatures

for Bose–Einstein condensation are achieved, which are of the order of ∼ nK.

As the atomic cloud is cooled down, it approaches a critical temperature

which corresponds to the onset of Bose–Einstein condensation. For an atomic

gas trapped in a harmonic trap, the critical temperature is given by

kBTc ≈ 0.94~ω0N
1/3, (1.2)

where kB is Boltzmann’s constant, ω0 the harmonic trap frequency and N is the

number of atoms. Therefore, the critical temperature can be raised by increasing

the density of atoms in the trap. Unfortunately, if the density exceeds a certain

critical value, the interactions become so strong that the simple theory of BEC

fails. This diluteness condition is expressed as a/r � 1, where a is the scattering

length and r is the mean interparticle separation. In one of the first experiments

at JILA (Anderson et al., 1995), the average harmonic level separation was about

9 nK, the number of atoms was roughly 40 000, and thus the critical temperature

was about 300 nK. Below the critical temperature, there is a finite macroscopic

fraction of the atoms occupying the lowest single-particle level, this fraction is

given in a harmonic trap by (Pethick & Smith, 2008)

N0

N
= 1−

(
T

Tc

)3

, (1.3)

where N0 is the fraction of atoms in the ground state. Imaging of the condensate

after the trapping potential is switched off and the gas undergoes ballistic expan-

sion, shows a sharp peak in the velocity distribution which is a clear signature

that a macroscopic fraction of the atoms were occupying the same single-particle

state, i.e. Bose–Einstein condensation.
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So far, we have discussed the phenomenon of Bose–Einstein condensation

without considering the interactions between the particles, which is not com-

pletely realistic. Nevertheless, Bogoliubov showed in 1947 (Bogoliubov, 1947)

that the prescence of interactions in very dilute and weakly interacting gases

does not considerably alter the description of the BEC as an ideal quantum gas.

The fact that particle separations in cold atomic gases are typically of the order

102 nm, which are usually an order of magnitude larger than the scattering length

for atom-atom interactions, makes it possible to neglect three- and higher-body

interactions, and only two-body ones primarily determine the behavior of cold

interacting quantum gases. Moreover, since the atoms move at very low speeds

in ultracold gases, and the interatomic van der Waals interaction is proportional

to 1/r6, where r is the interatomic distance, it can be shown that only s-wave

scattering contributes to the determination of the scattering cross section. Thus,

in the limit of very low speeds, the total cross section σ is determined only by

the scattering length a, and it is given by σ = 4πa2 (Pethick & Smith, 2008). As

it turns out, for ultra-cold dilute gases, the many-body description of the system

depends only on this one parameter, the scattering length a, and not on the de-

tails of the interatomic potential (Dalibard, 1999). As a result, the interactions

between the atoms can be modeled using an effective interaction potential which

leads to the same scattering length as that obtained by using the bare potential.

In principle, the simplest effective interaction between two particles is the contact

interaction given by

V (~x1 − ~x2) =
4π~2a

M
δ(~x1 − ~x2), (1.4)

where M is the mass of the atom. This potential is at the basis of the many-

body approach to ultra-cold quantum gases, and will be used as our model of

interactions when we introduce the system studied in this thesis.

Although the inclusion of weak interactions does not considerably alter the de-

scription of BECs, they play a major role in the exact behavior of the condensate;

they can lead, for instance, to different quantum phases and impose dynamical

restrictions. For example, an homogeneous BEC with attractive interactions is

unstable beyond a certain critical number of atoms, whereas a condensate with

repulsive interactions is stable. Likewise, it can be shown that for a BEC with
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attractive interactions in a rotating harmonic trap, the angular momentum is

absorbed by the centre of mass for slow rotations, whereas in a condensate with

repulsive interactions, this rotation would lead to the formation of quantised vor-

tices (Wilkin et al., 1998).

Therefore, being able to manipulate the strength of the interactions between

the atoms opens the possibility of engineering different systems with particular

properties. Remarkably, the magnitude and sign of the interactions can be widely

tuned by means of Feshbach resonances (Cornish et al., 2000). When two atoms

in internal states labeled by α and β collide with relative momentum ~~k, which

is referred as the entrance channel ~~kαβ, the product is a scattered wave that

has components in different internal states α′β′ corresponding to a so-called exit

channel ~~k′α′β′ . Due to the fact that hyperfine and Zeeman energies are generally

different for the entrance and exit channels, the magnitude of their corresponding

relative momentum is different too, and hence they are related by the condition

that the total energy be conserved

~2k′2α′β′

2Mr

=
~2k2

αβ

2Mr

+ εα + εβ − εα′ − εβ′ , (1.5)

where Mr is the reduced mass of the two atoms and εα represent the energy

associated with the internal state α, and similarly for any other internal state.

If k′2α′β′ ≤ 0, the channel is said to be closed, there is not enough energy in the

entrance channel to produce two stationary atoms in the internal states α′ and

β′ corresponding to the exit channel (Pethick & Smith, 2008). Although the

scattering of two atoms cannot produce a final state corresponding to a closed

channel, it can highly influence the scattering amplitude of open ones, and this

forms the basis of Feshbach resonances, which were introduced in the context of

ultra-cold atoms in (Stwalley, 1976). Feshbach resonances occur when the total

energy in an open channel matches that of a bound state in a closed channel.

Although there is no first order coupling between an open and closed channel, two

particles in an open channel can scatter to an intermediate state corresponding

to the closed channel, after which the particles decay to an open exit channel

state. This second-order process has the effect of changing the effective scattering

length of the overall process. Therefore, by exploiting the fact that energies of
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internal states depend on external parameters, such as the magnetic field, atomic

interactions can be tuned by means of Feshbach resonances. In fact, for internal

states whose energies can be shifted using a magnetic field, the effective scattering

length can be shown to be

a = anr

(
1− ∆B

B −B0

)
, (1.6)

where anr is the non-resonant scattering length when coupling between open and

closed channels is neglected, ∆B is a rather complicated expression containing the

magnetic moments of the open and closed channel and a term corresponding to

the matrix element coupling open and closed channels, and B0 is the magnitude

of the magnetic field that produces a Feshbach resonance for the given open and

closed channels. This shows that by varying the magnitude of the magnetic field

B, the effective scattering length can be changed in magnitude and also its sign.

As it turns out, experimentally, this tuning of the interactions can be made for a

wide range of values of the scattering length (Cornish et al., 2000).

The high tunability of interactions in BECs via Feshbach resonances allows

for the manipulation of the non-linear aspect of interacting matter that can lead

to squeezing and entanglement production in condensates; this feature makes

BECs very well suited for metrology schemes. Another important feature that

makes BEC a promising system for quantum metrology is its remarkable coher-

ence. First-order coherence in BECs was experimentally demonstrated for the

first time by Andrews et al. (Andrews et al., 1997), where they split a BEC

into two spatially separated condensates using a double-well potential, which was

subsequently switched off, resulting in two freely expanding condensates which

overlapped in space, creating an interference pattern with high visibility fringes,

which was a clear sign of first-order coherence. Later on that same year, the

group of Cornell (Burt et al., 1997) experimentally demonstrated the existence

of higher-order coherence in a BEC by measuring the three-body recombination

rate, which was predicted to be 6 times slower than that for a non-condensed

atomic cloud having the same density; therefore, it is said that the condensate

shows signs of anti-bunching of atoms, which is a common feature in coherent

laser light. These two experiments support the conclusion that a BEC ground
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state is analogous to a number-squeezed coherent state like the ones produced

with photons using lasers (Dowling, 1998), which prompted the use of the term

“atom laser”. Since then, many theoretical proposals to use BEC in interferomet-

ric schemes have been put forward, some of them have been successfully realised

in the laboratory. Although a breakthrough experiment in 2010 demonstrated the

first atom interferometer with sensitivity greater than the classical limit (Gross

et al., 2010), real world applications with sub-shot noise interferometry are still

far from reaching the retail stores, and the pursuit of more robust atom interfer-

ometers with sub-shot noise precision has become a research area which is quickly

growing because the technological impact that it represents is very high.

One particular research avenue in atomic interferometry with BECs that con-

cerns this thesis is that of rotating Bose–Einstein condensates. This configuration

can take advantage of all the mentioned properties of BECs such as coherence and

non-linearity provided by interactions, in order to create entangled states which

can be used in interferometric protocols to measure rotation rates with sub-shot

noise precision. One of the main results of this thesis is a proposal for such an

interferometric protocol; we will expand on the topic of rotating BECs and its

potential use in quantum metrology in the next chapter.

1.3 Thesis overview

We start with chapter 2, where preliminary concepts and tools in quantum metrol-

ogy are presented. This material provides a broad context in which the work

carried out in the rest of the thesis is embedded. In the following chapter 3,

we introduce the physical system used throughout the thesis, that is, a rotating

BEC in a stirred anisotropic trap; we solve the basic equations of motion and

introduce the lowest Landau level (LLL) approximation which is central to this

thesis. It is shown that within the LLL, the system undergoes a quantum phase

transition for a certain critical rotation frequency, which implies correlations and

entanglement in the ground state. Additionally, we review the general results

for rotating BEC in an isotropic trap and provide numerical results concerning

the Fisher information of the ground state, which bounds the accuracy of phase

measurements in metrology schemes. Then, in chapter 4, we study the system
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beyond the LLL approximation, showing that it fails to predict the exact form

of the entangled state and its Fisher information in regimes where the LLL was

thought to be valid. Incidently, this shows that the system can be used to gener-

ate different quantum states which possess different entanglement characteristics,

making it a very versatile system for producing entangled input states for quan-

tum metrology. Finally, in chapter 5, we describe a theoretical proposal for an

interferometric scheme using the rotating BEC, and show that the interferometer

has the potential of delivering nearly Heisenberg-limited precision in measure-

ments of rotation frequencies for a range of different entangled states. We argue

that the proposal is amenable to experimental research and a proof-of-principle

experiment should be within reach of current technologies.
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Chapter 2

Preliminaries

In this chapter, we review the relevant background material for this thesis. We

start by introducing the Mach–Zehnder interferometer, which is one of the most

common schemes for metrology in many areas of science, and particularly in

quantum metrology. We describe in detail all the elements that make up the

interferometer, and obtain a general expression for the precision of a phase mea-

surement for any given input state. Using this expression, we find the phase

precision for different well-known input states used in quantum metrology, es-

tablishing that the classical limit can be overcome using entangled states. After

this excercise, the important tool of quantum Fisher information is derived. The

Fisher information plays a central role in this thesis since it allows us to establish

the ultimate attainable precision for our schemes. Finally, we slightly switch gears

and give a brief review of rotating Bose–Einstein condensates, in anticipation of

the more detailed treatment of rotating condensates in a stirred anisotropic trap

in chapter 3.

2.1 Mach–Zehnder interferometer

Although there exist many types of interferometers, such as the Fabry-Pérot in-

terferometer, the Michelson interferometer or the Sagnac one, the Mach–Zehnder

interferometer is one of the most widely used two-path interferometers in many

areas of Physics. Particularly, it is conveniently well suited for investigating

quantum entanglement and quantum enhancement of phase measurements. In a
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way, it can be thought as being the most simple type of interferometer (besides

a two-slit experiment) which captures all the main aspects and subtleties of in-

terference as a mean of measuring unknown physical quantities. Hereinafter, we

focus on the Mach–Zehnder interferometer in the context of quantum mechanics,

where the interferometer represents a series of unitary operations that transform

a quantum input state into a modified output state.

The prototypical two-path Mach–Zehnder interferometer is shown in Fig. (2.1).

It consists of two input ports labeled A and B, corresponding to two different

quantum modes, which are usually fed with a separable state |α〉|β〉 representing

an incoming flux of particles, where the first ket corresponds to port A and the

second one to port B. These two modes are split into two arms inside the inter-

ferometer by using a first beam splitter (BS1). Afterward, the upper arm picks

up an unknown phase φ which represents a path difference between the two arms.

Then, the two streams of particles are reflected off the mirrors and recombined at

a second beam splitter (BS2). Finally, the particles emerge from either the upper

output port C or lower one D, after which they hit the detectors at the end of the

interferometer. Measuring the particles at the output ports in principle allows

the determination of the unknown phase.

As it was mentioned before, every element in the interferometer corresponds to

a unitary transformation acting on two or one single mode. The unitary operator

representing each element can be obtained from an appropriate Hamiltonian in

the following way

UH = e−iH∆t/~. (2.1)

Using this unitary operator, we can express its action on products of Fock states

through transformations in the creation and anihilation operators as follows

U |n〉|m〉 =
(Uâ†U †)n√

n!

(Ub̂†U †)m√
m!

|0〉|0〉, (2.2)

where â† and b̂† are the creation operators for the two input modes, Uâ†U † and

Ub̂†U † are the corresponding creation operators for the output modes of the device

represented by the unitary U .
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2.1 Mach–Zehnder interferometer

Figure 2.1: A two-mode Mach–Zehnder interferometer setup. Two incident

streams of particles at input ports A and B are split into two modes corre-

sponding to the upper and lower arm of the interferometer by a beam splitter

(BS1). An unknown phase φ is picked up by the upper arm and the two modes

are recombined using another beam splitter (BS2). As a final step, the particles

are detected at the output ports C and D.

Let us review the unitary transformations for each element in the interfer-

ometer. The beam splitter, which in optical systems usually consists of a semi-

reflective mirror that when light passes through it, part will be reflected and part

will be transmitted. For atoms, this may correspond to a double-well potential

which creates two spatially separated groups of particles corresponding to the

two output ports of the beam splitter. In any case, the general beam splitter is

defined by the transformations

Uâ†U † = cos θa†in + ie−iφ sin θb†in, (2.3)

Ub̂†U † = ieiφ sin θa†in + cos θb†in, (2.4)

with the interaction Hamiltonian,

H = ~θ
(
eiφâ†b̂+ e−iφâb̂†

)
. (2.5)

The physical beam splitter can be described by any choice of θ and φ, where θ

is a measure of the transmissivity, and φ gives the phase shift due to the coating

of the mirror in optical systems. An additional phase shift may be necessary to
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describe the workings of the physical object correctly. Here, we use 50-50 beam

splitters with θ = π/4 and φ = 0.

The transformations for the mirrors are simpler. They correspond to a beam

splitter with a transmissivity of θ = π/2 and a phase shift of φ = 0. Therefore,

the transforamations are given by

Uâ†U † = ib†in, (2.6)

Ub̂†U † = ia†in. (2.7)

Finally, the phase shift acts only on one mode, which gives rise to an overall

phase factor that depends on the number of particles in the given mode. The

transformation in this case is

â† = eiφâ†, (2.8)

with the interaction Hamiltonian Hφ = φ~a†inain. This means, for example, that

U |n〉|m〉 = einφ|n〉|m〉 for a phase shift in the first mode. In optical systems a

phase shift can be implemented using a transparent element with an index of

refraction that is different from free space, or an optical fibre. In atomic systems,

this phase is usually associated with a free evolution of a quantum state in a

superposition of two eigenstates of the full many-body Hamiltonian, typically

the ground state and the first excited state, where the phase factor is given by

exp (−i∆Eτ/~), ∆E is the energy gap between these two eigenstates, and τ is

the waiting time during the free evolution.

2.2 Precision scaling for well-known input states

In what follows, we study the precision with which a measurement of an un-

known phase can be achieved using a Mach–Zehnder interferometer, for a range

of prominent input states widely considered in metrology schemes. We closely

follow the derivations in (Dowling, 1998) for the study of the coherent and the

Yurke state, and apply the same machinery for other input states.

Let â† and b̂† be the creation operators for the input ports A and B, respec-

tively, and â and b̂ the corresponding annihilation operators. Likewise, let ĉ† and
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d̂† be the creation operators for the output ports C and D, respectively. Further-

more, assume without loss of generality that we a dealing with bosons and thus

these operators satisfy the usual commutation relations, such as [â, â†] = 1 and

similarly for the other operators.

Using the unitary transformations that we described above for each element

in the interferometer, it can be shown that the input annihilation operators are

related to the output ones through a scattering matrix-like relationship given by[
ĉ

d̂

]
=

[
sin (φ/2) cos (φ/2)
cos (φ/2) − sin (φ/2)

] [
â

b̂

]
, (2.9)

where a similar expression for the creation operators is obtained by taking the

hermitian conjugate of this matrix equation. For an interferometric set-up like the

Mach-Zehnnder interferometer, the phase φ is to be estimated from the specific

distribution of particle counts at the detectors. In order to do this, we define the

output-port sum and difference operators N̂ and M̂ as

N̂ = d̂†d̂+ ĉ†ĉ, (2.10)

M̂ = d̂†d̂− ĉ†ĉ. (2.11)

Then, carrying out the matrix multiplication in Eq.(2.9), these two operators can

be expressed in terms of the input-port creation and anihilation operators as

N̂ = â†â+ b̂†b̂, (2.12)

M̂ = (â†â− b̂†b̂) cosφ− (â†b̂+ b̂†â) sinφ. (2.13)

The first of these expressions is nothing but the statement of particle conserva-

tion. The second one contains information about the unknown phase, and thus a

measurement of 〈M̂〉 at the output ports can be used to estimate φ. The precision

for a repeated measurement of any quantity, such as the phase φ, is a measure

of how spread out the distribution around the mean measured value is, and it

is usually characterised by the second moment of the distribution, the variance

∆φ2; although normally, the standard deviation ∆φ is the preferred choice for

expressing the precision. Therefore, the phase precision resulting from measuring

the mean value of the difference number operator and its variance, can be found
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2.2 Precision scaling for well-known input states

in terms of these measurements by a simple manipulation of the errors (Dowling,

1998; Dunningham, 2006)

∆φ2 =
∆M2

|∂〈M̂〉/∂φ|2
, (2.14)

where ∆M2 = 〈M̂2〉 − 〈M̂〉2 is the usual variance for operators.

From here, Downling expands this last expression in terms of operators X̂ and

Ŷ which are defined in terms of the input-port creation and anihilation operators

as

X̂ = â†â− b̂†b̂, (2.15)

Ŷ = â†b̂+ b̂†â, (2.16)

resulting in the expression

∆φ2 =
∆X2 cos2 φ−

(
〈X̂Ŷ 〉 − 2〈X̂〉〈Ŷ 〉+ 〈Ŷ X̂〉

)
sinφ cosφ+ ∆Y 2 sin2 φ∣∣∣〈X̂〉 sinφ+ 〈Ŷ 〉 cosφ
∣∣∣2 .

(2.17)

Despite its seemingly contrived form, this equation is very convenient for calcu-

lating the precision of the phase measurement in terms of expectation values of

the operators X̂ and Ŷ , and their combinations. The expectation values are com-

puted with respect to the input state, since these operators only involve creation

and annihilation operators at the input ports.

We now proceed to use Eq.(2.17) to calculate the expected precision in the

phase measurement using different well-known input states studied in the litera-

ture.

2.2.1 Uncorrelated and classical states

The most simple case to calculate is the one corresponding to the case of N

uncorrelated particles entering only one of the input ports. This case corresponds

to the input state

|ψ〉in = |N〉|0〉, (2.18)
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2.2 Precision scaling for well-known input states

which can be thought as feeding the interferometer with N particles, one at a

time in only the upper input port. The necessary expectation values are straight-

forward to calculate for this case, and they are given by (Dowling, 1998)

〈X̂〉 = N, 〈Ŷ 〉 = 0, (2.19)

〈X̂2〉 = N2, 〈Ŷ 2〉 = N, (2.20)

〈X̂Ŷ 〉 = 〈Ŷ X̂〉 = 0. (2.21)

Inserting these expression into Eq.(2.17), we obtain the precision for this input

state with independent particles

∆φindep =
1√
N
. (2.22)

This is the shot-noise limit, and in this case, it is almost a pure consequence

of the central-limit theorem for classical random measurements of samples taken

from an unknown distribution. This statistical noise is the main limitation in

high-precision measurements

In conventional interferometry, however, one uses a laser as an input to one of

the ports instead of a Fock state, and vacuum in the other port. The output state

of a single-frequency laser well above threshold can be very well approximated by

a coherent state |α〉 (Glauber, 1963)

|α〉 = e−|α|
2/2
∑
n

αn√
n!
|n〉, (2.23)

where α is a complex parameter which determines the average photon number

N = |α|2, and the phase of the coherent state.

In some respects, the coherent state closely resembles a classical state of light.

For instance, if the electric field corresponding to a coherent state is measured

with homodyne detection, the oscillations have a clear distinctive amplitude and

frequency, as in a classical single-frequency electromagnetic wave, apart from

some superimposed quantum noise. Also, in the context of the harmonic oscil-

lator, a coherent state behaves as a wave packet that bounces back and forth

without spreading in shape, and satisfies the minimum uncertainty product rela-

tion at all times (Sakurai, 1967).
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2.2 Precision scaling for well-known input states

Let us now calculate the phase precision for the input state

|ψ〉in = |α〉|0〉, (2.24)

representing the typical input in conventional interferometry. Again, finding the

expectation values for X̂, Ŷ , and their combinations, we arrive at the result

∆φcoherent =
1√

N | sinφ|
. (2.25)

This precision exhibits the same scaling with the number of particles as the one

obtained for Fock states, i.e. shot-noise scaling, reinforcing the idea of the coher-

ent state resembling a classical state; however, the precision is not independent

of the phase and it becomes progressively worse by a constant factor as we try

to measure phase shifts close to 0. The measurement is optimal for a phase shift

of π/2, so in principle, if the unknown phase φ produces a very low-precision

measurement, meaning that its value is close to zero, we could add a deliberate

phase shift of π/2 in order to “push” the overall phase shift toward the optimal

regime for this setup and achieve precision of the order ∼ 1/
√
N .

2.2.2 Yurke state

Let us set φ = 0 in Eq.(2.17) for now, in order to gain some insight as to how

the phase precision could be improved. There is no loss of generality because,

again, we can always add a deliberate phase shift that produces an overall phase

shift (unknown shift plus deliberate one) of zero. This is usually easy to realise

using a feedback mechanism that adjusts the deliberate phase shift by checking a

null in the interference pattern, which indicates in turn a null overall phase shift

(Dowling, 1998).

For φ = 0, the phase precision is

∆φ2
∣∣
φ=0

=
∆X2

|〈Ŷ 〉|2
. (2.26)

Therefore, we see that the phase precision can be made smaller by finding an

input state which has a small variance in X̂, and a corresponding larger mean

value of Ŷ . Since X̂ is the number difference between the two input ports, it is
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2.2 Precision scaling for well-known input states

natural to look for states that have approximately equal numbers of particles in

both modes. In 1986, Yurke suggested such a state (Yurke, 1986; Yurke et al.,

1986), which is given by

|ψ〉in =
1

2

(∣∣∣∣N + 1

2

〉 ∣∣∣∣N − 1

2

〉
+

∣∣∣∣N − 1

2

〉 ∣∣∣∣N + 1

2

〉)
, (2.27)

where the total number of particles N is assumed to be odd. Then, it can be

shown that the phase precision is

∆φ2
∣∣
φ=0

=
2

N + 1
, (2.28)

which scales as ∼ 1/N , overcoming the shot-noise limit. This type of scaling is

known as Heisenberg-limited precision and the conventional wisdom nowadays

seems to be that this is the best precision scaling we can achieve for phase mea-

surements (Giovannetti & Maccone, 2012).

For photons, one way to realise the Yurke state is using four-wave mixers

(Yurke et al., 1986), whereas for atoms, it could be obtained using a dual con-

densate in a double well (Spekkens & Sipe, 1999).

The Yurke state is a highly correlated quantum state, and these results suggest

that the sub-shot noise limit can be overcome by using similar entangled states

as the input to the interferometer. Therefore, it is natural to consider the case of

maximally entangled states such as the N00N one for quantum interferometry.

We now proceed to study this highly entangled state.

2.2.3 N00N state

In our current context, The N00N state or “cat state” is a macroscopic superpo-

sition of all the particles being in one of the modes (corresponding to one path

of the interferometer) and all on the other mode. Bollinger et al first put for-

ward the idea of using these entangled states to measure frequencies of atomic

transitions with high precision (Bollinger et al., 1996).

A N00N state is represented by

|N00N〉 =
1√
2

(|N, 0〉+ |0, N〉) . (2.29)
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2.2 Precision scaling for well-known input states

Figure 2.2: A quantum beam splitter (QBS). Two incident streams of particles

at input ports A and B are split into two modes corresponding to the upper and

lower arms by a beam splitter (BS1). A non-linear phase characterised by χ is

applied in the upper arm. The resulting non-linear phase depends quadratically

with the number of particles in that mode. Finally, the two modes are recombined

using another beam splitter (BS2).

In this section, we closely follow the work in (Dunningham & Kim, 2006), where

they demonstrate how to create a N00N state similar to Eq.(2.29) from a Fock

state, and also show that a quantum inteferometer can be realised which uses the

N00N state to attain Heisenberg-limited precision in phase measurements.

The quantum interferometer is just like the normal Mach–Zehnder interferom-

eter in Fig. (2.1), except that the beam splitters are replaced by quantum beam

splitters. A quantum beam splitter (QBS) is in itself another Mach–Zehnder inter-

ferometer which has been modified by replacing the phase shift with a non-linear

element χ as shown in Fig. (2.2). The effect of the non-linear element is that of ap-

plying a phase shift that depends quadratically on one of the modes. The unitary

operator corresponding to this non-linear element has the form exp (−iχ(â†â)).

If the QBS is inputted with a separable Fock state |N, 0〉, the outcome state

at the output ports can be shown to be

|N, 0〉 → 1√
2

(
|N, 0〉+ iN−1|0, N〉

)
, (2.30)

up to a global phase. This is a N00N state with a relative phase between the
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2.2 Precision scaling for well-known input states

two macroscopic states, which does not change its qualitative behaviour in inter-

ferometric schemes.

Then, it can be shown that, when the Fock state |N, 0〉 is used as the input

to the interferometer in Fig. (2.1) with the beam splitters replaced by quantum

beam splitter, the output state is (Dunningham & Kim, 2006)

|ψ〉out =
i

2

[
(−1)N

(
eiNφ − 1

)
|N, 0〉+ iN−1

(
eiNφ + 1

)
|0, N〉

]
. (2.31)

The first thing to notice about this output state is the fact that all particles will

be detected at one mode or all the particles at the other. This implies that, for

this particular interferometric set-up, the scheme will be robust against imperfect

detectors. This can actually be proven in a more rigorous way using the model

of nonideal photodetection. However, if particle losses are considered within the

interferometer, the precision in the measurement of the phase φ degrades very

rapidly with the particle loss rate, as we shall see in the next section.

This time, we cannot use Eq.(2.17) because this expression is dependent on

the actual details of the interferometer. However, it is straightforward to verify

that in this case 〈M̂〉 = N cosNφ and ∆M2 = (N sinNφ)2. Thus, the phase

resolution can be obtained again with the manipulation of errors as

∆φ2 =
∆M2

|∂〈M̂〉/∂φ|2
=

1

N2
. (2.32)

This shows that the use of N00N states can attain the exact Heisenberg limit

for the phase resolution. Unfortunately, one of the main disadvantages of N00N

states is its formidable fragility, and it is the very same reason why we do not

observe such superpositions in our everyday lives. From the double-slit experi-

ment we know that when the particles are monitored in order to determine which

slit they went through, the interference pattern is destroyed. In the same way,

if a particle is lost from a N00N state, it can leave “forensic” evidence in the

enviroment about what state it was in. For the case of a N00N state, knowing

what the state is for any of the particles, betrays the state of the rest of them,

destroying the entanglement. Decoherence due to enviromental coupling has been

the major obstacle in creating these entangled states; nevertheless, N00N states
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2.2 Precision scaling for well-known input states

Figure 2.3: Probability distribution for a number of atoms 2m in the upper arm

(N−2m at the lower arm) at the output of a 50:50 beam splitter, when the input

is a twin Fock state with 30 particles. The output state corresponds to the bat

state.

with small numbers of atoms have been produced in experiments, such as states

with three photons (Mitchell et al., 2004b) or four ions (Sackett et al., 2000).

In realistic scenarios with particle losses, an entangled input state that is

robust against decoherence, capable of attaining sub-shot noise precision is pre-

ferred over a N00N state. In the following section we introduce the so-called

“bat state” which has exactly those properties.

2.2.4 Bat state

A “bat state” is produced when a twin Fock state
∣∣N

2
, N

2
〉 is passed through a

regular beam splitter, where N is the total number of particles, an even number.

The resulting state after the beam splitter operation is (Dunningham, 2006)

|ψ〉bat =
1

2N/2

N/2∑
m=0

[(2m)!(N − 2m)!]1/2

m!(N/2−m)!
|2m〉|N − 2m〉. (2.33)

A plot of the probabilities corresponding to the square value of the coefficients

is shown in Fig. (2.3). The probability plot resembles the ears of a bat, hence

the name bat state. Since the creation of a bat state does not require quantum

beam splitters, a normal Mach–Zehnder interferometer is used for producing the

bat state and measuring the unknown phase. This means we can use Eq.(2.17)

to calculate the precision of the phase measurement for the state in Eq.(2.33).
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2.2 Precision scaling for well-known input states

Figure 2.4: Mach–Zehnder interferometer with imaginary beam splitters which

model the particle losses. The unused output ports are traced out in order to

estimate the effect of losses.

If the input to the normal Mach–Zehnder interferometer in Fig (2.1) is taken

to be |N1, N2〉, with N = N1 +N2, the resulting phase precision is given by (Kim

et al., 1998)

∆φ2 =
N1 + 2N1N2 +N2

(N1 −N2)2
. (2.34)

When N1 = N and N2 = 0, we recover the result for the uncorrelated state which

gives a shot-noise scaling ∼ 1/
√
N . However, when the input state is the twin

Fock state with N1 = N2 = N/2, we see from the last expression that the phase

resolution diverges ∆φ2 → ∞, meaning that no information of the unknown

phase shift can be obtained if we only measure expectation values related to the

output-port difference operator M̂ .

Although the difference in the number of particles at the output ports does

not contain any information about the phase resolution for the twin Fock state,

their product does contain useful information about the phase. Defining the

output-port coincidence operator as N̂c = (ĉ†ĉ)(d̂†d̂), the phase precision can be

obtained by a simple manipulation of the errors in a similar way as we did before,

resulting in

∆φ2 =
∆N2

c

|∂〈N̂c〉/∂φ|2
. (2.35)

After some algebra, it can be shown that this last expression gives the following
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2.2 Precision scaling for well-known input states

phase precision for the bat state (Kim et al., 1998)

∆φ2 =
1

2N2
+

1

8
tan2 φ. (2.36)

Therefore, for a null phase shift, we obtain Heisenberg-limited phase resolution√
2/N , which is only slightly worse that that of a N00N state. Unfortunately,

along with this enhancement in the precision, there is a major drawback to mea-

suring a phase using coincidences at the output ports. When the detectors are

not ideal, that is, their efficiency is smaller than one, it has been shown that

in order to beat the shot-noise limit, the efficiencies in the detectors need to be

better than 1−1/
√
N and, to attain the Heisenberg limit, efficiencies better than

1−1/N are needed (Kim et al., 1999). The finite efficiency of any realistic detec-

tor imposes a serious limitation when the particles are any more than a handful

of them, detering the purpose of using an entangled state to improve the phase

precision. However, this problem can be overcome by making use of collapses and

revivals of the relative phase of the output state (Dunningham & Burnett, 2004),

thus allowing us to attain Heisenberg-limited precision using bat states.

The real advantage of bat states is, as mentioned earlier, their robustness to

particle losses, which makes them ideal for realistic quantum metrology schemes.

In fact, bat states with roughly 104 87Rb atoms have been experimentally demon-

strated, showing a substantial improvement over the shot-noise limit (Luecke

et al., 2011). However, detection inefficiency drastically affects the precision of

measurements in this experiment, where they show that the smallest phase pre-

cision with their setup is ∼ 0.83/
√
N , which is below the sub-shot noise limit

but the scaling is not Heisenberg scaling at all. This experiment shows that

even if entanglement is produced for a large number of particles, the actual read-

out of the phase is usually a very challenging endeavour if we want to obtain

Heisenberg-limited precision.

In order to study the effect of particle losses inside the interferometer, we need

to introduce a standard tool in quantum metrology called the quantum Fisher

information which bounds the accuracy of the phase precision regardless of the

measuring scheme.

27



2.3 Quantum Fisher information

2.3 Quantum Fisher information

The actual precision of a measurement as obtained with a particular scheme

depends on the details of such scheme and the measuring procedure, as it is

evident from our earlier example of the bat state where measuring the imbalance

of particles at the output ports resulted in an infinitely imprecise measurement,

but the use of coincidences allowed for a Heisenberg-limited precision. In this

case, the use of coincidences provides an optimal measurement scheme for the

bat state with ideal detectors, as we shall see shortly, but it is not evident at

all how one can find and realise optimal measurement schemes for any given

quantum state. The concept of quantum Fisher information partially fills this

gap by providing us with a lower bound for the precision of any measurement of

an unknown parameter, i.e. provides the ultimate optimal precision attainable for

a given quantum state. Finding the actual measurement scheme that saturates

this lower bound is more difficult, but the Fisher information can be a good guide

on this quest.

In order to find the lower bound for phase precision, it is first shown that the

precision is bounded by the inverse of the classical Fisher information for a given

measurement; then, the classical Fisher information is minimised over all possible

measurements showing that the classical Fisher information of any given measure-

ment is bounded by the quantum Fisher information, which is independent of the

measurement. This derivation was carried out in detail by Braunstein and Caves

(Braunstein & Caves, 1994), where they gave a less obscure proof of the quantum

Cramér-Rao bound than the one first given by Helstrom (Helstrom, 1967). Here,

we briefly outline their derivation to introduce the concept of quantum Fisher

information and the Cramér-Rao bound.

In classical estimation theory, one attempts to estimate an unknown param-

eter φ which is encoded in the probability density f(x|φ) of a random variable x

by using an estimator function Φ(x1, x2, . . . xn), where x1, . . . xn are random vari-

ables corresponding to n outcomes of n probabilistic experiments for the given

distribution. For example, φ could be the average height of a given large popula-

tion of people, and the estimator function could be the mean value of heights in

a sample of n people, i.e. Φ(x1, x2, . . . xn) = (x1 +x2 + · · ·xn)/n. Associated with
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the estimator function and the original distribution, there is a conjoint probabil-

ity density P (x1, x2, . . . xn|φ) which in the case of independent variables can be

written as

P (x1, x2, . . . xn|φ) = f(x1|φ)f(x2|φ) · · · f(xn|φ). (2.37)

If the estimator is assumed to be unbiased, its average value is equal to the

unknown parameter, thus∫
(Φ(x1, x2, . . . xn)− φ) f(x1|φ)f(x2|φ) · · · f(xn|φ)dx1dx2 · · · dxn = 0. (2.38)

Differentiating this identity with respect to φ and applying the Cauchy-Schwarz

inequality gives

∆φ2 ≥ 1

nF
, (2.39)

where ∆φ2 is the variance associated with the sampling of the estimator function,

and F is the classical Fisher information given by

F =

∫ (
∂ ln f(x|φ)

∂φ

)2

f(x|φ)dx. (2.40)

The inequality in Eq.(2.39) is the classical Cramér-Rao bound, and it holds for

classical and quantum systems under the assumptions made here. However, as we

shall see shortly, the classical Fisher information depends on the chosen Hermitian

operator that represents the measurement; therefore, it does not give an ultimate

lower bound for the phase precision.

In quantum metrology, all the statistical information about the unknown

phase is encoded in the density matrix ρ(φ), corresponding to the quantum state

of the interferometer before a measurement takes place. A generalised measure-

ment is described by a set of non-negative Hermitian operators X̂(x), where x is

a particular outcome for the measurement, and the operators are complete in the

sense that ∫
X̂(x)dx = 1. (2.41)

The probability density of obtaining the value x as the outcome of a measurement

represented by X̂ is given by the standard expression from quantum mechanics

f(x|φ) = Tr
[
X̂(x)ρ(φ)

]
. (2.42)
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Substituting this expression in the classical Fisher information gives

F (X̂) =

∫ (
Tr
[
X̂ρ′(φ)

])2

Tr
[
X̂ρ(φ)

] dx, (2.43)

where ρ′(φ) = ∂ρ/∂φ, and as we can see, it depends on X̂ as was mentioned

before.

Now, introducing the symmetric logarithmic derivative λ, which is implicitly

defined by
∂ρ(φ)

∂φ
=

1

2
(λρ(φ) + ρ(φ)λ) , (2.44)

and making use of one of its properties Tr [Bρ′(φ)] = Tr [ρ(φ)Bλ], where B is any

Hermitian operator, the Fisher information can be expressed as

F (X̂) =

∫ (
Re
(

Tr
[
ρ(φ)X̂λ

]))2

Tr
[
X̂ρ(φ)

] dx ≤
∫ ∣∣∣Tr

[
ρ(φ)X̂λ

]∣∣∣2
Tr
[
X̂ρ(φ)

] dx. (2.45)

Finally, making use of the cyclic properties of the trace on the integral in the far

right, and applying the Schwarz inequality (Braunstein & Caves, 1994) gives

∫ ∣∣∣Tr
[
ρ(φ)X̂λ

]∣∣∣2
Tr
[
X̂ρ(φ)

] ≤ Tr
[
ρ(φ)λ2

]
. (2.46)

The term on the far right is the quantum Fisher information

FQ = Tr
[
ρ(φ)λ2

]
, (2.47)

which is independent of X̂ as needed. Consequently, we have

∆φ2 ≥ 1

nF
≥ 1

nFQ
, (2.48)

which is the quantum Cramér-Rao bound and determines the ultimate best pos-

sible precision with which a quantum system can determine the parameter φ,

independent of the measurement process.

It is possible to show that for a pure states |Ψ(φ)〉, the quantum Fisher infor-

mation simplifies to

FQ [|Ψ(φ)〉] = 4
[
〈Ψ′(φ)|Ψ′(φ)〉 − |〈Ψ′(φ)|Ψ(φ)〉|2

]
, (2.49)
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Figure 2.5: Phase precision in a Mach–Zehnder interferometer with particle losses

as a function of the transmissivity η for different input states with N = 10

particles. The solid red line corresponds to a N00N state, the blue dashed line

to a bat state, the turquoise dotted one corresponds to uncorrelated particles

with losses, and the black dash-dotted line is the Heisenberg limit. Adapted from

(Cooper et al., 2010).

where |Ψ′(φ)〉 = ∂|Ψ(φ)〉/∂φ, and this expression will provide the workhorse for

calculation of Fisher information throughout the thesis.

For future reference, it is worth stating the quantum Fisher information for

N00N and bat states, which are given by N2,and N(N + 2)/2, respectively.

2.4 Particle loss

Particle losses can be one of the major mechanisms of decoherence for entangled

states, particularly in Bose–Einstein condensates, where collisions between atoms

can result in some of them acquiring enough energy to escape the trapping poten-

tial or be recombined as a molecule, thus leaving the condensed state. The most

simple model to account for particle losses in a Mach–Zehnder interferometer

involves the addition of two imaginary beam splitters inside the interferometer

whose transmissivity represents the rate of loss at the point where the imaginary

beam splitter is located. The scheme is shown in Fig. (2.5), where it is assumed
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2.5 Rotating Bose–Einstein condensates

that losses are equally likely from both modes and thus the transmissivity coef-

ficient η is the same for both beam splitters.

Calculation of the quantum Fisher information for this set-up allows us to find

the best possible precision when decoherence is present in the setup. Accounting

for the presence of the imaginary beam splitters results in a mixed state inside

the interferometer, and analytical determination of the Fisher information for the

N00N or bat states becomes difficult. (Cooper et al., 2010) have calculated the

Fisher information numerically for N = 10 particles, and the resulting bound for

the phase precision is shown in Fig. (2.5). As we might expect, the N00N state

performs better than the bat state or uncorrelated particles when there are no

losses, i.e. η = 1. However, as soon as there are around ∼ 20% of losses, the

uncorrelated particles outperforms the N00N state, whereas the bat state still

performs much better than the uncorrelated particles at this loss rate. Even when

losses are close to 50%, the bat state still shows an advantage over uncorrelated

particles. Since it is very unlikely than in a good experiment half of the atoms

are lost, the bat state offers a feasible experimental advantage over the classical

input states in precision measurement schemes.

2.5 Rotating Bose–Einstein condensates

Unlike a conventional fluid, a Bose–Einstein condensate does not undergo rigid

body rotation, and this unusual feature gives rise to very interesting quantum ef-

fects in rotating BECs. The rotation of a Bose–Einstein condensate leads to the

formation of quantised vortex lines, which can be present in different configura-

tions, and can open the possibility of creating strongly correlated ground states.

From the metrology point of view, these strongly correlated states are atractive

for implementations of high-precision measurements, since we saw earlier that

entangled states can achieve sub-shot noise precision in interferometric schemes.

The research in this thesis is based on the properties of slowly rotating BECs;

therefore, here we give a brief overview of this topic to establish the context of

our research, and in the next chapter, we will consider in detail the rotational

motion of a Bose–Einstein condensate.
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In the mean-field treatment of a trapped Bose–Einstein condensate, the quan-

tum state of the condensate is described by the wave function ψ(~x), usually called

the “order parameter”, and its squared absolute value |ψ(~x)|2 = n(~x) gives the

non-uniform density of particles inside the trap. This wave function can be ex-

pressed in terms of its amplitude and phase as ψ(~x) =
√
n(~x)eiφ, and the velocity

field inside the condensate is then given by (Pethick & Smith, 2008)

~v =
~
M
~∇φ, (2.50)

where M is the particle mass. Taking the curl of this velocity gives

~∇× ~v = 0. (2.51)

We see that in the case of a BEC, the flow is irrotational. At first sight, this

result leads to a paradox when describing the behavior of the rotating BEC.

For instance, in the case of a conventional fluid, the viscous drag between the

walls of the container and the fluid generate a velocity field (far from the walls)

analogous to the motion of a rotating solid, for which the vorticity is uniform

and equal to ~∇ × ~v = 2~Ω, where ~Ω is the angular rotation vector. As a result,

the free surface of the liquid acquires a characteristic parabolic shape. Therefore,

since ~∇ × ~v = 0 for a BEC, we could expect its free surface to be undisturbed.

However, experiments show that just as in the case of a conventional fluid, the

free surface of a fast rotating BEC is a parabola.

The paradox can be resolved by noting that the irrotational nature of the flow

in a BEC is a result of considering that the phase is a smooth function of the

position; however, if the condensate phase φ has a line-like singularity, from the

single-valuedness of the condensate wave function, it follows that the circulation

around such singularity must be quantised as (Pethick & Smith, 2008)∮
~v · d~l =

~
M
× l, (2.52)

where l is an integer number. These quantised line-like singularities are the

quantised vortex lines, and their appearance is the mechanism that allows the

condensate to acquire angular momentum. The condensate density vanishes at

the exact location of the vortex line, and the density rapidly falls to zero in a scale
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2.5 Rotating Bose–Einstein condensates

set by the so-called healing length ξ = 1/
√

8πnas, where n is the mean density

and as is the s-wave scattering length.

In most experiments, the rotation frequency of the condensate is such that the

mean inter-vortex spacing av is small compared with the condensate size, allowing

a large number of vortices to be observed, which can be up to 160 (Cooper, 2008).

In this typical condition, the BECs are in the regime ξ ≤ av where the structure

of the vortex array is mainly determined by the interplay between trapping and

the Magnus force. The role of the trapping force is to attract the vortices to the

centre of the trap, while the Magnus force effect results in a net repulsion between

two corotating vortices.

2.5.1 Rapidly rotating condensates

Notably, for high rotation frequencies, the condensate enters a regime of high

vortex density where the separation between vortices av becomes much smaller

than the healing length ξ, and the number of vortices is comparable to the num-

ber of particles. In this case, the atom cloud expands in its transverse dimension

because the quadratic confinement potential is nearly balanced by the centrifugal

potential which is also quadratic; as a consequence, the density of the conden-

sate drops down and the mean interaction between particles is reduced. As the

rotation frequency gets higher, the system enters a strongly correlated phase,

which is understood as a bosonic analogue to the correlated phases of electrons

in semiconductors, responsible for the quantum Hall effect. In order to reach

these strongly correlated states, the rotation frequency needs to be exceedingly

close to the centrifugal limit, typically ∼ 0.99ω⊥, where ω⊥ is the harmonic fre-

quency of the trap, this in turn means total angular momentum of the order of

∼ ~N2. The Boulder group has been able to achieve this high rotation regime

by using a technique called “evaporative spin up” (Schweikhard et al., 2004), as

evidenced by the observation of very low frequency Tkachenko modes.

The physics of very rapidly rotating condensates is reminiscent of a charged

particle in a magnetic field. A particle in the rotating condensate, located at

position ~x, experiences a force which in the rotating frame is the sum of the
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2.5 Rotating Bose–Einstein condensates

trapping, centrifugal and Coriolis terms

~F = −Mω2
⊥~x+MΩ2~x+ 2M~Ω× ~v. (2.53)

When the rotation frequency reaches the centrifugal limit, i.e. Ω = ω⊥, the only

force acting on the particle is the Coriolis one, which is mathematically equiva-

lent to the magnetic force experienced by a moving charged particle, where the

equivalent charge and magnetic field are given by q ~B = 2M~Ω. Then, for rapidly

rotating BECs, we can borrow some of the results from familiar studies of the

quantum Hall effect to describe bosonic systems. In particular, the energy spec-

trum is found to be tightly grouped in quasi-degenerate Landau levels (Cooper,

2008). The concept of Landau levels plays a very important role in this thesis

and will be addressed in great detail in the next chapter.

As a final note to this section, it is worth mentioning that there have been

a large number of proposals to use Bose–Einstein condensate in different rotat-

ing geometries in order to achieve sub-shot noise precision in measurements of

rotations. For example, BECs in a lattice of potential nodes in a ring configura-

tion allow to create N00N and bat states, and perform rotation measurements

with sub-shot noise precision (Cooper et al., 2010). A Bose–Einstein condensate

trapped in a one-dimensional ring with a moving barrier that helps to stirr the

condensate around the loop has been shown to allow for the creation of N00N

states and a Tonks-Girardeau state which is robust against particle losses (Hall-

wood et al., 2010). Finally, some of the most precise rotation sensors have been

achieved using cold atoms in a Sagnac interferometer (Gustavson et al., 2000),

and although the precision is still limited by the sub-shot noise, the use of even

colder atoms, i.e. Bose–Einstein condensates, could make it possible to create

practical gyroscopes which surpass the classical limit.
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Chapter 3

Bose–Einstein condensate in an

anisotropic rotating trap

We saw in chapter 2 that the use of quantum entangled states as inputs to inter-

ferometers leads to the possibility of attaining sub-shot noise precision for mea-

surements of different physical magnitudes. Particularly, much work has been

carried out regarding measurements of angular rotation, and different measure-

ment scheme proposals have been put forward (Dunningham & Hallwood, 2006;

Dunningham J.A. & D.W., 2011; Holland & Burnett, 1993; Nunnenkamp et al.,

2008; Zimmer & Fleischhauer, 2006). Some of these works have shown that the

use of Bose–Einstein condensates in different rotating geometries allow for the

creation of highly entangled states, useful for measuring rotation rates with sub-

shot noise precision. In this chapter, we follow the lead of (Dagnino et al., 2009a)

and study a simple promising system to generate macroscopic entanglement. The

system is a relatively slow rotating two-dimensional BEC in a stirring anisotropic

trap which has been experimentally demonstrated in the past(Madison et al.,

2000a). As the rotation frequency increases, a certain critical frequency Ωc is

reached for which the ground state develops quantum correlations with entangle-

ment. We study the performance of this state for quantum metrology schemes by

calculating the quantum Fisher information, finding (Rico-Gutierrez et al., 2013)

that it allows for sub-shot noise precision in linear interferometry.
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3.1 Model

We study the system considered in (Dagnino et al., 2009a), a mesoscopic sample

of N bosonic atoms of mass M in an axially symmetric harmonic potential, with

frequency ω⊥ in the xy plane and ωz in the z axis, weakly interacting through

hard-core-type elastic collisions. Additionally, the gas is set in rotation at angular

frequency Ω around the z axis with the aid of an external potential which in the

rotating frame of reference appears as an anisotropic quadratic potential V in the

xy plane. Thus, the Hamiltonian in the rotating frame of reference is

H =
N∑
i=1

(
− ~

2M
∇2
i +

1

2
Mωzz

2
i +

1

2
Mω2

⊥ρ
2
i + 2AMω2

⊥(x2
i − y2

i )− ΩLzi

)

+
1

2

N∑
j 6=k

g~2

M
δ(~rj −~rk), (3.1)

where the dimensionless parameterA(� 1) measures the strength of the anisotropy

and it will be considered very small so that we can find a truncated many-body

basis for which the solutions to the Hamiltonian converge. Here, ρ2
i = x2

i +y2
i and

Lzi is the angular momentum component in the z direction of the i-th atom. The

addition of the term −~Ω · ~L to the Hamiltonian is the well-known(Fetter, 2009)

prescription for transforming to the rotating frame. Finally, for dilute gases, the

scattering of a pair of particles is dominated by the s-wave contribution thus the

interactions can be modeled using an effective contact potential which is the two-

particle operator U at the right-most of Eq.(3.1), where g is the 3D interaction

coupling constant which measures the strength of two-particle interactions, and

is related to the three-dimensional scattering length as as g = 4πas(Pethick &

Smith, 2008).

The natural approach to this many-body problem is the second quantisation

formalism. In order to express Eq.(3.1) in second quantised form, we need the

matrix elements appearing in the general form for one- and two-particle operators,

which are, respectively(Bruus & Flensberg, 2004)

T̂ =
∑
n1,n2

Tn1n2a
†
n1
an2 , (3.2)

V̂ =
1

2

∑
m1,m2

∑
n1,n2

Vm1m2,n1n2a
†
m1
a†m2

an1an2 , (3.3)
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where the matrix elements are obtained as,

Tn1n2 =

∫
ψ∗n1

(~r)Tψn2(~r)d
3~r, (3.4)

Vm1m2,n1n2 =

∫ ∫
ψ∗m1

(~r1)ψ∗m2
(~r2)V ψn1(~r1)ψn2(~r2)d3~r1d

3~r2. (3.5)

The wave functions ψn(~r) are the solutions to the single-particle problem for

the Hamiltonian considered in Eq.(3.1), which are found by solving the Schrödinger

equation,(
− ~

2M
∇2 +

1

2
Mω2

⊥ρ
2 +

1

2
Mω2

zz
2 − ΩLz + 2AMω2

⊥(x2 − y2)

)
ψ(~r)

= Eψ(~r). (3.6)

Consequently, in order to proceed with the second quantised treatment, we

first have to solve Eq.(3.6); this is done in the following section.

3.1.1 Solving the single-particle Schrödinger equation

We start by solving Eq.(3.6) in the absence of the anisotropic term (A = 0); later

on, we will see how to include this term back into the calculations at the level

of the second quantisation formalism. Furthermore, since every term in the LHS

of Eq.(3.6) commutes with Lz when A = 0, we only need to solve the following

Schrödinger equation(
− ~

2M
∇2 +

1

2
Mω2

⊥ρ
2 +

1

2
Mω2

zz
2

)
ψ(~r) = Eψ(~r). (3.7)

That Lz commutes with −~∇2 = ~p2, ρ2 and z2 can be easily understood since

Lz is the generator of rotations around the z axis and, under such a rotation, the

modulus of the linear momentum and the radial coordinate transform as scalar

quantities, and z remains unchanged by definition. The solutions to Eq.(3.7)

are also eigenfunctions of −ΩLz by the virtue of Lz commuting with all the

operators appearing in the LHS of this equation, as was previously mentioned.

We see that Eq.(3.7) is nothing but a two-dimensional harmonic oscillator in the

xy plane with angular frequency ω⊥ and a one-dimensional harmonic oscillator

in the z direction with angular frequency ωz. This equation can be solved by the
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standard treatment of separation of variables in cylindrical coordinates, where

one assumes a solution which is a product of axial, azimuthal, and radial wave

functions, ψ(~r) = Z(z)Φ(φ)R(ρ). In cylindrical coordinates Eq.(3.7) reads,(
− ~2

2M

[
1

ρ

∂

∂ρ
(ρ
∂

∂ρ
) +

1

ρ2

∂2

∂φ2
+

∂2

∂z2

]
+

1

2
Mω2

⊥ρ
2 +

1

2
Mω2

zz
2

)
ψ(~r) = Eψ(~r).(3.8)

When the proposed solution is substituted in the previous equation, it leads

to an immediate decoupling of the partial differential equation into(
− ~2

2M

∂2

∂z2
+

1

2
Mω2

zz
2

)
Z(z) = EzZ(z), (3.9)

and(
− ~2

2M

[
1

ρ

∂

∂ρ
(ρ
∂

∂ρ
) +

1

ρ2

∂2

∂φ2

]
+

1

2
Mω2

⊥ρ
2

)
Φ(φ)R(ρ)

= E⊥Φ(φ)R(ρ), (3.10)

where E = Ez + E⊥. Further algebraic manipulation of the last equation leads

to a decoupling of the radial and azimuthal degrees since Eq.(3.10) can be cast

into the form

ρ2

R(ρ)

∂2

∂ρ2
R(ρ) +

ρ

R(ρ)

∂

∂ρ
R(ρ)− 2M

~2

[
E⊥ρ

2 − 1

2
ω2
⊥ρ

4

]
+

1

Φ(φ)

∂2

∂φ2
Φ(φ)

= 0. (3.11)

Consequently, the decoupled azimuthal equation is

1

Φ(φ)

∂2

∂φ2
Φ(φ) = −m2

l , (3.12)

which has the well-known solution

Φ(φ) = eimlφ, (3.13)

where ml is a separation constant giving the quantum number for the projection

of the angular momentum in the z direction, as will be discussed later on. Since

the wave functions must be single-valued, the constant can only assume discrete
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values ml = 0,±1,±2, . . .. Therefore, having decoupled the azimuthal equation,

we are left with the radial equation

∂2

∂ρ2
R(ρ) +

1

ρ

∂

∂ρ
R(ρ)− m2

l

ρ2
R(ρ) +

2M

~2

(
E⊥ −

1

2
ω2
⊥ρ

2

)
R(ρ) = 0. (3.14)

The solution to this equation can be cast into the form

R(ρ) = ρ|ml|e
− 1

2
ρ2

ρ20W (ρ), (3.15)

where ρ0 =
√

~
Mω

and W (ρ) is a function of the radial coordinate. Substituting

this solution in Eq.(3.14), we obtain

ρ
∂2

∂ρ2
W (ρ) +

(
2|ml|+ 1− 2

ρ2

ρ2
0

)
∂

∂ρ
W (ρ) +

[
2ME⊥
~2

− 2(|ml|+ 1)

ρ2
0

]
ρW (ρ)

= 0. (3.16)

As a last algebraic manipulation, we multiply the last equation by
ρ20ρ

|ml|
0

ρ
,

followed by a change of variables, W (ρ) = g(x)

ρ
|ml|
0

and ρ = ρ0x, leading to the new

equation

x
∂2

∂x2
g(x) + [(|ml|+ 1)− x]

∂

∂x
g(x)− 1

2

[
(|ml|+ 1)− E⊥

~ω⊥

]
g(x) = 0. (3.17)

This is the well known Kummer–Laplace equation whose regular solution at

x = 0 is the confluent hypergeometric function

g(x) = 1F1(a, c;x) = M(a, c;x), (3.18)

with

a =
1

2

[
(|ml|+ 1)− E⊥

~ω⊥

]
, c = |ml|+ 1. (3.19)

This means that the radial wave equation is given by

R(ρ) = NRe
− 1

2
ρ2

ρ20 ρ|ml|1F1(a, c; ρ2/ρ2
0), (3.20)

where NR is a normalisation constant. The confluent hypergeometric function

converges for all finite ρ whether a and c are integers or not. However, R(ρ)
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diverges when ρ tends to infinity, which is an unacceptable property of the wave

function for bound states, unless a is 0 or a negative integer, in which case, the

confluent hypergeometric function simply becomes a polynomial. Thus, we must

have

a =
1

2

[
(|ml|+ 1)− E⊥

~ω⊥

]
= −nρ, (3.21)

where nρ = 0, 1, 2, . . .. This in turn means that the energy associated to the

degrees of motion in the xy plane is quantised, which is explicitly stated by

solving for E⊥ in the last equation, giving

E⊥ = 2~ω⊥nρ + ~ω⊥(|ml|+ 1). (3.22)

When a = −nρ, the confluent hypergeometric function becomes proportional

to the associated Laguerre polynomials(Arfken, 1985)

F1(−nρ, |ml|+ 1; ρ2/ρ2
0) =

nρ!|ml|!
(nρ + |ml|)!

L|ml|nρ (ρ2/ρ2
0). (3.23)

The solutions to the axial Z(z) wave equation in Eq.(3.9) are nothing but the

standard harmonic oscillator functions

Z(z) = NZe
− 1

2
z2

z20Hnz(z/z0), (3.24)

where the Hnz functions are the Hermite polynomials and z0 =
√

~
Mωz

.

Thus, bringing all the pieces together, we see that the wave functions are of

the form

ψnρmlnz(~r) = Ne
− 1

2
z2

z20Hnz(z/z0)eimlφe
1
2
ρ2

ρ20 ρ|ml|L|ml|nρ (ρ2/ρ2
0), (3.25)

and the respective energy levels are

Enρmlnz = ~ωz(nz +
1

2
) + 2~ω⊥nρ + ~ω⊥(|ml|+ 1). (3.26)

Finally, we take into account the −ΩLz term to obtain the complete solution

to the single-particle problem. Since Lz commutes with all the terms of the

Hamiltonian in Eq.(3.7), the solutions

ψnρmlnz(~r) = Ne
− 1

2
z2

z20Hnz(z/z0)eimlφe
− 1

2
ρ2

ρ20 ρ|ml|L|ml|nρ (ρ2/ρ2
0) (3.27)
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are also eigenfunctions of Lz. In fact, since Lz = −i~ ∂
∂φ

, it is easily seen that

Lzψ(~r) = ~mlψ(~r). (3.28)

Therefore, when the anisotropy is A = 0, the solutions to our original problem,

i.e., that of Eq.(3.6) are the same ψnρmlnz(~r) appearing in Eq.(3.25). However,

the energy levels are shifted and given by

Enρmlnz = ~ωz(nz +
1

2
) + 2~ω⊥nρ + ~ω⊥(|ml|+ 1)− ~mlΩ, (3.29)

where nz = 0, 1, 2, . . . , nρ = 0, 1, 2, . . ., and ml = 0,±1,±2, . . .. In the rest of the

thesis, we consider ~ωz to be large compared with the interaction energy and the

energy of the trap in the xy plane so that the dynamics along z is frozen and

the gas is effectively two-dimensional at sufficiently low temperature. We need

to perform a slight modification to our equations if we are to consider a 2D gas

instead of a 3D one; we address this subject in the next section.

3.1.2 Two-dimensional rotating gas

When ~ωz is much larger than the interaction strength and the energy of the

trap in the xy plane, we assume that the system is in the ground state of the

axial component, and integrate out the z dependence from Eq. (3.1) in order

to find the corresponding two-dimensional Schrödinger equation for the conden-

sate. Thus, we assume that all the N atoms are in the ground state of the

axial trap Z0(z) and in some properly symmetrised quantum state in the plane

Ψ(2D)(x1, y1, x2, y2, . . . xN , yN). Consequently, for this quantum state of the sys-

tem, the many-body Schrödinger equation is(
Hxy +Hz + g

~2

2M

∑
i 6=j

δ(2D)(~ri −~rj)δ(zi − zj)

)
Ψ(2D)Ψ0 = EΨ(2D)Ψ0, (3.30)

where Hxy is the sum of single-particle Hamiltonians without including the axial

trap term, Hz is the sum of harmonic trap potentials in the z direction for N

particles, δ(2D)(~ri −~rj) = δ(xi − xj)δ(yi − yj), and

Ψ0 = Z0(z1)Z0(z2) . . . Z0(zN). (3.31)
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In order to obtain the two-dimensional Schrödinger equation for the gas, we

multiply Eq.(3.30) by Ψ∗0 followed by an integration over
∫
dz1dz2 . . . dzN , giving(

Hxy + g
~2

2M

∑
i 6=j

δ(2D)(~ri −~rj)
∫ ∞
−∞

∫ ∞
−∞

δ(zi − zj)|Z0(zi)|2|Z0(zj)|2dzidzj

)
Ψ(2D)

=

(
E − 1

2
~ωzN

)
Ψ(2D). (3.32)

The double integral in the last equation involving the axial ground state given

by Eq. (3.24) for nz = 0 is easily evaluated to 1/(
√

2πz0). Therefore, the two-

dimensional Schrödinger equation is given by(
Hxy + g(2D) ~2

2M

∑
i 6=j

δ(2D)(~ri −~rj)

)
Ψ(2D) = E(2D)Ψ(2D). (3.33)

We see that the two-dimensional Schrödinger equation is identical to the three-

dimensional one except for the absence of any axial term and the fact that the

interaction parameter is rescaled as g(2D) = g/(
√

2πz0). We use this dimensionless

parameter g(2D) to characterise the interaction strength in numeric calculations,

where we drop the (2D) superscript and we simply write g, since from now on,

we are only concerned with the two-dimensional gas.

Consequently, in the case of a two-dimensional Bose–Einstein gas, the single-

particle solutions which satisfy this equation needed to quantise the many-body

Hamiltonian are exactly the same ones that we already found in the previous

section, which properly normalised are

ψk(ρ, φ) =

√
nk!

ρ
|mk|+1
0

√
π(nk + |mk|)!

eimkφe
− ρ2

2ρ20 ρ|m|L|m|n (ρ2/ρ2
0), (3.34)

where k is a collective index representing the distinct pair of numbers (nk,mk).

The corresponding energy levels are thus given by

Enm = ~ω⊥ (2n+ |m| −mΩ/ω⊥ + 1) . (3.35)

These single-particle wave functions will be used to quantise the many-body

Hamiltonian in order to find the solution to the problem of interacting particles

in a rotating anisotropic trap. Nevertheless, it is instructive to have a closer look
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at the energy spectrum of the non-interacting problem in order to introduce the

concept of Landau levels which plays a very important role in this thesis. This is

done in the next section, after a remark on the units used throughout the rest of

this thesis.

3.1.3 Convention for units

For calculations, it is convenient to work with the standard unitless system con-

sistently used in the literature (Fetter, 2009) where rotation frequencies are mea-

sured in units of the harmonic trap frequency ω⊥, length in units of ρ0, time in

units of 1/ω⊥ and thus energy is measured in units of ~ω⊥, and angular momen-

tum in units of ~. We assume the use of these units throughout the rest of the

thesis and whenever it is needed to go back to the SI units, we place a tilde over

the quantity to be expressed in the SI system.

3.1.4 Non-interacting particles and Landau levels

The energy spectrum of N independent bosons in a rotating axisymmetric trap

(A = 0) can be obtained straightforwardly from expression (3.35), and it is given

by

E = 2
N∑
i=1

ni +
N∑
i=1

|mi| − ΩL+N. (3.36)

The dependence of the energy levels with Ω is completely different depending

on whether the total angular momentum L is positive or negative. Assuming that

a number k of bosons m1,m2, . . .mk have negative individual angular momentum

while the rest of them mk+1, . . .mN have positive angular momentum, the total
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Figure 3.1: Energy spectrum of independent bosons in a rotating axisymmetric

trap (A = 0) for positive total angular momentum L ≥ 0. The energy levels

are grouped in Landau levels which are energetically separated by ∼ 2~ω⊥ when

Ω ≈ ω⊥. In this plot, the energy is given in units of ~ω⊥.

angular momentum of the N bosons can be expressed as

L =
N∑
i=1

mi =
∑
i≤k

mi +
∑
i>k

mi

= −
∑
i≤k

|mi|+
∑
i>k

|mi|

= −
∑
i≤k

|mi|+
∑
i>k

|mi|+ (−
∑
i≤k

|mi|+
∑
i≤k

|mi|)

= −2
∑
i≤k

|mi|+
N∑
i=1

|mi|. (3.37)

Therefore, using Eq.(3.37) the energy spectrum for L ≥ 0 can be written as

E = L(1− Ω) + 2

(∑
i≤k

|mi|+
N∑
i=1

ni

)
, L ≥ 0, (3.38)

where we have omitted the zero point energy N for the sake of brevity. The energy

spectrum given by Eq. (3.38) is shown in Fig. (3.1). The spectrum is structured in
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groups called Landau levels. For the system to be in the lowest Landau level, none

of the bosons must have radial excitations, i.e. all ni are zero, nor possess negative

angular momentum, i.e. all mi are positive. Every Landau level comprises the

states with all possible values of total angular momentum, where higher angular

momentum corresponds to higher slope in the energy spectrum. In the limit of

Ω = 1, called the centrifugal limit, the energy of the ground state is infinitely

degenerate and thus this case is singular. At this rotation frequency the trapping

force is compensated by the centrifugal force, leaving only the Coriolis force.

When any particle has negative angular momentum or possesses radial ex-

citations, the system is no longer in the lowest Landau level. In this case, the

nLL-th Landau level is defined as the manifold of energies given by the boson

configuration satisfying the equation

nLL =
∑
i≤k

|mi|+
N∑
i=1

ni + 1. (3.39)

On the other hand, when the total angular momentum is negative, we use the

expression in Eq. (3.37) again, and write L = −|L| in Eq. (3.36) to express the

energy as

E = |L|(Ω− 1) + 2

(∑
i≤k

|mi|+
N∑
i=1

ni

)
, L < 0. (3.40)

We show the energy spectrum for this case in Fig. (3.2). Note that just like in

the case of L ≥ 0, the energy spectrum is still grouped in Landau levels; however,

the spectrum looks completely different because the slope of the energy in each

manifold is positive, as opposed to the previous case where it is negative. Also,

since we have
∑

i>k |mi| ≥ 0, consequently

L ≥ −
∑
i≤k

|mi|. (3.41)

Therefore, by virtue of this last expression and the fact that the level selector

is given by Eq.(3.39), given a particular Landau level nLL, there is a lower limit

for the total angular momentum L that can appear in this level when L < 0, and
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3.1 Model

Figure 3.2: Energy spectrum of independent bosons in a rotating axisymmetric

trap (A = 0) for negative total angular momentum L < 0. The energy levels

are grouped in Landau levels which are energetically separated by ∼ 2~ω⊥ when

Ω ≈ ω⊥. In this plot, the energy is given in units of ~ω⊥.

it is given by

Lmin ≥ −max

{∑
i≤k

|mi|

}
= −(nLL − 1). (3.42)

Consequently, the lowest Landau level does not contain negative total angular

momentum states and these are only present for higher levels nLL > 1.

The lowest Landau level bears a particular importance in the study of fast

rotating Bose–Einstein condensates. For Ω close to the radial trap frequency, the

energy levels are tightly packed, forming essentially horizontal rows called Landau

levels, where the quantum number n determines the large splitting between these

rows and the angular momentum quantum number m characterises the tightly

packed states within the row. Thus, the ground state manifold corresponds to

the lowest-lying of these rows, which is characterised by all the atoms having

m ≥ 0 and n = 0. When the interaction between particles is relatively weak,

the energy spectrum remains grouped in Landau levels and thus for rotation
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3.2 Quantisation of the Hamiltonian

Figure 3.3: The many-body Hamiltonian is block diagonal in the basis of definite

total angular momentum for a nLL-th Landau level approximation when A = 0.

frequencies Ω → 1 the particles in the condensate occupy mostly the lowest

Landau level states. This allows for a more tractable description of the system

for both exact diagonalisation and mean-field studies because the single-particle

states in Eq. (3.34) greatly simplify. We will introduce the lowest Landau level

approximation in more detail for the exact diagonalisation of the many-body

Hamiltonian in the next section after the quantisation of the theory.

3.2 Quantisation of the Hamiltonian

Following the usual prescription of second quantisation formalism with the help

of the expressions in Eq.(3.4), the Hamiltonian can be expressed as

Ĥ = 2
∑
k

nkN̂k +
∑
k

|mk |N̂k − ~ΩL̂+ N̂

+
∑
k1k2

Vk1k2 â
†
k1
âk2 +

1

2

∑
k1k2

∑
l1l2

Uk1k2l1l2 â
†
k1
â†k2

âl1 âl2 . (3.43)

Here, â†k creates a boson in state k = (nk ,mk), N̂k is the occupation number

operator of level k and L̂ =
∑

k mkN̂k is the total angular momentum operator

of the system. The anisotropic and interaction term are given by Eqs.(A.7) and
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3.2 Quantisation of the Hamiltonian

(A.13) found in Appendix A. These are

V̂ = A~ω⊥
∑
k1k2

√
nk1 !nk2 !

(nk1 + |mk1 |)!(nk2 + |mk2 |)!
I1(k1,k2)

×
(
δmk2

,mk1
±2

)
a†k1

ak2 , (3.44)

and

Û =
g~ω⊥

2π

∑
k1k2l1l2

1

2
∑

|mt|
2

√∏
t

nt!

(nt + |mt|)!
I2(k1,k2, l1, l2)

×
(
δmk1

+mk2
,ml1

+ml2

)
â†k1

â†k2
âl1 âl2 . (3.45)

Having found the single-particle matrix elements for the quantised Hamilto-

nian, the next step consists in finding a suitable many-body basis for which the

Hamiltonian can be diagonalised using numeric techniques. For this purpose, no-

tice that due to the presence of δmk1
+mk2

,ml1
+ml2

in the interaction term Û , only

states with the same total angular momentum are connected by this term. Fur-

thermore, the first four terms appearing in the Hamiltonian in Eq.(3.43) conserve

the total angular momentum. Thus, in the strict case of A = 0, the Hamiltonian

has a block-diagonal form in a basis consisting of states with fixed number of

particles and definite total angular momentum in Fock space which we write as

|Φi〉 = |N0(i), N1(i), . . .〉 =
∏
k

(â†k)Nk (i)√
Nk(i)

|0〉, (3.46)

where the index i defines a certain configuration for the occupation numbers Nk(i)

which in turn specify the number of particles occupying each single-particle level

labeled by the index k introduced earlier. These states have definite angular

momentum given by

〈L̂〉 =
∑
k

mkNk . (3.47)

In principle, this basis has an infinite number of states; thus, in order to find

numeric solutions to the eigenvalue problem, we need to introduce approximations

which truncate the basis in a sensible way. The first of this approximations is the

standard recipe that consists of truncating the basis according to the number of
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3.2 Quantisation of the Hamiltonian

Landau levels. The corresponding basis for a nLL-th Landau level approximation

consists of only those states satisfying the condition∑
k

[
2nk +

1

2
(|mk | −mk)

]
Nk ≤ nLL − 1. (3.48)

This condition warrants that the maximum radial excitation or negative an-

gular momentum that any particle can have is nLL − 1 units.

Consequently, in the case of A = 0, the blocks of fixed L appearing in the

Hamiltonian are of finite size and can be diagonalised separately in order to find

the many-body ground state of the system. The structure of the Hamiltonian in

this case is depicted in Fig. (3.3). Extensive numerical and analytical evidence

(Jackson & Kavoulakis, 2000; Morris & Feder, 2006) show that for moderate

rotation rates, only the states with L ≤ N are involved in the determination

of the many-body ground state, whereas for rapidly rotating condensates with

Ω ≈ 0.999 , states with total angular momentum up to N(N − 1) need to be

considered.

When A 6= 0, the anisotropic term V̂ only connects subspaces of fixed L dif-

fering by ±2 units of angular momentum because of the term δmk2
,mk1

±2. As a

consequence, the blocks in the Hamiltonian can no longer be diagonalised sep-

arately and we are left again with an infinite-dimensional Hamiltonian; thus,

another sensible truncation needs to be considered. In this thesis, the anisotropy

A � 1 is considered small enough so it is expected that states with very high

angular momentum do not contribute to the determination of the many-body

ground state, and thus we can restrict the Hamiltonian matrix to the subspace of

states with L ≤ Lmax, where the value of Lmax is chosen to warrant a good con-

vergence for the energies of the Hamiltonian (Dagnino et al., 2009a). We address

this approximation in more detail later on when presenting the results from the

exact diagonalisation.

Now, we introduce the lowest Landau level approximation which is a central

concept throughout the thesis.
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3.2 Quantisation of the Hamiltonian

3.2.1 The Lowest Landau Level approximation

We have seen that in the case of non-interacting particles, the many-body ground

state belongs to the lowest Landau level manifold. Therefore, it is plausible to

expect that in the case of weakly interacting bosons, the many-body ground state

can be constructed using only states within this manifold. Restricting the single-

particle solutions to the lowest Landau level, and the many-body basis states to

configurations of bosons which only occupy these orbitals is known as the lowest

Landau level (LLL) approximation .

In order to estimate how weak the interactions need to be so that the LLL

approximation is still a good description of the system, we derive some of the

standard conditions for the validity of this approximation as found in the lit-

erature. These standard conditions follow from a mean-field treatment of the

rotating gas in a harmonic trap (A = 0). In such case, the energy of the conden-

sate is given by the two-dimensional Gross-Pitaevskii energy functional (Pethick

& Smith, 2008)

E [ψ(~r)] =

∫ [
1

2
|∇ψ(~r)|2 +

1

2
ρ2 |ψ(~r)|2 − Ωψ∗(~r)Lzψ(~r) + g

1

2
|ψ(~r)|4

]
d2~r,

(3.49)

where ψ(~r) = N1/2φ(~r) is called the wave function of the condensate, φ is the

single-particle wave function occupied by all the bosons in the fully condensed

state, and we are using dimensionless units.

The energy functional in Eq.(3.49) can be considerably simplified by making

use of the following relations for wave functions in the LLL (Aftalion et al., 2005;

Fetter, 2009), ∫ ∣∣∣~∇ψ(~r)
∣∣∣2 d2~r =

∫
ψ∗(~r)Lzψ(~r)d2~r +N, (3.50)∫

ψ∗(~r)Lzψ(~r)d2~r =

∫
ρ2 |ψ(~r)|2 d2~r−N. (3.51)

Thus, combining these two expressions with Eq.(3.49), the GP energy functional

can be written as

ELLL [ψ(~r)] = NΩ +

∫ [
(1− Ω)ρ2 |ψ(~r)|2 +

1

2
g |ψ(~r)|4

]
d2~r. (3.52)
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3.2 Quantisation of the Hamiltonian

Consequently, the ground state ψmin(~r) that minimises the total energy ELLL

with the only constraint that it is normalised as
∫
|ψ|2d2~r = N , follows from the

variational Euler–Lagrange equation

∂

∂|ψ|2

(
(1− Ω)ρ2 |ψ(~r)|2 +

1

2
g |ψ(~r)|4 − µ |ψ(~r)|2

)
= 0, (3.53)

where the chemical potential µ is the Lagrange multiplier that ensures constancy

of the particle number and takes care of the normalisation constraint in such

a way that the variations of |ψ|2 may thus be taken arbitrarily. As a result,

Eq.(3.53) readily yields the density distribution

|ψmin(ρ)|2 = n(0)

(
1− ρ2

R2
0

)
, r < R0, (3.54)

where the central density is n(0) = µ/g, R2
0 = µ/(1−Ω), and the density vanishes

for values of ρ > R0. Finally, the chemical potential can be calculated in terms of

the condensate parameters by inserting Eq.(3.54) in the normalisation condition,

giving

µ =

√
2gN

π
(1− Ω). (3.55)

Consequently, the central density and the condensate radius can also be expressed

as

n(0) =
2N

πR2
0

, (3.56)

and

R2
0 =

√
2πgN

1− Ω
, (3.57)

where the expression for the condensate radius explicitly shows the radial expan-

sion of the condensate when Ω → 1; this is a consequence of the deconfinement

of the condensate caused by the increasing centrifugal force.

Remarkably, the density distribution in Eq.(3.54) has the same functional

form as that of the usual Thomas-Fermi approximation (Fetter, 2009) for a con-

densate at rest in a harmonic potential, i.e., an inverted parabola. However, one

should be careful when pursuing this analogy further. In the usual Thomas-Fermi

approximation, the kinetic energy is neglected and the density distribution that

minimises the total energy is found as the consequence of a balance between po-

tential and interaction energies. On the other hand, in the LLL approximation
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3.2 Quantisation of the Hamiltonian

considered here, the kinetic and potential energies are actually equal, as can be

seen from Eqs.(3.50) and (3.51).

In addition, notice that the function in Eq.(3.54) does not belong to the

LLL since the only LLL function that depends solely on ρ is proportional to

exp (−ρ2/2ρ2
0), as given by Eq.(3.34) with n = 0 and m = 0. This can be

understood considering that during the minimisation process, we were free to

choose the most suitable function that minimises the energy functional with the

only restriction that it was normalised to N and that Eqs.(3.50) and (3.51) were

satisfied. These two equations do not effectively restrict the wave function to

the LLL manifold, they simply restrict the possible minimal density profile to

those functions satisfying them, which includes those in the LLL manifold, as

well as many others outside, such as the actual inverted parabola just found.

Therefore, when a minimisation of the energy functional is performed restricted

to only the LLL manifold, as it was first considered in (Ho, 2001), we are looking

for a superposition of LLL wave functions which is the “closest” to Eq.(3.54) so

that the corresponding energy is the closest to the minimal one calculated here.

Since the chemical potential µ determines the energy needed to add one boson

in the condensate state ψmin, the lowest Landau level condition

µ̃� 2~ω⊥, (3.58)

ensures that the LLL trial function gives a good description of the condensed

state. This is the standard condition for the validity of the lowest Landau level

approximation. Since µ = gn(0), the condition implies that the approximation is

valid for weak interactions or small densities. Also, from Eq.(3.55), the standard

condition µ� 2 gives

gN � 2π

1− Ω
. (3.59)

Therefore, even when the interactions are not weak, the LLL approximation

is also valid for high rotation rates.

On the other hand, the validity of the lowest Landau level approximation

has also been studied in the context of exact diagonalisation methods (Morris &

Feder, 2006), giving consistent results in agreement with Eqs.(3.58) and (3.59)

in the case of ground states with low angular momentum. However, when the
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3.2 Quantisation of the Hamiltonian

N Basis size Basis size Basis size

for nLL = 1 for nLL = 2 for nLL = 3

6 64 322 1282

8 136 728 3045

10 269 1506 6475

12 505 2934 12872

Table 3.1: A few different values of the many-body basis size for one, two and

three Landau levels. Here, the truncation for total angular momentum states is

L = N + 2, and only subspaces of even angular momentum are considered.

angular momentum of the ground state is comparable to L ∼ N2, the scaling of

the condition in Eq.(3.59) drastically changes from g ∼ N−1 to g ∼ Nx, where x is

a positive number of order unity (Morris & Feder, 2006), and thus has important

consequences in the study of the quantum Hall regime of strongly correlated

states. In this thesis we are only concerned with ground states that have angular

momentum L ∼ N ; therefore, in principle, the LLL approximation is valid in

our case. As we shall see, the LLL approximation qualitatively describes all the

relevant features of the system, and also many of its properties in a quantitative

way. However, it fails to accurately describe some features relevant to quantum

metrology. A deeper investigation of the system beyond the LLL approximation is

presented in chapter 4. Here, we present results using only the LLL approximation

for introduction and comparison purposes.

Therefore, in what follows, we restrict the many-body basis states to those in

the lowest Landau level approximation; in other words, only those satisfying∑
k

[
2nk +

1

2
(|mk| −mk)

]
Nk = 0. (3.60)

These consideration greatly reduces the many-body basis size, allowing for a

more computationally tractable description of the system. We compare a few

values of the many-body basis size for different numbers of particles and Landau

levels in Table 3.1.
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3.3 Diagonalisation of the Hamiltonian

3.3 Diagonalisation of the Hamiltonian

3.3.1 The interacting case

Within the lowest Landau level approximation, the quantised Hamiltonian for

A = 0 in Eq.(3.43) reduces to

Ĥ = N̂ + (1− Ω)L̂+
g

4π

∑
m1,m2

∑
n1,n2

δm1+m2,n1+n2√
m1!m2!n1!n2!

(m1 +m2)!

2m1+m2
a†m1

a†m2
an1an2 ,

(3.61)

where the operator â†m (âm) creates (annihilates) a boson with m units of angular

momentum. Therefore, in a many-body basis of fixed total angular momentum,

the first two terms on the RHS are diagonal and the ground state is completely

determined by the interaction term.

As it was mentioned before, the interaction term only connects states with

the same total angular momentum and thus we can diagonalise the Hamiltonian

in these subspaces separately. The lowest lying state in energy for each of these

subspaces is known as the yrast state, and its energy viewed as a function of L as

the yrast line. For a given rotation frequency Ω, the yrast state with the absolute

lowest energy gives the many-body ground state of the system at that particular

rotation rate.

The yrast state and its energy for L = 0 and L = 1 are trivially obtained since

these subspaces contain only one many-body basis state each; for N bosons, they

are respectively

|N, 0, 0, . . . , 0〉, (3.62)

and

|N − 1, 1, 0, . . . , 0〉. (3.63)

Operating the Hamiltonian in Eq.(3.61) on these states gives their energies as

EL=0 = N + g
N(N − 1)

4π
, (3.64)

and

EL=1 = N + (1− Ω) + g
N(N − 1)

4π
. (3.65)
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For L > 1, finding the yrast line is not a trivial task. However, analytical

expressions are known for 2 ≤ L ≤ N (Jackson & Kavoulakis, 2000; Wilkin &

Gunn, 2000)

EL = N + (1− Ω)L+ gN
2N − L− 2

8π
, (3.66)

where the L = 1 case does not have this form because it is a special case; it does

not acquire angular momentum via the formation of a vortex but rather by the

centre of mass motion (Parke et al., 2008).

Analytical expressions of the yrast states for high values of L are also known,

such as the one for the Laughlin state L = N(N − 1).

On the other hand, extensive numerical research has been done to study the

condensate in the axisymmetric trap (Bertsch & Papenbrock, 1999; Morris &

Feder, 2006; Wilkin & Gunn, 2000). Here, we show numeric results obtained with

our own codes, and review the most important results that have been discussed

in the literature.

We show the many-body energy spectrum as a function of the rotation fre-

quency Ω for two different values of the interaction strength in Fig. (3.4) The

inclusion of interactions has the effect of lifting some of the degeneracy within

subspaces of fixed total angular momentum. For small rotations, the ground state

is the non-rotating L = 0 state of Eq.(3.62). As the rotation rate is increased,

states with higher angular momentum experience a greater Doppler shift in en-

ergy (Morris & Feder, 2006). As a result, a sequence of energy crossings for the

ground state occur at specific rotation frequencies Ω1,Ω2, . . .. Almost all these

stable ground states can be described by the relationship L = a(N − b), where a

and b are integers. These values are very close to n-vortex states with L = nN

(Wilkin & Gunn, 2000). In this thesis, we focus on the L = N state, commonly

known as the single-vortex or one-vortex state. This state becomes stable at the

rotation frequency

Ω1 = 1− gN

8π
. (3.67)

In addition, all the other yrast states for 2 ≤ L ≤ N become metastable at Ω1,

i.e. they are all degenerate in energy at this rotation frequency, as can be seen

from Fig. (3.5).
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Figure 3.4: Energy spectrum for the case of N = 6 interacting particles in the

isotropic case (A = 0) as a function of the rotation frequency. (Left) When

the particles interact weakly with g = 0.1, the spectrum resembles the one for

independent particles. (Right) As the interaction strength is increased, in this

case g = 1.0, much of the degeneracy is lifted and a sequence of energy crossings

are formed. The lowest Landau level approximation has been used for both

panels, and the truncation of the basis is taken to be Lmax = N + 2; had we

taken a larger Lmax, many more energy crossings would have appeared near the

centrifugal limit Ω ∼ 1.

Thus, the ground state of the condensate at Ω1 acquires angular momentum

L = N through the nucleation of the first vortex. In the current case of an

axisymmetric trap, due to the rotational symmetry, the nucleation of the first

vortex can only take place by means of a spontaneous symmetry breaking pro-

cess. Within the standard mean-field framework, vortex nucleation is associated

with thermodynamic instability, because the lowest lying states of the conden-

sate around Ω1 are quasi-degenerate and thus the system is very susceptible to

perturbations; associated with this symmetry breaking process must be a gapless

Nambu-Goldstone mode (Ueda & Nakajima, 2006).

The sharp transition of the ground state at Ω1 is from the many-body non-

rotating state |N, 0, . . . , 0〉 to the single-vortex state which is a linear combina-

tion of several different many-body states that pertain to the L = N subspace.

Interestingly, the vortex state |0, N, 0, . . . , 0〉 has the largest amplitude in this

superposition, but it has less than half the probability (∼ 0.49) of the complete
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Figure 3.5: Energy spectrum for the case of N = 6 interacting particles in the

isotropic case (A = 0) as a function of the rotation frequency. The first energy

crossing corresponds to the nucleation of the first vortex in the ground state at

the rotation frequency Ω1. All the yrast states with 0 < L ≤ N except L = 1

are degenerate at this frequency. In this plot, we highlight the yrast line for the

subspaces with L = 0, 1 and N . The lowest Landau level approximation has been

used here, and the truncation of the basis is taken to be Lmax = N + 2.

many-body ground state. In fact, the single-vortex ground state for an even

number of particles N is found to be well approximated by

|Ψ0(Ω1)〉 =

N/2∑
k=0

Ck|k,N − 2k, k, 0, . . . , 0〉, (3.68)

where typically the states with up to k = 4 for N ≥ 4 carry most of the proba-

bility. We show the amplitudes of the coefficients |Ck|2 in Fig. (3.7). Moreover,

an exact analytical expression for this state is known. The wave function of this

single-vortex state is given by (Wilkin & Gunn, 2000)

Ψ0(Ω1) =
N∏
i=1

(zi − zc)e−|z|
2/2, (3.69)
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Figure 3.6: Average angular momentum profile of the ground state for N = 6

particles as a function of the rotation frequency and an interaction strength of

g = 1. In the isotropic case (A = 0), it consists of a sequence of sharp jumps and

plateaux corresponding to the energy crossings in the spectrum. On the other

hand, when A 6= 0, the anisotropic term mixes a range of states having different

values of the angular momentum; as a result the profile of the angular momentum

becomes smooth. For this calculation, the lowest Landau level approximation was

used, and the truncation of the basis is Lmax = N + 10. Had we taken a much

larger cutoff for the angular momentum, more jumps would have been observed

near the centrifugal limit (Ω ∼ 1), where the sequence of jumps and plateaux

terminates at the maximum angular momentum L = N(N − 2).

where zi = xi + iyi, zc =
∑N

i=1 zi/N and |z|2 =
∑N

i=1 |zi|2. The physical interpre-

tation of this expression is that all the bosons are rotating around the center of

mass (Wilkin et al., 1998).

As it was mentioned before, as the rotation frequency increases, the ground

state experiences a sequence of transitions to higher angular momentum states

at critical values Ω1,Ω2, etc. As a consequence, the angular momentum of the
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Figure 3.7: Analysis of the amplitudes of the coefficients |Ck|2 for the single-

vortex state at Ω1 in the lowest Landau level approximation. The numbers of

particles considered are N = 6 (left), and N = 14 (right). For both panels the

truncation of the basis is Lmax = N + 2 and g = 6/N .

ground state shows sharp steps at these critical values, as can be seen in Fig. (3.6).

Remarkably, this sequence of transitions terminates at the last possible value of

L = N(N − 1), corresponding to the Laughlin state, which has zero interaction

energy and it is thus the lowest lying eigenstate of the many-body system at

Ω ≈ 1.

We saw that the nucleation of the first vortex in an axisymmetric trap is a

consequence of spontaneous symmetry breaking. Another different way of nucle-

ating the vortex is by explicitly including a discrete parity symmetry breaking

term A 6= 0 in the Hamiltonian. This approach has also been studied analytically

(Fetter, 2010), numerically (Dagnino et al., 2009a; Parke et al., 2008) and exper-

imentally (Chevy et al., 2000; Gemelke & Chu, 2010). In the following section,

we focus on the case A 6= 0 and give a review, as well as a presentation of the

numeric results using our own codes.

3.3.2 The anisotropic case

In general terms, the inclusion of the anisotropic term A 6= 0 has the effect of

lifting the remaining degeneracy and turning the energy crossings at Ω1,Ω2, . . .
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Figure 3.8: Analysis of the angular momentum basis truncation for N = 6 par-

ticles in the lowest Landau level approximation. (Top) The fractional error in

the energy of the ground state as a function of the rotation rate centred at Ω1 as

calculated with a truncation of Lmax = N + 10. The fractional error is calculated

as the difference in energy calculated with Lmax = N + 10 and Lmax = N + 2,

divided by the energy of the ground state calculated with the largest basis. (Bot-

tom) Overlap between the ground states calculated with the two different basis.
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into anticrossings at a slightly shifted rotation frequency. The rotation rate at

which the first anticrossing occurs is referenced as Ωmin. We discuss in this section

the most important consequences of this degeneracy removal.

When A � 1, we can restrict the Hamiltonian to the subspaces of L ≤
Lmax, choosing Lmax as the angular momentum cutoff for the basis truncation

that ensures convergence of the energies and eigenstates. In what follows, we

mostly consider a small fixed anisotropy of A = 0.03 throughout the calculations.

This value allows for a relatively small cutoff of Lmax = N + 2, while providing

accurate results for a wide range of values of the interaction strength. We show the

fractional error in energy of the ground state as a function of Ω centred around

the rotation frequency of the first avoided crossing in Fig. 3.8, as calculated

with Lmax = N + 2 and Lmax = N + 10, for a range of values of the interaction

strength. Also, the fidelity of the ground state in the Lmax = N+2 basis with the

Lmax = N + 10 basis is shown in the same figure. We find that the Lmax = N + 2

truncation gives accurate results for gN ≥ 6 × 0.4 for all the numbers of atoms

that we were able to simulate. The decreasing fidelity when gN is less than

this value is due to the fact that as g decreases, the first anticrossing occurs at

rotation frequencies Ωmin very close to 1 (the trap frequency), where the ground

state is more sensitive to the inclusion of higher angular momentum states in a

larger basis. Here, we have avoided values of gN > 6 because, as we shall see, we

need to include higher Landau levels to correctly describe the ground state for

these values of the interaction strength. Thus, we restrict ourselves to values of

A ≤ 0.03 and 6 > gN ≥ 6× 0.4 in order to use the Lmax = N + 2 basis.

As it was mentioned before, we shall be concerned about the first anticrossing

at the threshold of the nucleation of the first vortex. Thus, we proceed to review

the most important features of the condensate around this anticrossing.

First, a remark on the parity of the number of particles is in order. Since the

ground state below and above Ω1 for A = 0 has angular momentum L = 0 and

L = N , respectively, we restrict ourselves to even numbers of particles; in that

way, we can look for solutions to the eigenvalue problem in the basis consisting

of only even angular momentum states. When N is odd, the single-vortex state

has necessarily odd parity and thus a change of parity of the ground state occurs

62



3.3 Diagonalisation of the Hamiltonian

Figure 3.9: Energy spectrum for the case of N = 6 interacting particles in the

anisotropic case (A = 0.03) as a function of the rotation frequency. The effect

of the anisotropy is that of lifting the remaining degeneracy thereby creating

energy anticrossings. The first anticrossing occurs at rotation frequency Ωmin.

The calculation is restricted to the lowest Landau level approximation, and the

truncation of the basis is taken to be Lmax = N + 2.

from L = 0 to L = N at Ω1. This is associated with a trivial residual first-order

transition whose magnitude decreases as N →∞ (Parke et al., 2008).

Exact calculation of the energy spectrum clearly shows the development of

energy anticrossings in Fig. (3.9), particularly the first one at the threshold of

the nucleation of the first vortex. Interestingly, the minimum energy gap between

the ground state and the first excited state at Ωmin is approximately constant for

any value of the interaction strength in the range 0.44 ≤ gN/6 ≤ 1, and it only

depends on the magnitude of A. This feature can be observed in Fig. (3.10),

where the size of the energy gap as a function of Ω centered around Ωmin for a

range of values of the interaction strength is plotted for N = 6 and N = 12.

The scaling of the minimum energy gap at Ωmin with N is also remarkable.
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3.3 Diagonalisation of the Hamiltonian

Figure 3.10: Energy gap between the ground state and the first excited state as a

function of the rotation frequency for different values of the interaction strength

for N = 6 (top) and N = 12 (bottom). For each particular value of g, the

rotation frequency is measured from Ωmin; the plots have been shifted in order to

emphasise this, and for better comparison purposes. The calculation is restricted

to the lowest Landau level, and the basis truncation is Lmax = N + 2.

Although we have not been able to simulate systems with numbers of particles

larger then N > 16, our results are in perfect agreement with those presented

in (Dagnino et al., 2009b), which show that ∆E tends to a small constant value

∆E ≈ 0.7 × 10−2 for large N as can be seen in Fig. (3.11). This is particularly
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3.3 Diagonalisation of the Hamiltonian

Figure 3.11: Minimal energy gap between the ground state and the first excited

state at Ωmin as a function of N for different values of the interaction strength. In

all cases, the interaction strength was scaled for each value of N , and the scaled

values of g shown in the plot are given by gN/6.The calculation is restricted

to the lowest Landau level approximation, and the truncation of the basis is

Lmax = N + 6 in order to have convergence for small values of g and large values

of N .

promising for it allows the possibility of adiabatic nucleation of the first vortex

even for large N . This adiabatic nucleation will be central in chapter 5, when

we study an interferometric scheme that allows sub-shot noise precision using the

rotating quantum gas. However, as (Dagnino et al., 2009b) shows, if the system

is not protected against parity breaking perturbations, which are perturbations

connecting even and odd subspaces of angular momentum, the energy gap at the

first avoided crossing vanishes for large numbers of particles, and thus limiting

the adiabatic nucleation to numbers of atoms N ≈ 10.

Due to the fact that, in the case of A = 0, all the yrast states for 2 ≤ L ≤ N

are degenerate at Ω1, the inclusion of the anisotropic term has the effect of mixing

these states according to their parity; as a result, the ground state at the avoided
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3.3 Diagonalisation of the Hamiltonian

Figure 3.12: Weight of the angular momentum subspaces in the composition of

the ground state for N = 12 particles and g = 6/N . (Left) Composition of the

ground state at the rotation frequency Ωmin. (Right) Composition of the ground

state near the avoided crossing at rotation frequency 0.99Ωmin. The calculation

is restricted to the lowest Landau level approximation, and the truncation of the

basis is Lmax = N + 2.

crossing Ωmin has relatively large overlaps with even states of angular momentum

up to L = N as shown in Figs. (3.12) and (3.13). In fact, the largest overlap is the

one with the single-vortex state of Eq. (3.68). Finally, the continous character of

the energy for the ground state is also reflected on the angular momentum profile

which is shown in Fig. (3.6), where the sharp jumps and plateaux of the profile

from the A = 0 case turn into a smooth curve.

Now, we follow (Dagnino et al., 2009a) and introduce the single particle den-

sity matrix (SPDM). Calculation of this matrix and its eigenvalues is central

to the determination of effects beyond mean-field theory, axisymmetry break-

ing (Ueda & Nakajima, 2006), off-diagonal long range order correlations (Yang,

1962), and the determination of the condensate wave function.

3.3.3 Single particle density matrix

In principle, the knowledge of the many-body density matrix allows one to cal-

culate the mean value of any observable and encodes the maximum information

available regarding the system. However, in practice only a limited number of

66



3.3 Diagonalisation of the Hamiltonian

Figure 3.13: Weight of the angular momentum subspaces in the composition

of the ground state for N = 12 particles and g = 6/N as a function of the

rotation frequency. The range of Ω is centred around the rotation frequency

Ωmin. The calculation is restricted to the lowest Landau level approximation, and

the truncation of the basis is Lmax = N + 2.

observables are accessible during an experiment, such as spin of particles, kinetic

energy, number of particles or interaction energy. The single particle density ma-

trix (SPDM) has all the properties required to be considered a density matrix

in single-particle space when normalised. Therefore, the sole knowledge of the

SPDM suffices to predict the mean values of all the one-body observables, and

hence its importance.

If ρ is the many-body density matrix of the system, the single-particle density

matrix is defined as (Martin & Rothen, 2004)

ρ
(1)
kl = 〈k|ρ(1)|l〉 = Tr

[
ρâ†kâl

]
, (3.70)

where â†k and âl create and annihilate a boson in the single-particle level k and l,

respectively. It can be shown that the SPDM is hermitian and its trace is equal
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3.3 Diagonalisation of the Hamiltonian

to the mean number of bosons

ρ(1) =
(
ρ(1)
)†

and Tr
[
ρ(1)
]

= 〈N̂〉, (3.71)

where 〈N̂〉 is given by the many-body mean value Tr
[
ρN̂
]
. The mean value of

any one-body observable can be found using ρ(1)

〈Â〉 = Trρ(1)Â(1). (3.72)

Here, Â(1) is a one-body observable operator in single-particle space. The diagonal

elements of the SPDM ρ
(1)
kk are, up to a factor of N , nothing but the probability

of finding any of the particles in state k; in other words

ρ
(1)
kk = 〈N̂k〉. (3.73)

When the state of the many-body system is a pure state and thus the density

matrix is given by ρ = |Ψ〉〈Ψ|, the SPDM can be expressed as

ρ
(1)
kl = Tr

[
|Ψ〉〈Ψ|â†l âk

]
=

∑
i

〈Ψi|Ψ〉〈Ψ|â†l âk|Ψi〉

= 〈Ψ|â†l âk|Ψ〉. (3.74)

This last expression is very convenient for numeric calculations since it allows for

a few different optimisations to reduce the number of its elements that need to

be calculated. As an example of this, notice that due to the presence of âk, all

the basis states that have no bosons occupying the single-particle orbital k have

a vanishing contribution towards the SPDM. Likewise, due to the presence of â†l
in the last expression, all the basis states having N bosons occupying the single-

particle orbital l have a vanishing contribution to the SPDM when k 6= l. Also,

since we work in a truncated basis in blocks of fixed total angular momentum,

the restriction 0 ≤ ml + mk ≤ Lmax further reduces the number of calculations

needed to determine the SPDM.

In coordinate representation, it can be shown (Martin & Rothen, 2004; Yang,

1962) that for non-interacting bosons in the limit of large volume

〈~x′|ρ(1)|~x〉 → αN/∆V as |~x′ − ~x| → ∞, (3.75)
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3.3 Diagonalisation of the Hamiltonian

where α is the finite fraction of the gas in the condensed state and ∆V is the

volume occupied by the condensate. This is the off-diagonal long-range order

which is a characteristic manifestation of the Bose–Einstein condensation. This

long-range order in turn implies the existence of a large eigenvalue of the or-

der of N for the SPDM, and vice versa. The notion of off-diagonal long-range

order is not as relevant for trapped bosons, but the existence of a large eigen-

value is useful for defining the degree of condensation for interacting particles

(for non-interacting particles the standard signature for Bose–Einstein condensa-

tion is the macroscopic population of the lowest single-particle level). Thus, the

eigenfunction ψ1(~x) corresponding to the largest eigenvalue of the SPDM is the

condensate wave function and its eigenvalue the condensed fraction (Penrose &

Onsager, 1956).

In order to find the eigenvalues and eigenvectors of the SPDM, we need to

diagonalise it. Since the SPDM is a hermitian matrix, it has real eigenvalues 〈N̂k〉
and orthogonal eigenvectors vk which satisfy

ρ(1)vk = 〈N̂k〉vk. (3.76)

If we write these orthonormal vectors as the columns of the matrix Q, then one

can diagonalise the SPDM by means of a similarity transformation

ρ̃(1) = Q†ρ(1)Q, (3.77)

where
[
ρ̃(1)
]
kl

= 〈N̂k〉δkl is the diagonal SPDM after the transformation and the

matrix Q is given by

[Q]kl = [vl]k . (3.78)

Consequently, using (3.77), the SPDM can be written as[
ρ̃(1)
]
µν

=
∑
i

[
Q†
]
µi

∑
j

[
ρ(1)
]
ij

[Q]jν

=
∑
ij

[
Q†
]
µi

[Q]jν 〈Ψ|â
†
j âi|Ψ〉

= 〈Ψ|

(∑
j

[Q]jν â
†
j

)(∑
i

[
Q†
]
µi
âi

)
|Ψ〉. (3.79)
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3.3 Diagonalisation of the Hamiltonian

As a result, a basis change for the creation and annihilation operators is induced.

In fact, taking [R]kl = [Q]lk, this change of basis can be expressed as

ã†µ =
∑
i

[R]µi â
†
i and ãµ =

∑
i

[R]∗µi âi. (3.80)

These expressions in turn imply the induced change of the single-particle angular

momentum basis to the so-called natural orbitals basis

|ψ̃l〉 =
∑
k

[R]lk |ψk〉. (3.81)

We have diagonalised the SPDM and plotted the three largest normalised

eigenvalues of the SPDM as a function of Ω around the first avoided crossing

in Fig. (3.14). These results indicate that most of the population of the SPDM

around the first anticrossing is concentrated in the first two modes ψ̃1 and ψ̃2

in the natural basis, and they equalise at a critical frequency Ωc. Below Ωc,

the most populated state ψ̃1 is approximately a coherent superposition of two

off-centred vortices with even parity corresponding to the superposition of the

states with m = 0 and m = 2. On the other hand, ψ̃2 is approximately given by

a well-centred vortex single-particle state with odd parity corresponding to the

state with m = 1. When gN/6 = 1, the actual composition of these states in the

angular momentum basis for N = 12 is

ψ̃1 ≈ −0.851ψm=0 + 0.523ψm=2,

ψ̃2 ≈ 0.999ψm=1. (3.82)

As g is decreased, a very tiny component of the states ψm=4 and ψm=3 appear in

the composition of ψ1 and ψ2, respectively, with equal probabilities of ∼ 0.012 for

gN/6 = 0.4. This is due to the increasing proximity of higher angular momentum

states to the ground state when g decreases. Nevertheless, the parity of the two

most populated states is conserved by the addition of these small components.

Above Ωc, the two most populated states of the SPDM with opposite parities

abruptly swap places resulting in an equally abrupt change in the macroscopic

observable density, and thus heralds a quantum phase transition at the critical

frequency as was first found by (Dagnino et al., 2009a). One further consequence
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3.3 Diagonalisation of the Hamiltonian

Figure 3.14: Normalised occupations for the three most populated single-particle

states of the SPDM as a function of Ω near the critical frequency. (Left) Calcu-

lation for N = 6. (Right) Calculation for N = 12. The calculation is restricted

to the lowest Landau level approximation, and the truncation of the basis is

Lmax = N + 2.

of this abrupt change is the fact that the state of the system at the critical fre-

quency cannot be described by a mean-field theory since ψ̃1 and ψ̃2 have equal

populations at this rotation frequency, whereas the mean-field prescription re-

quires the SPDM to have a single large eigenvalue close to N .

Although the actual value of the critical frequency Ωc depends on the magni-

tude of the interaction strength, we have verified that for fixed N , the eigenvalues

and eigenvectors of the SPDM are approximately the same near criticality for val-

ues of the interaction strength in the range 0.4 ≤ gN/6 ≤ 1.0. As N increases,

the condensation above Ωc increases, and the populations of the two most pop-

ulated states at Ωc get closer to 0.5. These results have important consequences

for the actual form of the ground state at the critical rotation. In the following

section, we study the ground state and its correlations in more detail.
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3.4 The many-body ground state at criticality

3.4 The many-body ground state at criticality

The fact that the SPDM has two large eigenvalues which account for most of the

population near Ωc, suggests that the many-body ground state can be approx-

imated by a superposition of two-mode states in which only the single-particle

orbitals ψ̃1 and ψ̃2 are occupied. In order to prove this, we define a two-mode

many-body state as

|N1, N2〉 =

(
ã†1(Ω)

)N1

√
N1!

(
ã†2(Ω)

)N2

√
N2!

|0〉, (3.83)

where ã1
†(Ω) (ã2

†(Ω)) creates a boson in the orbital corresponding to the most

(second most) populated single-particle state at Ω, given by the eigenvectors of

the SPDM. These creation operators can be expressed in terms of the ones in the

angular momentum basis using the transformations in Eq.(3.80), giving

|N1, N2〉 =

(∑
Qm 1a

†
m

)N1

√
N1!

(∑
Qm 2a

†
m

)N2

√
N2!

|0〉, (3.84)

where we have dropped the Ω functional dependence for brevity purposes.

Consequently, the two-mode components of the ground state are given by

〈N1, N2|Ψ0〉 = 〈N1, N2|
∑
l

〈Φl|Ψ0〉|Φl〉

=
∑
l

〈Φl|Ψ0〉〈N1, N2|Φl〉, (3.85)

where 〈N1, N2|Φl〉 can be numerically evaluated using Eq.(3.84). Since right below

Ωc, the most populated state is a coherent superposition of states with m = 0

and m = 2, so will be its corresponding creation operator. Likewise, the second

most populated state is the state with m = 1 and its corresponding creation

operator has the effect of creating a boson in the single-particle state m = 1.

As a consequence, the overlap 〈N1, N2|Φl〉 vanishes when N1 and N2 are odd

numbers since the resulting state of Eq.(3.84) in the angular momentum basis

has odd angular momentum and thus it is outside the basis we are using (even

angular momentum states). The same argument applies right above Ωc.
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3.4 The many-body ground state at criticality

Figure 3.15: The coefficients Pn = |〈N − 2n, 2n|Ψ0(Ωc)〉|2 for the two-mode ap-

proximation at the critical frequency. The fidelity of the two-mode approximation

is found to be |〈Ψ0(Ωc)|ΨTM|2 = 0.83. The calculation is restricted to the lowest

Landau level approximation, and the truncation of the basis is Lmax = N + 2.

(Taken from (Rico-Gutierrez et al., 2013))

Numerical calculations of the two-mode components of the ground state show

that it is well approximated by a two-mode superposition at the critical frequency

given by

|Ψ0(Ωc)〉 ≈ |ΨTM〉 =
∑
n

Cn|N − 2n, 2n〉. (3.86)

We found that the fidelity of the two-mode approximation is typically ∼ 0.8

for all N ≤ 20 in the lowest Landau level approximation. The actual values of

Pn = |Cn|2 for N = 12 are plotted in Fig. (3.15). Interestingly, the state has

a bat-like structure much like the bat states that we introduced in chapter 2;

therefore, we expect this ground state to perform well in quantum metrology

schemes because of its entanglement and the natural robustness against losses

that it posseses. That the ground state at Ωc is actually highly entangled can be

shown using Zanardi’s concept of mode entanglement (Zanardi, 2001); tracing the

two-mode state over one of the modes gives a von Neumann entropy of the reduced

density matrix that nearly reaches the maximal value S ∼ log(N) (Dagnino et al.,

2009a).
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Figure 3.16: Fisher information for the ground state as a function of the rotation

rate for N = 12 particles, calculated for the most populated mode of the SPDM

at each value of Ω. The interaction strength is g = 6/N and A = 0.03, which

results in a critical frequency of Ωc ≈ 0.776. Also, the calculation was restricted

to the LLL approximation and Lmax = N+2. (Taken from (Rico-Gutierrez et al.,

2013))

3.4.1 Fisher information of the ground state

Now, we proceed to calculate the quantum Fisher information for the entangled

state at Ωc in order to quantify how well the state performs in linear interfero-

metric schemes.

Since we are dealing with a pure state of the condensate at T = 0, the Fisher

information can be calculated using

FQ[|Ψ(φ)〉] = 4
[
〈Ψ′(φ)|Ψ′(φ)〉 − |〈Ψ′(φ)|Ψ(φ)〉|2

]
, (3.87)

where |Ψ′(φ)〉 = ∂|Ψ(φ)〉/∂φ.

Suppose that the entangled ground state at Ωc picks up an undetermined

linear phase as a result of some dynamical evolution corresponding to a unitary
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3.4 The many-body ground state at criticality

operation U(φ) being applied to the first mode, corresponding to the most pop-

ulated eigenstate of the SPDM. Therefore, the resulting state in the two-mode

approximation is

U(φ)|ΨTM〉 =

N/2∑
n=0

Cne
iφ(N−2n)|N − 2n, 2n〉. (3.88)

The best precision, ∆φ, with which the phase can be measured using this state

in a single shot experiment, independent of the measurement scheme is given by

the quantum Cramér-Rao bound

∆φ ≥ 1√
FQ

. (3.89)

Since the fidelity of the two-mode state is ∼ 0.8, we rather consider a multi-mode

expansion of the ground state in order to obtain accurate results for the Fisher

information. In doing this, we define a d-mode state as

|Ψ̃l〉 = |Ñ1(l), Ñ2(l), . . . , Ñd(l)〉, (3.90)

where Ñk(l) corresponds to the number of atoms occupying the k-th most popu-

lated eigenstate of the SPDM, and l is a special index that labels the multi-mode

state and uniquely determines the distribution of the N bosons over the d modes.

Consequently, we can generalise Eq.(3.88) as

|Ψ0(φ)〉 = U(φ)|Ψ0(Ωc)〉 =
∑
l

Cle
iÑ1φ|Ψ̃(l)〉. (3.91)

Calculation of the derivative of this state readily gives

|Ψ′0(φ)〉 =
∑
l

iClÑ1(l)eiÑ1(l)φ|Ψ̃l〉. (3.92)

Therefore, we have

〈Ψ′0(φ)|Ψ′0(φ)〉 =
∑
s,l

[
−iC∗s Ñ1(s)e−iÑ1(s)φ

] [
iClÑ1(l)eiÑ1(l)φ

]
〈Ψ̃s|Ψ̃l〉

=
∑
l

|Cl|2 Ñ2
1 (l)

= 〈Ψ0(φ)| ˆ̃N2
1 |Ψ0(φ)〉, (3.93)
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where ˆ̃N2
k is the number operator corresponding to the k-th most populated mode,

and we have used the fact that 〈Ψ̃s|Ψ̃l〉 = δs,l, since the eigenstates of the SPDM

are orthogonal and so are the multimode many-body states constructed from

them. Likewise, the second term of the Fisher information in Eq.(3.87) can be

expressed as

|〈Ψ′0(φ)|Ψ0(φ)〉|2 =
(
〈Ψ0(φ)| ˆ̃N1|Ψ0(φ)〉

)2

. (3.94)

Therefore, the quantum Fisher information for the entangled state after a linear

phase has been applied to the first mode is given by

FQ [|Ψ0(φ)〉] = 4
[
〈 ˆ̃N2

1 〉 − 〈
ˆ̃N1〉2

]
. (3.95)

In numeric calculations, we evaluate the last expression expanding the number

operator in the angular momentum basis as

ˆ̃N1 = ˆ̃a†1ˆ̃a1 =
∑
m

Qm1â
†
m

∑
m′

Qm′1âm′ . (3.96)

The number of modes taken into account in the Q matrix is determined by the

numeric convergence of the Fisher information.

We show the numeric results of the Fisher information for the ground state

near criticality in Fig. (3.16) using Eq.(3.95). Remarkably, the maximum value of

FQ and the width of the curve do not change when the interaction strength varies,

under the LLL approximation. This suggests that the resulting entanglement is

mostly due to the anisotropy of the trap alone, which differs in nature with other

entanglement creation schemes using BECs, where the interactions are responsible

for the creation of a N00N state (Nunnenkamp et al., 2008).

These results are promising for experimental implementations since the mar-

gin of error in Ω when trying to prepare the initial entangled state is comparable

to the typical control precision in rotating traps of ∼ 1%(Chevy et al., 2000).

Finally, we saw in chapter 2 that the phase precision for a pure bat state scales

with the number of atoms as
√

2/
√
N(N + 2). Comparatively, our bat-like state

nearly saturates this precision, as can be seen in Fig. (3.17). Also, since the Fisher

information at the critical frequency is independent of the interaction strength,

the same is true for its scaling with N .
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Figure 3.17: Phase precision for the entangled ground state at Ωc as a function

of N . The interaction strength is g = 6/N and A = 0.03 for all cases. We plot

the phase precision for the N00N state 1/N , bat state
√

2/
√
N(N + 2), and

unentangled particles 1/
√
N for comparison purposes. All the calculations were

restricted to the LLL approximation and Lmax = N + 2.

3.5 Conclusions

We have studied and reviewed the physics of a two-dimensional Bose–Einstein

condensate in a rotating anisotropic quadratic trap whose strength is measured

by the coefficient A, and contact interactions for which the strength is measured

by the constant g . When the rotating trap has no anisotropy, the ground state

of the system for small rotation frequencies Ω ∼ 0 is the non-rotating many-

body state having all bosons in the single-particle state with angular momentum

m = 0. As the rotation frequency is increased, the ground state remains in this

non-rotating state with L = 0, up to a frequency Ω1 where the stationary ground

state makes a sharp transition to the single-vortex state, acquiring angular mo-

mentum L = N . This transition occurs at a rotation frequency for which all the

lowest lying states with angular momentum 0 < L ≤ N with L 6= 1 are degen-

erate. The inclusion of a small anisotropic term A 6= 0 has the effect of lifting
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the degeneracy at this rotation frequency, thereby creating an avoided energy

crossing. As a result, a critical frequency Ωc exists near the avoided crossing for

which the single particle density matrix (SPDM) has two large eigenvalues with

equal populations 〈n1〉 = 〈n2〉 and 〈n1〉+ 〈n2〉 ≈ 1. These eigenvalues correspond

to eigenfunctions of opposite angular momentum parities, having off-centred and

well-centred vortices respectively. The two eigenfunctions abruptly swap places

above the critical frequency, heralding a failure of the mean-field theory. In ad-

dition, since the system always remains in the ground state as Ω is increased, the

gas must experience a sudden macroscopic symmetry change which is a signature

of a quantum phase transition at the critical rotation frequency.

The ground state at criticality can be very well approximated by a two-mode

state whose two modes correspond to the above-mentioned most populated states

of the SPDM at Ωc. This approximation shows that the ground state is highly

entangled and has a bat-like form which is independent of the interaction strength

between the atoms in the lowest Landau level approximation. Therefore, as we

saw in chapter 2, this entangled state could be used in interferometric schemes

to perform measuremtents with precision that scales better than the shot-noise,

particularly for the current case of determining angular rotation rates, and also

have the added feature of robustness against particle losses (Dubetsky & Kase-

vich, 2006; Dunningham & Hallwood, 2006). In order to assess the suitability of

this state for quantum metrology, we calculated the quantum Fisher information

for a linear phase accumulation in one of the modes (Rico-Gutierrez et al., 2013).

The results show that the Fisher information is nearly equal to the value obtained

with a conventional bat state FQ ≈ N(N + 2)/2, even when the fidelity of the

two-mode approximation is ∼ 0.8. In addition, the Fisher information remains

much larger than N (sub-shot noise behavior) for a broad range of rotation fre-

quencies centred around Ωc. This is very promising for practical implementations

since it means that experimentalists would have a sizable margin of error in order

to nucleate the entangled state.
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Chapter 4

Engineering entanglement with

rotating matter waves

We saw in the previous chapter that a lowest Landau level (LLL) calculation

predicts the existence of a critical rotation frequency Ωc at the threshold of the

nucleation of the first vortex for which the many-body ground state exhibits

strong correlations as well as entanglement, and it is well described by an ef-

fective two-mode model; this constitutes an example of symmetry breaking in

quantum many-body systems, first considered by (Dagnino et al., 2009a). The

LLL approximation allows for a simplified and more computationally tractable

description of the system but it is only valid in the weakly interacting regime for

which the particle density is low, the interaction strength is small or the rotation

frequency is very close to the harmonic trap frequency. In fact, the LLL approx-

imation has been very succesful in describing the interesting case of fast rotating

Bose gases, where typically Ω ∼ 0.99, and the angular momentum is L ∼ N2.

In this regime of very fast rotation, the system is a strongly correlated quantum

liquid such as the Pfaffian or Laughin state, analogous to those appearing in the

fractional quantum Hall effect. In our case of moderate rotation frequencies, we

find that the LLL approximation predicts the critical frequency with great ac-

curacy of the order of a few percent; this could give the wrong impression that

the LLL approximation correctly describes all the features of the system. How-

ever, we have performed a more detailed investigation which has revealed that

this is not true in general (Rico-Gutierrez et al., 2013). When the interaction
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strength is of the order of gN ∼ 6, for example, the exact many-body ground

state at Ωc and the quantum Fisher information FQ are significantly different

for an approximation that goes beyond the LLL one, which is in principle more

accurate.

Therefore, while the LLL approximation gives a good description of the system

for the study of symmetry breaking (Dagnino et al., 2009a) accurately predicts

the rotation frequency at which the first vortex penetrates the condensate, a

larger many-body basis must be considered when one is interested in the precise

details of the entangled state. This issues a warning about the validity of the

LLL approximation, particularly as a guide for designing experiments. In this

chapter, we consider a more detailed study of the rotating anisotropic trap using

a two and three Landau level calculation as it appears in (Rico-Gutierrez et al.,

2013), revealing a rich system that offers the possibility of engineering different

entangled states. In particular, we are able to identify a parameter regime for

generating bat-like states like the ones predicted by the LLL calculation, but also,

we find another regime for generating N00N -like states, a feature that the LLL

approximation is unable to capture. Also, we assess the validity of the LLL for

a different number of relevant physical magnitudes such as the critical frequency,

the populations of the single-particle orbitals, and the energy gap between the

many-body ground state and the first excited state, among others.

4.1 Tuning entanglement in the rotating trap

We saw in chapter 3 that, within the lowest Landau level (LLL) approximation,

the stirring of a BEC with an anisotropic potential up to a critical rotation near

the first energy anticrossing has the effect of nucleating a highly entangled bat-like

ground state which is very well approximated by a two-mode state

|Ψ0(Ωc)〉 =

N/2∑
k=0

|N − 2k, 2k〉. (4.1)

Although Eq.(4.1) can achieve nearly Heisenberg-limited precision for a linear

phase accumulation, it does not fully saturate the Heisenberg limit, as the cele-

brated “cat” state does. Therefore, it is interesting to investigate the possibility
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4.1 Tuning entanglement in the rotating trap

Figure 4.1: Energy spectrum as a function of the rotation frequency for N =

6 particles as calculated with a two Landau level approximation. (Left) weak

interacting system where the interaction strength is given by gN/6 = 0.4. (Right)

stronger interacting system with gN/6 = 1. The anisotropy is A = 0.03 and

Lmax = N + 2 for both panels. The highlighted horizontal line corresponds to

< L >= 0 and the diagonal one to < L >= N .

of creating a cat state, since this state is closely related to the state in Eq.(4.1).

In fact, when Ck = 0 for k = 1 . . . (N + 2)/2, the bat-like state becomes a cat

state. Therefore, if we find a mechanism to decouple the states |N − 2k, 2k〉 with

k = 1 . . . (N + 2)/2 from the ground state, we might be able to create a N00N

state. The situation resembles that of an array of Bose-Einstein condensates

trapped in optical potentials coupled to one another to form a ring (Hallwood

et al., 2006), where the ground state of non-interacting particles in this ring con-

figuration has multiple crossings at a particular rotation rate. The degenerate

states at the crossing include the |N, 0〉 and |0, N〉 states, where the two modes

correspond to zero flow and one unit of clockwise flow, respectively, but multiple

flow states (states having particles spread out in different flow modes) are also

present at the crossing. Then, inclusion of interactions between the atoms leads

to different energy shifts for all these states, where the multiple flow states ac-

quire larger shifts than the single flow ones. As a result, the multiple flow states

decouple from the ground state, leaving only a crossing of the states |N, 0〉 and

|0, N〉. Then, a perturbation is added in order to create an anticrossing, for which

the resulting ground state is a coherent N00N superposition of the single flow
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4.1 Tuning entanglement in the rotating trap

states. This suggests that we could increase the interaction strength between

atoms in our system in order to decouple the “multiple parity” states in Eq.(4.1).

Recall that when A = 0, the first energy crossing is (N/2 + 1)-fold degenerate

at Ω1 = 1 − gN/(8π), where all the yrast states for 0 ≤ L ≤ N with L 6= 1,

have the same energy, and the addition of a small anisotropic perturbation A 6= 0

lifts the degeneracy and couples all of these states to the ground state at Ωc.

Therefore, in order to produce a cat state, we need to lift the degeneracy of these

states in such a way that we obtain Ck = 0 for k = 1 . . . (N + 2)/2. However,

the degeneracy of the ground state at Ω1 remains exactly the same no matter

how large g is. This is an artifact of the LLL approximation, for which the

entire energy spectrum is invariant up to an overall scale factor under changes

in the interaction strength (Morris & Feder, 2006). The LLL approximation is

simply unable to capture any decoupling of the lowest angular momentum yrast

states at Ω1 due to the strengthening of interactions. Nevertheless, this is not a

fundamental limitation of the system. In fact, it is known that when more Landau

levels are taken into account in calculations, for fixed g and Ω, the energy shift of

low-angular-momentum yrast states due to the inclusion of more Landau levels

scales as ∝ L−|a|, where |a| is a constant of order unity for small numbers of

particles, which increases with N (Morris & Feder, 2006). This means that we

necessarily need to go beyond the lowest Landau level approximation if we want

to decouple the “multiple parity” states from the ground state by varying the

interaction strength.

We show the energy spectrum near Ω1 for A = 0 and N = 6 particles using

two Landau levels in Fig. (4.1), where the differential energy shift for the low-

angular-momentum yrast states is observed. The differential shift is even more

noticeable as N increases for the same gN , as can be seen in Fig. (4.2).

When two Landau levels are considered, we observe striking differences in

the way that the low-angular-momentum yrast states couple to the ground state,

even for values of gN ≈ 6, which according to Eq.(3.59) pertains to the LLL

approximation at Ω1 ≈ 0.7. As an example of this, the weights of the subspaces

of fixed angular momentum for that participate in the GS at Ωc when A = 0.03

are plotted in Fig. (4.3). Notice how the two Landau level calculation for gN = 6

is in sharp contrast with that obtained with the LLL approximation in Fig. (3.12).
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4.1 Tuning entanglement in the rotating trap

Figure 4.2: Energy spectrum as a function of the rotation frequency for N = 12

particles as calculated with a two Landau level approximation. (Left) Energy

spectrum for the axisymmetric case (A = 0). (Right) The strength of the

anisotropy is A = 0.03. The interaction strength is given by gN/6 = 1 for

both panels, and Lmax = N + 2.

Equally striking is the behavior of the most populated eigenvalues of the single

particle density matrix (SPDM) as a function of the rotation frequency shown in

Fig. (4.4), when compared to Fig. (3.14). Although the behavior is qualitatively

the same, i.e. that of two large modes dominating the composition of the ground

state near the first anticrossing which equalise at the critical frequency Ωc, the

transition is extremely more abrupt for gN ≈ 6. This is a general feature for all

the numbers of atoms N ≤ 14 that we were able to check. The actual composition

of the two most populated states also shows some differences. For N = 12 and

gN = 6, the composition of these states right below Ωc is

ψ̃1 ≈ 0.948ψ(0,0) − 0.293ψ(0,2) − 0.104ψ(1,1),

ψ̃2 ≈ 0.995ψ(0,1), (4.2)

where the notation (n,m) specifies the radial quantum number and the angular

momentum one.

When we calculate the two-mode approximation for the ground state using two

Landau levels, we obtain the results plotted in the bottom panel of Fig. (4.6).

It is clear that going beyond the LLL approximation allows for the “multiple
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4.1 Tuning entanglement in the rotating trap

Figure 4.3: Weight of the angular momentum subspaces in the composition of

the ground state at Ωc for N = 12 using a two Landau level approximation

and A = 0.03. (Left) Composition of the ground state for gN/6 = 1. (Right)

Composition of the ground state for gN/6 = 0.4. The truncation of the basis is

Lmax = N + 2 for both panels.

parity” states to drift away from the ground state, resulting in the production of

a cat-like state, just as in the case of the rotating ring geometry discussed above.

The fact that the increase of the interaction strength has lifted the degen-

eracy at Ω1, thereby weakening the coupling of “multiple parity” states via the

anisotropic term, suggests that the converse procedure should allow to couple

these states back into the ground state. In fact, this is true. We show the two-

mode approximation for the ground state and the eigenvalue decomposition of the

SPDM for a reduced interaction strength of gN/6 = 0.4 for N = 12 particles in

the top panel of Fig. (4.6). Notably, for a fixed value of A = 0.03, if we decrease

g much below gN = 6, we recover the LLL regime, obtaining similar results as

those presented in chapter 3, i.e. a bat-like state, and a less sudden quantum

phase transition.

These findings are very promising for quantum metrology, since they mean

that we can use this rotating condensate to create entangled states which can be

tuned from N00N -like states to bat-like ones by only changing the interaction

strength, which in experiments is achieved through the use of Feshbach resonances

(Cornish et al., 2000). Alternatively, following the same line of thought, for fixed

g, we could vary the strength of the anisotropy A in order to reduce or increase
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4.1 Tuning entanglement in the rotating trap

Figure 4.4: Normalised occupations for the three most populated single-particle

states of the SPDM as a function of Ω near the critical frequency using two

Landau levels for N = 12. The interaction strength is given by gN/6 = 1, the

anisotropy strength is A = 0.03, and the truncation of the basis is Lmax = N + 2.

the coupling of the “multiple parity” states to the ground state. We plot the

form of the entangled ground state produced for an increased A = 0.05 when

gN/6 = 1, and the ground state form for a decreased A = 0.005 when gN/6 = 0.4

in Fig. (4.7). We have effectively swapped the shapes of the ground state shown

in Fig. (4.6) for the same values of g by only changing A. In actuality, we can

see that the coefficients for the “multiple parity” states are slightly different in

both cases, resulting in the bat state from Fig. (4.7) resembling more closely

the pure bat state that we introduced in chapter 2. These results show that it

is in fact also possible to further tune entanglement in this system by varying

the shape of the rotating trap. In this thesis, however, we focus on the case of

tuning entanglement by only changing the interaction strength between atoms.

This is partly due to the fact that proper accounting of large A needs a larger

Lmax cutoff, thereby requiring more computational power to analyse the system.
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4.1 Tuning entanglement in the rotating trap

Figure 4.5: Normalised occupations for the three most populated single-particle

states of the SPDM as a function of Ω near the critical frequency using two Landau

levels for N = 12 particles. The interaction strength is given by gN/6 = 0.4, the

anisotropy strength is A = 0.03, and the truncation of the basis is Lmax = N + 2.

One fundamental consequence of these results is that within the two Landau level

framework, even for very small values of gN � 6, which in principle should be

very well described by the LLL approximation, we can decrease A to the point of

obtaining a cat-like state which is in remarkable disagreement with the bat-like

state that invariably results using the LLL approximation. In practice, however,

there is a limit on how small A can be reduced, due to the fact that a real trap

always has a residual anisotropy of order A ∼ 1×10−3 (Bretin et al., 2004; Chevy

et al., 2000).

Finally, another physical quantity that experiences major changes when two

Landau levels are considered is the minimal energy gap between the ground state

and the first excited state at the first anticrossing. As might be suspected, the

energy gap is no longer independent of the interaction strength, and it is in

general larger for smaller values of the interaction strength g. However, even for
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Figure 4.6: The coefficients Pn = |〈N − 2n, 2n|Ψ0(Ωc)〉|2 for the two-mode ap-

proximation at the critical frequency using two Landau levels forN = 12 particles.

(Top) For this bat-like state the interaction strength is given by gN/6 = 0.4, and

the fidelity of the two-mode approximation is |〈Ψ0(Ωc)|ΨTM|2 = 0.80. Also, the

calculated critical frequency is Ωc ≈ 0.938. (Bottom) For the cat-like state, the

interaction strength is gN/6 = 1, and the fidelity of the two-mode approxima-

tion is |〈Ψ0(Ωc)|ΨTM|2 = 0.70. The critical frequency in this case is Ωc ≈ 0.823.

The strength of the anisotropy is A = 0.03, and the truncation of the basis is

Lmax = N + 2 for both panels. (Taken from (Rico-Gutierrez et al., 2013))

gN/6 = 0.4, the gap is substantially smaller than the value obtained with the

LLL approximation as can be seen in Fig. (4.8). This plot also suggests that

the energy gap asymptotically tends to a constant value, albeit very small, as N

increases, just as in the case of a LLL calculation.

Now, we move to the analysis of the quantum Fisher information in order to

assess the performance of these entangled states in quantum metrology schemes,

as we did with the bat-like state obtained with a LLL approximation.
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Figure 4.7: The coefficients Pn = |〈N − 2n, 2n|Ψ0(Ωc)〉|2 for the two-mode ap-

proximation at the critical frequency using two Landau levels for N = 12 particles

and two different anisotropy strength. (Top) For this bat-like state the interac-

tion strength is given by gN/6 = 1, the anisotropy is A = 0.05, and the fidelity of

the two-mode approximation is |〈Ψ0(Ωc)|ΨTM|2 = 0.79. (Bottom) For the cat-like

state, the interaction strength is gN/6 = 0.4, the anisotropy A = 0.005, and the

fidelity of the two-mode approximation is |〈Ψ0(Ωc)|ΨTM|2 = 0.70. The truncation

of the basis is Lmax = N + 2 for both panels.

4.1.1 Quantum Fisher information of the entangled ground

states

Since the ground state has a N00N -like shape at Ωc for Ng = 6 as calculated with

a two Landau level approximation, we expect the Fisher information to increase
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Figure 4.8: Minimal energy gap between the ground state and the first excited

state at Ωmin as a function of N for different values of the interaction strength. In

all cases, the interaction strength was scaled for each value of N , and the scaled

values of g shown in the plot are given by gN/6.The calculation was obtained

with two Landau levels, and the truncation of the basis is Lmax = N + 6 in order

to have convergence for small values of g and large values of N .

with respect to the bat-like one obtained using the LLL approximation. Although

this is actually the case, the most surprising feature of the calculated Fisher

information as a function of Ω is its width, which shows a very dramatic change,

as can be seen in Fig. (4.9). Here, the Fisher information has been calculated in

the same exact way as it was done with the LLL approximation. Whereas the

critical frequency has been shifted by roughly 5%, the Fisher information curve

has become a very sharp resonance whose width is about two orders of magnitude

smaller compared to the one calculated with the LLL approximation. This sharp

resonance means that it might be very challenging to create a N00N -like state

in experiments because high control of the rotation rate Ω is needed in order to

exactly pinpoint the critical frequency.

On the other hand, when the interaction strength is reduced to gN/6 = 0.4, we

recover the qualitative aspect of the results obtained with the LLL approximation,
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4.2 Assessing the validity of the LLL approximation

that is, a broad Fisher information curve for the bat-like state and higher fidelity

of the ground state with the two-mode approximation. In addition, the shift in

the critical frequency is less than 0.5%, and the two most populated states of

the SPDM have the same composition in the angular momentum basis as those

found using the LLL approximation, which are given by

ψ̃1 ≈ 0.785ψ(0,0) − 0.607ψ(0,2),

ψ̃2 ≈ 0.995ψ(0,1) + 0.116ψ(0,3). (4.3)

The resulting phase precision calculated with the bat-like and N00N -like

states is shown in Fig. (4.10). The performance of the bat-like state is essen-

tially identical to the bat-like state obtained with a LLL calculation, whereas

the N00N -like state outperforms the pure bat state and has nearly Heisenberg

limited precision as N gets larger. These are remarkable results.

Here, it is worth mentioning that similar qualitative results were found for

all the numbers of atoms considered in the simulations for N ≤ 14. Also, the

striking results calculated with two Landau levels do not change significantly when

another level is considered for all N ≤ 12; the case of N = 14 and three Landau

levels was impractical to simulate due to computational constraints. Furthermore,

we were able to simulate the systems with N = 4 and N = 6 particles up to four

Landau levels, and again, we did not see any significant change in the results

obtained with two Landau levels. A more detailed discussion about this point is

presented in the next section.

Due to the contrasting results obtained by including higher Landau levels, we

focus on quantifying the observed differences in the next section. Particularly,

we give modified LLL approximation validity criteria based on our numeric re-

sults, which have to be taken just as a gross guideline to the validity of the LLL

approximation due to the modest number of atoms that we were able to simulate.

4.2 Assessing the validity of the LLL approxi-

mation

Thorough assessment of the LLL approximation as it was carried out by (Morris

& Feder, 2006), requires more powerful computational facilities than a simple
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Figure 4.9: The quantum Fisher information as a function of the rotation rate

Ω for N = 12 particles and an anisotropy strength of A = 0.03. (Left) The

interaction strength is given by gN/6 = 0.4, and the Fisher information as calcu-

lated with the LLL approximation (blue empty box) and two Landau levels (red

empty box) is shown. (Right) The interaction strength is gN/6 = 1, and the

horizontal scale is roughly ten times smaller than that of the left panel.(Taken

from (Rico-Gutierrez et al., 2013))

personal computer like the one which was used in our calculations. However, our

study clearly identifies the relevant parameters and scales involved in establishing

a validity regime for the LLL approximation in general, as well as detailed results

for small numbers of atoms N ≤ 12 up to three Landau levels.

First, recall that important differences in the form of the entangled ground

state and its Fisher information between a LLL calculation and a two Level one

were found for a fixed value of A � 1 and an interaction strength of gN/6 = 1.

For this magnitude of the interactions, the typical rotation frequency for the

nucleation of the first vortex is Ω1 ≈ 0.77, and thus the standard validity criterion

of Eq.(3.59) gives Ng � 28, hence the Ng/6 = 1 scaling should be consistent

with the LLL approximation. More importantly, it is also consistent with the

power law scaling of gmax ≈ 6.92N−1.046 for numbers of particles N ≤ 20, which

describes the crossover from the weakly interacting regime pertaining to the LLL

approximation to the strongly one where more Landau levels are required to

describe the system, as found by (Morris & Feder, 2006). Therefore, it is evident
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Figure 4.10: Phase precision for the entangled ground state at Ωc as a function

of N using two Landau levels. We plot the phase precision for the N00N state

1/N , bat state
√

2/
√
N(N + 2), and unentangled particles 1/

√
N for comparison

purposes. All the calculations used A = 0.03 and a basis truncation of Lmax =

N + 2.

that neither of these criteria apply for our results regarding the exact form of the

ground state or the Fisher information.

However, the estimation of the critical frequency at which the entangled

ground state is nucleated is consistent with the standard criteria for the valid-

ity of the LLL approximation. As can be seen in Fig. (4.11), for an interaction

strength gN/6 ≤ 1, the relative error of calculating the critical frequency with

the LLL approximation is less than 6% for N = 12. This tolerance is actually

smaller than the 10% considered in the calculation of Ω1 in (Morris & Feder,

2006), where disagreements larger than ten percent are considered to indicate

that more than one Landau level are needed to describe the exact location of Ω1.

Although we only show results for N = 12, we found that the 6% tolerance holds

for all numbers of particles that we studied.

Additionally, we show only the calculated critical frequency for values of the

interaction strength of gN/6 ≥ 0.4 because for smaller values than this, when
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Figure 4.11: The fractional change in the position of the critical rotation

frequency Ωc as a function of the interaction strength for N = 12 par-

ticles, calculated using two different approximations differing by one Lan-

dau level. In each case, the fractional change is calculated at the criti-

cal frequency obtained using the lower number of Landau levels. One level

approximation (LLL) compared against the two level approximation (solid

box) where ∆Ωc/Ωc = |Ωc(g)2LL − Ωc(g)LLL|/Ωc(g)LLL. Two level approxi-

mation compared against the three level approximation (empty box) where

∆Ωc/Ωc = |Ωc(g)3LL − Ωc(g)2LL|/Ωc(g)2LL.(Taken from (Rico-Gutierrez et al.,

2013))

A = 0, the ground state crossings begin to be tightly confined to a small rotation

frequency window near the centrifugal limit Ω = 1. Thus, the addition of the

anisotropy with strength A = 0.03 no longer results in a well localised anticrossing

for each respective crossing, and a proper account for the way the anisotropic

term lifts the degeneracy requires a larger angular momentum basis truncation

since the ground state becomes more sensitive to the injection of higher angular

momentum states near the centrifugal limit. Without proper account for higher

angular momentum states, the SPDM shows an increasing participation of a

third mode as the interaction strength is decreased, drastically deteriorating the
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two-mode approximation. Furthermore, as g decreases, the critical frequency is

located increasingly closer to the centrifugal limit, eventually entering a region

where the condensate is known to experience dynamical instabilities that make the

condensate fly appart (Rosenbusch et al., 2002; Sinha & Castin, 2001). In the case

of an anisotropy strength of A = 0.03, this region starts at rotation frequencies of

Ω ∼
√

1− 4A = 0.969. Therefore, we focus on values of gN/6 ≥ 0.4 since these

give rise to critical frequencies sufficiently far from the instability region and do

not require a basis truncation larger than Lmax = N + 2.

Next, we quantify the difference in the magnitude of the Fisher information as

calculated with different numbers of Landau levels. But first, let us explain the

two general methods that we chose to compare different calculations of the Fisher

information. The first one consists in comparing values of the Fisher information

of the ground state at rotation frequencies measured from the critical frequency

of each respective approximation. This method is motivated by the very sharp

resonance-like form of the Fisher information which together with the fact that

the critical frequency converges slowly with respect to the addition of Landau

levels, results in an extremely slow convergence of the Fisher information at

absolute values of the rotation frequency. Thus, this method allows us to estimate

the converged value of the Fisher information at the exact critical frequency

which would result from a full quantum calculation. Let us call this method

the “relative comparison” method, or method I in short. The second method

consists in comparing the calculated Fisher information at rotation frequencies

measured from the critical frequency obtained with the lower number of Landau

levels involved in the calculation. This method allows us to estimate the actual

difference in Fisher information that would be observed in an experiment if we

were being guided by the approximation with the lower number of Landau levels.

Let us call this method the “absolute comparison” method, or method II in short.

We plot the calculated Fisher information of the entangled ground state for

different values of the interaction strength g and different Landau level approx-

imations using method I in Fig. (4.12). Even though we have not been able to

calculate the Fisher information using four Landau levels for N > 6, these results

suggest that the Fisher information converges monotonically with the number of

Landau levels if one excludes the lowest Landau level approximation from the
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Figure 4.12: The quantum Fisher information of the ground state for various basis

truncations as a function of the interaction strength at the critical frequency Ωc

calculated with the respective truncated basis (Method I). (Left) Calculation for

N = 12 particles. The labels are the same as those shown in the right panel.

(Right) Calculation for N = 6 particles. The anisotropy strength is A = 0.03 for

both panels.(Taken from (Rico-Gutierrez et al., 2013))

series. With the addition of each subsequent Landau level, the correction to the

critical frequency gets smaller and the calculated Fisher information gets closer

to the true value that would result from a full quantum calculation at Ωc. The

fractional change in the Fisher information as calculated using two Landau levels

with respect to a lowest Landau level calculation is plotted in Fig. (4.13). If we

consider a tolerance of 10% as our criterion for the validity of the lowest Lan-

dau level in this context, we see that these results give a maximum interaction

strength compatible with the LLL approximation equal to Ngmax/6 ≈ 0.5.

On the other hand, when the comparison method II is used, we obtain results

like the example for N = 12 in Fig. (4.14). In this case, even for very small

values of the interaction strength gN/6 ≈ 0.4, the fractional error between the

LLL approximation and two Landau levels is ∼ 160%, and similarly for the case

of two Landau levels and three Landau levels. This means that using the LLL

approximation or even a two Landau level one to predict the critical frequency

in experiments is likely to lead to the nucleation of a sub-optimal state that

has low fidelity with the true entangled state at the true critical frequency. As
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Figure 4.13: The fractional change in the quantum Fisher information FQ as a

function of the interaction strength, using the LLL approximation and two Lan-

dau levels. The Fisher information is calculated at the critical frequency obtained

with the respective truncated basis (Method I), and the fractional change is cal-

culated as ∆FQ/FQ = |FQ(g)2LL − FQ(g)LLL|/FQ(g)2LL. The anisotropy strength

is A = 0.03 for all cases and the horizontal axis is shown for a scaled g by a factor

of N/6.

was mentioned before, this is a consequence of a slow convergence of the Fisher

information at absolute values of the rotation frequency: with each subsequent

addition of an extra Landau level, the magnitude of the correction for the critical

frequency is barely comparable or much larger than the width of the Fisher infor-

mation, thus resulting in a large fractional error. Nevertheless, we saw that when

the Fisher information is calculated at rotation frequencies relative to the criti-

cal frequency as calculated with each respective approximation, the two Landau

level approximation seems to give a very accurate value of the Fisher information

that has nearly converged to the value that would result from a full quantum

calculation. This is also true for the width of the fisher information curve, as

can be seen in Fig. (4.15), where we define ΓQ to be given by the length of the

left half of the width at half maximum. Again, the LLL approximation gives a

poor prediction of the Fisher information width even for small values of g for all
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Figure 4.14: The fractional change in the quantum Fisher information FQ as a

function of the interaction strength, calculated using two different approximations

differing by one Landau level. In each case, the fractional change is calculated at

the critical frequency obtained using the lower number of Landau levels (Method

II). One level approximation (LLL) compared against the two level approxima-

tion (solid diamond) where ∆FQ/FQ = |FQ(g)2LL − FQ(g)LLL|/FQ(g)2LL. Two

level approximation compared against the three level approximation (empty box)

where ∆FQ/FQ = |FQ(g)3LL − FQ(g)2LL|/FQ(g)3LL. (Taken from (Rico-Gutierrez

et al., 2013))

numbers of particles, predicting a width which is roughly twice the value obtained

with two Landau levels for gN/6 ≈ 0.4. As the interaction strength is increased,

the LLL approximation gives extremely inaccurate predictions for the width of

the Fisher information which are even more inexact that the predictions for the

Fisher information as assessed with both methods I and II. This time, it seems

necessary to go up to three Landau levels in order to obtain accurate predictions

for the width of the Fisher information as the interaction strength gets much

larger than gN/6 = 0.4, as suggested by the right panel in Fig. (4.15)

In conclusion, while the LLL approximation can provide accurate predictions
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Figure 4.15: Analysis of the Fisher information width with different Landau

levels. (Left) Fractional error of the Fisher information width as a function of the

interaction strength calculated as |∆ΓQ|/ΓQ = |ΓQ(g)2LL − ΓQ(g)LLL|/ΓQ(g)2LL.

ΓQ(g) is defined as the left width of the Fisher information at half maximum.

(Right) Fisher information width as a function of the interaction strength for

N = 6 particles and different numbers of Landau levels. The anisotropy is A =

0.03 and Lmax = N + 2 for both panels.

of the Fisher information of the entangled state at the true critical frequency

obtained from a full quantum calculation for values of the interaction strength

gN/6 ≤ 0.5, it gives inaccurate estimations for the width of the Fisher informa-

tion for all values of the interaction strength gN/6 ≥ 0.4; particularly, it gives

very poor predictions for values of the interaction strength which are commonly

regarded as pertaining to the LLL approximation regime. Therefore, in order to

obtain accurate estimates of the Fisher information width, one needs to consider

at least three Landau levels in order to cover all possible values of the interaction

strength up to gN/6 = 1. More importantly, if one is to use these numerical pre-

dictions in order to guide experiments, a very precise calculation of the critical

frequency is needed that requires at least four or five Landau levels, particularly

for values of the interaction strength gN/6 ≈ 1, such that the actual ground state

and Fisher information obtained in the experiment is close to the one predicted

here. Ideally, the calculation of the critical frequency with up to four or five

Landau levels could be used to extrapolate the results to predict the many-level

result. This, however, requires powerful computational resources and alternative
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ways of finding a very accurate location of the critical frequency would be highly

desirable.

4.3 Conclusions

We found that the LLL approximation predicts a (N/2+1)-fold degeneracy at the

first ground state crossing when A = 0, regardless of the value of the interaction

strength g. Then, the inclusion of a small anisotropy A� 1 lifts the degeneracy

in the same way for all values of g, resulting in the nucleation of a bat-like state

at the critical frequency. No matter how strong or weak the interactions are, we

always obtain a bat-like state due to the fact that the energy spectrum is the

same up to a scaling constant for any value of the interaction strength g.

On the other hand, when another Landau level is added to the approxima-

tion, the first ground state crossing is no longer (N/2 + 1)-fold degenerate (in

fact, it is only doubly degenerate), and differences in the relative values of g and

A lead to different ways in which the anisotropic term couples higher angular

momentum states to the ground state. As a result, careful tuning of g and A can

produce bat-like states, as well as N00N -like ones. Particularly, the N00N -like

states can be obtained for A = 0.03 and gN/6 ≈ 1, which is a weak interaction

strength commonly regarded as compatible with the LLL approximation. Ev-

idently, in view of our results, this is not the case when a small anisotropy is

present in the system. Whereas the correction to the critical frequency is roughly

about 5% when two Landau levels are considered, the Fisher information and

the width of the Fisher information curve as a function of the rotation frequency

show drastic differences with respect to the same values calculated with a LLL

calculation. Then, we saw that in order to accurately make an estimation of the

Fisher information at the true critical frequency and its width, at least two Lan-

dau levels need to be considered in general. However, due to the very small width

of the Fisher information, a three or four Landau level calculation is needed in

order to extrapolate the many-level result for the critical frequency, so that in

experiments, the entangled ground state generated at this extrapolated critical

frequency has a high fidelity with the bat or N00N -like states predicted by our

numeric results.
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4.3 Conclusions

Thus, the rotating anisotropic condensate constitutes a simple system that

has already been demonstrated experimentally, and which offers the creation and

tuning of entanglement via an equally simple mechanism, i.e. that of increas-

ing or decreasing the interaction strength, which can be achieved with Feshbach

resonances in experiments.

100



Chapter 5

Interferometric scheme for

rotation measurements

Very precise measurement of rotation frequencies plays an important role in many

areas of science and technology including, among others, inertial navigation sys-

tems, detection of fluctuations in the rotation of the Earth and in tests of general

relativity. Currently, the state-of-the-art devices used to perform rotation mea-

surements in these areas use unentangled states as their initial resource; therefore

their precision cannot surpass the standard quantum limit. As was mentioned be-

fore, Bose–Einstein condensates are very promising systems to implement quan-

tum metrology due to their many unrivaled features such as highly accurate

control over their dynamics in experiments, high level of quantum coherence,

and the fact that they provide a conceptually simple way of generating many-

body entanglement, particularly by setting them in rotation. Consequently, these

many-body entangled states have the prospect of leading to the development of

ultra-precise gyroscopes which can overcome the standard quantum limit. In this

Chapter, we present an interferometric scheme to measure rotation frequencies

with sub-shot noise precision. The scheme is capable of using a range of different

entangled states from bat-like to N00N -like ones and as a result different degrees

of robustness against particle losses can be attained. Also, we demonstrate that

the scheme is amenable to an experimental proof-of-principle implementation,

and give a feeling of some of the possible improvements that can enhance the

performance of the scheme and its precision.
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5.1 General overview

Our interferometric scheme is based on the operation of the two-mode Mach–

Zehnder interferometer reviewed in chapter 2, which in general terms consists of

the creation of a two-mode entangled state, phase accumulation, recombination

of the two paths, and the read-out stage. Similarly, in our case the scheme can

be divided into four major stages representing the operation of a Mach–Zehnder

interferometer with the exception of the read-out stage. The first one consists

in preparing the entangled ground state by adiabatically bringing the condensate

from the non-rotating regime to a rotating BEC at the critical frequency Ωc. Once

the entangled state has been nucleated, the second stage consists in rapidly shift-

ing away from the critical frequency to a nearby rotation frequency of Ωc ±∆Ω.

This step simulates the coupling of our condensate “probe” to the system whose

rotational motion we want to measure. The conceptual idea of the interferomet-

ric scheme depends on this step being performed fast enough so that the ground

state and first excited state at Ωc ±∆Ω get populated, but slow enough so that

higher excited states have negligible population. Fortunately, our results show

that a very broad range of frequency shift speeds satisfies this requirement for a

certain window of rotation frequencies near Ωc. Furthermore, as we shall see, the

system offers the posibility of going beyond this two-mode concept increasing the

range of frequency shifts that can be measured with sub-shot noise precision.

After accomplishing the population of the ground state and first excited state

at Ωc±∆Ω, the third stage comprises the phase imprinting step. This step consists

of a simple free evolution during a time τ which imprints a phase exp(i∆E10τ)

between the ground state and the first excited state at Ωc ±∆Ω. Here, ∆E10 is

the energy gap between the ground state and the first excited state at Ωc ±∆Ω,

and τ is the waiting time for the free evolution. The information about ∆Ω is

encoded into the state of the condensate through ∆E10, and therefore, measur-

ing this phase enables us to estimate the difference in rotation rate ∆Ω between

the condensate and the test system. Finally, once the phase has been imprinted

into the condensate, we take the BEC back to the non-rotating regime by re-

versing the sequence of steps. This means, very quickly switching back to Ωc

from Ωc ±∆Ω, and then adiabatically reducing the rotation frequency until the
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5.2 Adiabatic nucleation of the entangled state

condensate reaches a very slow rotating regime where performing measurements

is more convenient due to the expectation of interference fringes between the ro-

tating and non-rotating components of the condensate in this regime. Currently,

the final step of reversing the sequence and bringing the condensate to the non-

rotating regime is subject of ongoing research, and as such it is not considered in

this thesis.

In order to simulate the sequence of steps described above, we follow (Dagnino

et al., 2009a) and solve the time-dependent Schrödinger equation

i
∂

∂t
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 (5.1)

for the initial solution |Ψ(t = 0)〉 at Ψ0. By expanding |Ψ(t)〉 in the many-body

angular momentum basis as |Ψ(t)〉 =
∑

i ci(t)|Φi〉, and projecting Eq.(5.1) on the

state |Φj〉, we obtain a set of first order differential equations for the coefficients

ci(t),

i
∂

∂t
cj(t) =

∑
i

ci(t)〈Φj|Ĥ(t)|Φi〉, (5.2)

which is solved numerically using a Fehlberg fourth-fifth order Runge-Kutta

method with degree four interpolant implemented in Maple. In all cases where

the rotation frequency Ω is varied, we have assumed linear dependence in time

as,

Ω(t) = Ω0 + γt, (5.3)

where γ is the constant rate of change for the rotation frequency and Ω0 is a par-

ticular initial frequency. This linear dependence is the most simple way to model

the dynamics of the system and yet, it is very demanding in computational terms,

particularly when studying adiabatic passages with higher Landau levels. The

adiabaticity criterion will be easier to fulfil, both in experiments and simulations,

by taking a more general and optimised time dependence. However, this is the

subject of future work.

5.2 Adiabatic nucleation of the entangled state

The stationary ground state contour provides an adiabatic pathway into the en-

tangled state at Ωc. In this section we study the feasibility of this approach.
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5.2 Adiabatic nucleation of the entangled state

We consider the case N = 6 in detail and later on, we discuss the results and

implications for larger numbers of particles. The idea behind this analysis is to

start with a slowly rotating condensate at some Ω(t) = Ω0, which in principle can

be taken to be zero, and then slowly ramp up the rotation frequency until Ωc is

reached. The equilibrium state at Ω0 � Ωc can be achieved after relaxation once

the system is suddenly put in rotation at this initial frequency (Madison et al.,

2000b). In our study, the only control parameter is the rotation frequency Ω,

while the other parameters such as g and A remain fixed. The size of the energy

gap between the ground state and the first excited state determines the maximum

speed of this evolution at any given point so that the transition rate to higher

states remain negligible. The instantaneous probability for a non-adiabatic tran-

sition from the ground state to the first excited state after a time evolution of tf

is given by (Messiah, 1965)

p0→1 ≈
∣∣∣∣∫ tf

0

α10(t) exp

(
i

∫ t

0

∆E10(τ)dτ

)
dt

∣∣∣∣2 , (5.4)

where α10 can be thought as a measure of the speed of rotation of the ground

state along the direction of the first excited state given by

α10 = 〈Ψ1(t)|d|Ψ0(t)〉
dt

, (5.5)

and ∆E10(t) is the instantaneous energy gap between the two states. If α10 and

∆E10 are time-independent, Eq.(5.4) is readily integrated to give

p0→1 ≈
∣∣∣∣ α10

∆E10

∣∣∣∣2 2 (1− cos ∆E10tf ) . (5.6)

Therefore, p0→1 is a quantity of the order of |α10/∆E10|2. This means that during

a time evolution where α10 and ∆E10 exhibit a sufficiently smooth variation, p0→1

will at most be of the order of magnitude of the maximum value attained by the

ratio |α10/∆E10|2 in the interval (0, tf ):

p0→1 . max

(∣∣∣∣ α10

∆E10

∣∣∣∣)2

. (5.7)

We can use these results to estimate the order of magnitude of γ in Eq.(5.3)

that gives the fastest time evolution compatible with adiabaticity, as a guide for
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5.2 Adiabatic nucleation of the entangled state

our numeric calculations . We start by differentiating the eigenvalue equation

Ĥ|Ψ0〉 = E0|Ψ0〉 with respect to the rotation frequency Ω which appears as a

parameter in the Hamiltonian and the eigenvectors:

dĤ

dΩ
|Ψ0(Ω)〉+ Ĥ(Ω)

d|Ψ0〉
dΩ

=
dE0

dΩ
|Ψ0(Ω)〉+ E0(Ω)

d|Ψ0〉
dΩ

. (5.8)

Taking the scalar product with 〈Ψ1| and using dĤ/dΩ = −L̂z which is a conse-

quence of Eq.(3.1), we obtain

α10 = 〈Ψ1|
d|Ψ0〉
dt

=
dΩ

dt

〈Ψ1|L̂z|Ψ0〉
∆E10(Ω)

, (5.9)

where we have also used the chain rule d|Ψ0〉/dt = (dΩ/dt) (d|Ψ0〉/dΩ). There-

fore, we have ∣∣∣∣ α10

∆E10

∣∣∣∣ =

∣∣∣∣∣γ 〈Ψ1|L̂z|Ψ0〉
∆E2

10(Ω)

∣∣∣∣∣ . (5.10)

The matrix element 〈Ψ1|L̂z|Ψ0〉 in the last expression is approximately zero

near the non-rotating regime since the ground state and the first excited state

are nearly eigenvectors of the total angular momentum L̂z when Ω ≈ 0 with

eigenvalues of 0 and 2 respectively. Also, the same matrix element is at most of

order N in the vicinity of the avoided crossing where the ground state is transiting

from a non-rotating state with < L >≈ 0 to the one vortex state with < L >≈ N .

Hence, the following expression holds for Ω < Ωc:∣∣∣∣ α10

∆E10

∣∣∣∣ ≤ ∣∣∣∣ γN

∆E2
10(Ω)

∣∣∣∣ , (5.11)

and consequently, the maximum value of |α10/∆E10| in Eq.(5.7) is attained at the

avoided crossing where the energy gap is a minimum. In summary, the transition

rate from the ground state to higher excited states for an arbitrary linear ramping

of the rotation frequency Ω anywhere in the interval (0,Ωc) is bounded by

p0→1 .

∣∣∣∣ γN

∆E2
10(Ωmin)

∣∣∣∣2 , (5.12)

where ∆E10(Ωmin) is the energy gap at the avoided crossing point. Hence, the

condition p0→1 � 1 for an evolution from Ω0 to Ωc which ensures that the system
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5.2 Adiabatic nucleation of the entangled state

follows adiabatically the ground state determines the maximum rate of change of

Ω as

γmax ≈
∆E2

10(Ωmin)

N
ξ, (5.13)

where ξ(� 1) is a constant determined by the numeric simulations that ensures

the adiabatic condition.

Figure 5.1: Numeric results for the overlap between |Ψ(t)〉 and the stationary

GS for N = 6 bosons, A = 0.03 and g = 0.44. The initial rotation frequency

Ω0 = 0.918 is well below the critical frequency Ωc = 0.922 and the avoided

crossing rotation frequency Ωmin = 0.920. The different values of γ correspond to

values of ξ in the range [0.2, 0.3] obtained with Eq.(5.13).

In order to determine whether the time evolution of the quantum state has

adiabatically followed the stationary profile in our simulations, we use a slightly

stronger criterion than that of (Dagnino et al., 2009a), and consider that one

gets adiabaticity when the overlap between |Ψ(t)〉 and the exact GS at any point

during the evolution is larger than 0.99 for an initial rotation frequency Ω0 < Ωmin.

This modified criteria ensures that if we start the evolution from a different initial

rotation frequency Ω0, the system will still reach the critical frequency Ωc with

an overlap larger than 0.99. In Fig. (5.1) we show the numeric results for the

fidelity of the evolved state with the stationary ground state for a typical set-up

in the “bat” regime. We found that a value of ξ = 0.2 ensures the adiabaticity of
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5.2 Adiabatic nucleation of the entangled state

the time evolution for a wide range of the interaction strength of 0.3 ≤ g ≤ 1.0

for N = 6 and A = 0.03. Unfortunately, we have not been able to corroborate

whether this feature holds for N > 6 due to computational constraints; however,

we have checked that it is still valid for small values of g ≈ (6/N)×0.4 when N =

8. Also, we have compared the profiles of the total average angular momentum L̂z

as a function of Ω with respect to the stationary one. We show this comparison in

Fig. (5.2) for the same particular case as that of Fig. (5.1). The difference between

the stationary curve and the one obtained with adiabatic evolution depends on

the particular value of g, but it is always of the order of ∼ 0.1 in the range

g = 0.3 . . . 1.0.

Figure 5.2: Average total angular momentum of the resulting dynamic state as

a function of the rotation frequency for N = 6 bosons, A = 0.03 and g = 0.44.

All the parameters and labels are identical to those in Fig. (5.1). The black

thick solid line profile corresponds to the average total angular momentum of the

stationary GS.

We now present numeric predictions of the estimated real time needed for an

adiabatic nucleation of the entangled state. As we have seen in chapter 4, the

energy gap at the avoided crossing decreases as the interaction strength increases,

as well as the number of particles is increased. Therefore, as a consequence of

Eq.(5.13), we expect that the nucleation time for a N00N state will be consid-
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5.2 Adiabatic nucleation of the entangled state

erably larger than that of a bat state, and that both times will be even larger as

N is increased. The total amount of time spent in the adiabatic passage ∆t̃adiab

is given by

∆t̃adiab = ∆Ω/γmax, (5.14)

where ∆t̃adiab is a dimensionless quantity in our choice of units, and the respective

time in seconds is given by ∆t̃adiab/ω⊥. Using this expression, the predicted

nucleation time in seconds as a function of g for a few different numbers of

particles is shown in Fig. (5.3), where we have taken ω⊥ = 2π × 210 Hz as a

typical value for the harmonic trap frequency found in experiments (Chevy et al.,

2000).

These results suggest that the proposed adiabatic nucleation scheme, as it

stands, might be impractical even for bat states of small numbers of particles

due to the long nucleation times, which are very large compared to the typical

condensate lifetime of ∼ 16 s (Soding et al., 1999). However, in practice one

usually performs a piecewise adiabatic evolution with different optimised values

of γ = dΩ/dt and A for different segments. Here, we give evidence that nucleation

times can be vastly improved even with a simple two-segment evolution with fixed

trap anisotropy A. We have analyzed an adiabatic evolution from Ω0 = 0.4 to

Ωc by dividing it in two linear ramps of the rotation frequency; the first one

corresponds to the interval (Ω0,Ωc−0.01) with γ = 0.1×N/∆E2(Ωc−0.01), and

the second one corresponds to (Ωc−0.01,Ωc) with γ = 0.1×N/∆E2(Ωmin); where

the considered length of the second segment is 0.01 in order to reflect the fact

that typical experimental uncertainty for rotation frequencies is of the order of

1% (Bretin et al., 2004) and any further optimisation of the adiabatic nucleation

within 1% of the critical frequency would be unattainable. The much improved

times for N = 6 and N = 10 are shown in Fig. (5.4) and Fig. (5.5) respectively.

To summarise this section, we have presented numeric results for the adiabatic

nucleation of the entangled state for small numbers of particles and studied its

practical feasibility. We have found that although a straight linear ramping of the

rotation frequency from the non-rotating regime to the critical frequency might

pose a problem, an optimised ramp sequence consisting in different piecewise

linear portions connecting points in the Ω − A space can vastly reduce nucle-

ation times and make the scheme experimentally feasible. Furthermore, since
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5.2 Adiabatic nucleation of the entangled state

Figure 5.3: Predicted adiabatic evolution time as a function of the interaction

strength for N = 6, 8, 10 and 12 particles. The evolution for all cases is taken

from Ω0 = 0.4 to Ωf = Ωc, using a value of γ prescribed by Eq.(5.13) with ξ = 0.1

and A = 0.03. In these plots, we have assumed a typical harmonic trap frequency

of 2π×210 Hz and the interaction strength g has been scaled by a factor of (6/N).

the actual ramp time is inversely proportional to ω⊥, the use of a much tighter

trap can further reduce the time spent in the adiabatic passage. Here, we have

used ω⊥ = 2π × 210 Hz which is a typical trap frequency found in experiments

by Dalibard et al (Bretin et al., 2004); however, (Gemelke & Chu, 2010) report

the implementation of a confining trap with ω⊥ up to 6 kHz which dramatically
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5.2 Adiabatic nucleation of the entangled state

Figure 5.4: Comparison of the predicted adiabatic evolution time as a function

of the interaction strength for N = 6 using one and two different linear ramps of

the the rotation frequency. The evolution with only one segment corresponds to

the data presented in Fig. (5.3). On the other hand, the two-segment evolution

corresponds to a ramping of Ω in the interval (0.4,Ωc − 0.01) with γ = 0.1 ×
N/∆E2(Ωc−0.01), followed by a second ramping of Ω in the interval (Ωc−0.01,Ωc)

with γ = 0.1×N/∆E2(Ωmin). We have assumed a typical harmonic trap frequency

of 2π×210 Hz and the interaction strength g has been scaled by a factor of (6/N).

reduces the nucleation time. In fact, Gemelke et al have experimentally demon-

strated an adiabatic ramp sequence that brings the condensate to higher rotation
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5.2 Adiabatic nucleation of the entangled state

Figure 5.5: Comparison of the predicted adiabatic evolution time as a function of

the interaction strength for N = 10 using one and two different linear ramps of

the the rotation frequency. The evolution with only one segment corresponds to

the data presented in Fig. (5.3). On the other hand, the two-segment evolution

corresponds to a ramping of Ω in the interval (0.4,Ωc − 0.01) with γ = 0.1 ×
N/∆E2(Ωc−0.01), followed by a second ramping of Ω in the interval (Ωc−0.01,Ωc)

with γ = 0.1×N/∆E2(Ωmin). We have assumed a typical harmonic trap frequency

of 2π×210 Hz and the interaction strength g has been scaled by a factor of (6/N).

frequencies ΩFQH > Ωc where the ground state is closely analogous to topological

states of electronic systems exhibiting fractional quantum Hall effects, and they
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5.3 Non-adiabatic rotation frequency shift and Phase accumulation

report total ramp times of the order of miliseconds for small numbers of atoms

N ∼ 5. Moreover, the interferometric scheme can be modified in order to account

for non-perfect adiabaticity by including an additional waiting time at the criti-

cal frequency, thereby reducing the overall time that the interferometric scheme

takes to be performed. This modification is currently being researched and it will

be a central subject of future research.

5.3 Non-adiabatic rotation frequency shift and

Phase accumulation

After having nucleated the entangled state at the critical frequency, the next step

is to couple our BEC “probe” to the “test” system whose rotation rate ΩT we

want to measure. In order to do this, we would need to have a first good estimate

of the “test” system’s rotation frequency; thus, making our quantum strategy

to measure ΩT a refinement over the already known precision δΩT . Before we

nucleate the entangled state, we begin by tuning the harmonic trap frequency ω⊥

so that the resulting critical frequency Ωc is as close as possible to the estimate

ΩT . After this frequency matching, the condensate is adiabatically brought to the

critical frequency in order to generate the entangled state. Next, we transfer the

condensate onto the “test” system which possesses its own identical anisotropic

trap (same value of A) rotating with the “test” system at frequency ΩT . Alterna-

tively, we can think of the mechanism that rotates the anisotropic trap as being

switched off as the condensate plus the trap get transferred to the “test” system,

where the anisotropic trap couples to the rotating system and acquires the same

rotation rate ΩT . In either case, the net effect is that of the condensate now be-

ing trapped in an anisotropic potential which is rotating at frequency ΩT instead

of Ωc. Any small mismatch between ΩT and Ωc due to the initial uncertainty

δΩT produces a very fast (non-adiabatic) change of the condensate’s rotation fre-

quency from Ωc to ΩT . Consequently, the quantum state of the system right after

transferring the condensate to the “test” system is

|Ψ(Ωc)〉 −→ a(ΩT )|Ψ0(ΩT )〉+ b(ΩT )|Ψ1(ΩT )〉, (5.15)
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where |Ψ0(ΩT )〉 and |Ψ1(ΩT )〉 are the two lowest eigenstates of Ĥ at ΩT . We

assume that the mismatch between ΩT and Ωc is always small enough so that

the quick shift in rotation frequency produces a negligible population of higher

excited states and allows us to describe the many-body wave function as a two-

level system. This two-level requirement is an integral assumption of our proposed

interferometric scheme, and we made sure that in simulations we always operate

in a regime where it is satisfied. Once the condensate has been transferred to the

“test” system, we allow it to undergo a free time evolution in order to accumulate

a phase between the two eigenstates. After a waiting time τ , the quantum state

of the system is

|Ψ(ΩT )〉 = a(ΩT )e−iE0(ΩT )τ |Ψ0(ΩT )〉+ b(ΩT )e−iE1(ΩT )τ |Ψ1(ΩT )〉, (5.16)

where E0(ΩT ) and E1(ΩT ) are respectively the ground state and first excited state

energy at ΩT . We can see from this expression that the rotation frequency ΩT

has been intricately “encoded” into the final state |Ψ(ΩT )〉, as opposed to con-

ventional interferometric schemes where the parameter to be estimated is usually

encoded only in the phase between the basis states appearing in the superposi-

tion and not in the coefficients or the basis states themselves. Hence, we might

expect some of the usual intuition not to apply in our case. From here, we need

to devise a measurement scheme that allows us to extract the information about

ΩT contained in the quantum state represented by Eq.(5.16). Therefore, it is

important to find out the best precision possible with which ΩT can be estimated

from Eq.(5.16), regardless of the measurement scheme. As customary, we proceed

to calculate the quantum Fisher information FQ from Eq.(5.16).

In order to simplify the calculation and analysis of FQ, we rewrite Eq.(5.16)

in terms of a fixed basis {|Ψ0(Ω0)〉, |Ψ1(Ω0)〉}, which consists of the two lowest

eigenstates of Ĥ at the arbitrary rotation frequency Ω0. These eigenvectors do

not depend on ΩT by definition, and we assume that Ω0 is such that we can write

|Ψ0(ΩT )〉 and |Ψ1(ΩT )〉 in terms of these two levels only; this is always possible as

long as |Ψ(ΩT )〉 is also a two-level state. In this fixed basis, the state in Eq.(5.16)

can be expressed as

|Ψ(Ω)〉 = e−iE0(Ω)τ [a0(Ω)|Ψ0(Ω0)〉+ b0(Ω)|Ψ1(Ω0)〉]

+e−iE1(ΩT )τ [a1(Ω)|Ψ0(Ω0)〉+ b1(Ω)|Ψ1(Ω0)〉] , (5.17)
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where we wrote Ω instead of ΩT for notational convenience. We now use this ex-

pression to calculate the quantum Fisher information evaluated at the particular

rotation frequency Ω0. First we obtain the derivative of Eq.(5.17) with respect

to Ω

∂|Ψ(Ω)〉
∂Ω

∣∣∣∣
Ω0

=
[
(−iτ Ė0a0 + ȧ0)e−iE0τ + ḃ0e

−iE1τ
]
|Ψ0(Ω0)〉

+
[
(−iτ Ė1b1 + ḃ1)e−iE1τ + ȧ1e

−iE0τ
]
|Ψ1(Ω0)〉, (5.18)

where we have dropped the functional dependence with Ω for further clarity, and

we have used the fact that b0(Ω0) = a1(Ω0) = 0. Therefore, we have

〈Ψ′(Ω0)|Ψ′(Ω0)〉 =
∣∣∣−iτ Ė0a0 + ȧ0 + ḃ0e

−i∆E10τ
∣∣∣2 +

∣∣∣−iτ Ė1b1 + ḃ1 + ȧ1e
i∆E10τ

∣∣∣2 ,
(5.19)

where ∆E10 = E1 − E0. Now, using Eq.(5.18), we obtain

|〈Ψ′(Ω0)|Ψ(Ω0)〉|2 =
∣∣∣(−iτ Ė0a0 + ȧ0)a∗0 + (−iτ Ė1b1 + ḃ1)b∗1

+a∗0ḃ0e
−i∆E10τ + b∗1ȧ1e

i∆E10τ
∣∣∣2 . (5.20)

Finally, combining Eq.(5.19) and Eq.(5.20), the quantum Fisher information is

given by

1

4
FQ [|Ψ(Ω0)〉] =

∣∣∣−iτ Ė0a0 + ȧ0

∣∣∣2 |b1|2 +
∣∣∣−iτ Ė1b1 + ḃ1

∣∣∣2 |a0|2

−
∣∣∣a∗0ḃ0e

−i∆E10τ + b∗1ȧ1e
i∆E10τ

∣∣∣2
+ |ȧ1|2 + |ḃ0|2 +Q(Ω0; τ), (5.21)

where

Q(Ω0; τ) = 2Re
{(
−iτ Ė0a0 + ȧ0

)
ḃ∗0e

i∆E10τ +
(
−iτ Ė1b1 + ḃ1

)∗
ȧ1e

i∆E10τ

−
(
a0ḃ
∗
0e
i∆E10τ + b1ȧ

∗
1e
−i∆E10τ

)(
−iτ Ė0a0 + ȧ0

)
a∗0

−
(
a0ḃ
∗
0e
i∆E10τ + b1ȧ

∗
1e
−i∆E10τ

)(
−iτ Ė1b1 + ḃ1

)
b∗1

−
(
ȧ∗0 + iτ Ė0a

∗
0

)(
−iτ Ė1b1 + ḃ1

)
a0b
∗
1

}
. (5.22)

Ideally, we would like to numerically study the coefficients a0, a1, b0, b1 and

their derivatives in order to find the optimal set of parameters of the system such
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as g, A or γ, that maximise FQ in Eq.(5.21). However, this task is quite involved

and very demanding in computational terms, thus it was impractical to pursue it

with our current computational facilities. Nevertheless, we heuristically studied

the Fisher information in Eq.(5.21) for an educated selection of parameters for

which we expected to observe sub-shot-noise signature in our proposed interfer-

ometric scheme, guided by the theoretical and numerical evidence we previously

gathered. The heuristic approach starts with studying the functional dependence

of the Fisher information in Eq.(5.21) with the waiting time τ . This expression

is of the form

Ãτ 2 + B̃τ + C̃ + (D̃τ + Ẽ) sin (∆E10τ) + (F̃ τ + G̃) cos (∆E10τ), (5.23)

where the set of coefficients {Ã, B̃, . . . G̃} depends in general on N, g,A, γ and

Ω0. This expression is a parabola in τ with oscillations superimposed on it,

coming from the sine and cosine terms, and the amplitude of the oscillations

increases with τ . This functional dependence lends itself to consider two different

regimes for its study; the regime of long waiting times where the quadratic term

in Eq.(5.23) is the leading term and the oscillations become less relevant for the

determination of the Fisher information, and the regime of short waiting times,

for which the oscillations play an important role in the exact determination of

the Fisher information and its scaling with N . We study these two regimes in

the following sections.

5.3.1 Long waiting time regime

We now focus on the regime of long waiting times where the expression for FQ

greatly simplifies. For large τ , determined by the relative magnitude of Ã com-

pared to those of D̃ and F̃ , the order of magnitude of FQ in Eq.(5.21) is given by

the leading term aτ 2, which after some algebra can be shown to be

FQ [|Ψ(Ω0)〉; τ � 1] = 4
(
|b1(Ω0)|2 − |b1(Ω0)|4

)( ∂(∆E10(Ω))

∂Ω

∣∣∣∣
Ω0

)2

τ 2. (5.24)

This expression is very handy since it allows us to approximately calculate FQ

for large τ without actually needing to simulate a time evolution, which can take
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up to 26 hours per simulated second for N = 10 and two Landau levels using a

standard double-core PC. We only need to simulate the diabatic frequency shift

in order to obtain |b1(Ω0)|2, which is the probability amplitude of the condensate

being in the first excited state at frequency Ω0. The simulation time for the

diabatic jump is typically of the order of minutes for N ≤ 14. We now present

results using Eq.(5.24) for large τ . In the next section, we present results for the

other regime of small waiting times where a full numerical calculation was used

to obtain FQ.

We have numerically calculated the final many-body state of the system

right after a different number of values of the diabatic frequency shift for N =

6, 8, . . . 14. Since it is necessary to remain in a two-level approximation for

Eq.(5.24) to be valid, we have estimated the largest frequency shift Ωmax com-

patible with this requirement simultaneously for all N ≤ 14, using the same

rotation frequency gradient γ = 0.46× 102. Thus, all calculations were done for

frequency shifts below Ωmax. This maximum value for the frequency shift depends

on g, but it is of the order of 3 × 10−3 for all cases considered here. Also, we

have checked that the resulting FQ [|Ψ(Ω)〉; τ � 1] has approximately the same

value for all rotation frequency rates γ ≥ 0.46× 10−2. Below this value, the dy-

namics of the system enters the adiabatic regime, greatly reducing |b1(Ω)|2 and

consequently the Fisher information as calculated from Eq.(5.24). Additionally,

instead of diabatically shifting away from the critical frequency Ωc, we do it from

the rotation frequency corresponding to the avoided crossing Ωmin. This is due

to the fact that ∂(∆E10(Ωmin))/∂Ω = 0, meaning that shifting away from Ωc to

a rotation frequency which is very close to Ωmin results in a rotation frequency

precision that increases without bound as the frequency shift is closer to Ωmin.

The resulting discontinuity in 1/
√
FQ at Ωmin also means that Ãτ 2 is no longer

the leading term in Eq.(5.21) for nearby frequencies, except for extremely long

waiting times. Nevertheless, since Ωmin is extremely close to Ωc, the entangled

states at these two rotation frequencies are almost identical; as a result, the Fisher

information has the same values for all the considered frequency shifts, except

near the discontinuity, where shifting away from Ωmin produces a larger value of

the Fisher information and consequently a smaller lower bound for the precision

of the rotation frequency.
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Before presenting the numerical results , it is convenient to make a remark

about the Heisenberg and Standard Quantum limits in this context. Since the

parameter we want to estimate is not a dimensionless phase, but rather a rotation

rate which has units that can be scaled, benchmarking against a perfect N00N

state does not necessarily mean comparing the rotation rate precision to 1/N as

it would be done for phase precision. In order to establish the benchmark for the

best possible precision using a perfect N00N state, we compare against the state

obtained as

|N, 0〉 → QBS → Free Time Evolution τ → 1√
2

(
|N, 0〉+ e−iN∆E(sp)(Ω)τ |0, N〉

)
,

(5.25)

where the two modes correspond to the two lowest single-particle energy levels

ψm=0 and ψm=1, ∆E(sp)(Ω) is the corresponding energy gap between these two

levels, QBS is a quantum beam splitter operation described in chapter 2, which

transforms |N, 0〉 into a N00N state superposition, and the free time evolution is

done taking g = 0 so that |N, 0〉 and |0, N〉 are eigenstates of the Hamiltonian

with energies NEm=0 and NEm=1 respectively. Therefore, the rotation frequency

precision for Eq.(5.25) is given by

∆Ω ≥ 1

τN
∣∣∣∂(∆E(sp))

∂Ω

∣∣∣ =
1

τN
, (5.26)

since
∣∣∂(∆E(sp))/∂Ω

∣∣ = 1 for all Ω ≤ 1, as readily obtained from Eq.(3.35). This

is our benchmark for Heisenberg-limited precision. In the same way, if we think

of N independent particles in mode ψm=0 passing through a normal beam splitter

and then picking up a phase as a result of a free time evolution with g = 0, the

resulting precision for these unentangled particles can be shown to be

∆Ω ≥ 1

τ
√
N
. (5.27)

This is the standard quantum limit for a measurement of Ω in our case. For

comparison purposes, we have taken τ = 1 in Eqs.(5.27),(5.25) and (5.24) for all

cases.

We first present results for the case g = (6/N)× 1.0. As we saw in chapter 4,

this regime corresponds to N00N -like entangled states at the critical frequency.
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The interferometric scheme was designed in such a way that we expected to ob-

serve sub-shot noise behavior for this regime at the very least. We show the

obtained lower bound for the rotation frequency precision and the relevant quan-

tities that determine the Fisher information from Eq.(5.24) in Figs.(5.6) and (5.7).

We found that the best possible rotation frequency precision for any frequency

shift in the range [−3.9 × 10−3,−8.0 × 10−4] nearly saturates the Heisenberg

limit for all N ≤ 14. This means that any initial rotation frequency mismatch

between the “test” system and the condensate “probe” in this interval can be

measured with sub-shot noise precision for any number of atoms N ≤ 14. For

smaller diabatic frequency jumps than ×10−5, we progressively lose sub-shot noise

sensitivity, the smaller number of atoms being the first to lose it.

In contrast, the bat-like regime with g = (6/N) × 0.4 does not show any

sub-shot noise behavior at all as can be seen in Fig. (5.9). These results are not

promising for quantum enhanced metrology using this scheme. Nevertheless, it

will be shown in the next section that sub-shot noise behavior is achieved in the

opposite regime of small waiting times under certain circumstances. In view of

these results, it is natural to consider the case which is halfway between the bat-

like state and the N00N -like one. We show the numeric results for this case with

g = (6/N) × 0.7 in Figs.(5.10) and (5.11). This time we recover sub-shot noise

behavior for all N ≤ 14 in a smaller frequency window [−2× 10−3,−1.2× 10−3].

Again, above −1.2 × 10−3, the sub-shot noise behavior progressively disappears

and it is completely lost for all N ≤ 14 when the frequency shift is smaller than

−1.6×10−4. Even though the resulting precision is not as close to the Heisenberg

limit as in the N00N -like case, we have the added feature of the entangled state

having some bat-like character that makes it more robust to particle loss.

Finally, we consider the relevant case of fixing the interaction strength to the

same value for all numbers of atoms N ≤ 14. In this case, the actual form of

the entangled state varies with N . We chose a value of g = 0.42 which produces

a bat-like state for N = 6 and a N00N -like for N = 14. A smaller value than

g = 0.42 degrades the overall rotation frequency precision, whereas for a much

larger value we need more than two Landau levels in order to correctly describe

the condensates with larger numbers of particles. Although we are not comparing

like with like when it comes to the scaling of Fisher information, we still observe
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sub-shot noise behavior as shown in Fig. (5.13). This parameter regime of g

fixed can be of interest in experiments because we do not need to know the exact

number of atoms in the condensate in order to tune the interaction strength to

obtain sub-shot noise behavior.

In the following section, we study the opposite regime of short waiting times

which exhibits striking differences with the case that we have just analysed in

this section.
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Figure 5.6: Analysis of the factors determining the Fisher information in the

regime of τ � 1 using two Landau levels for g = (6/N)× 1.0 and γ = 0.46× 102

for all cases. (Top) Magnitude of the coefficient |b1(Ω)|2 in function of Ω, the

frequency shift measured from Ωmin, as obtained from projecting the evolved

state |Ψ(t)〉 onto the static first excited state after the diabatic frequency jump.

(Bottom) Gradient of the energy gap between the GS and the first excited state

as a function of the frequency shift. In both cases, the range of the frequency

shift has been calculated to be the maximum value of Ω for which the population

in the two lowest eigenstates of the many-body system remains larger than 0.99

for all N ≤ 14.
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Figure 5.7: Analysis of the quantum Fisher information in the regime of τ � 1

using two Landau levels for g = (6/N) × 1.0 and γ = 0.46 × 102 for all cases.

(Top) Lower bound for the precision of the frequency shift as a function of Ω,

given by the Crámer-Rao inequality. (Bottom) Scaling of the lower bound for the

precision of the frequency shift with number of atoms N for three different values

of the frequency shift across the considered range. The blue empty box data

corresponds to the maximum possible value of the frequency shift compatible

with a two-level approximation for all N ≤ 14. Notice the logarithmic scale for

this plot.
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Figure 5.8: Analysis of the factors determining the Fisher information in the

regime of τ � 1 using two Landau levels for g = (6/N)× 0.4 and γ = 0.46× 102

for all cases. (Top) Magnitude of the coefficient |b1(Ω)|2 in function of Ω, the

frequency shift measured from Ωmin, as obtained from projecting the evolved

state |Ψ(t)〉 onto the static first excited state after the diabatic frequency jump.

(Bottom) Gradient of the energy gap between the GS and the first excited state

as a function of the frequency shift. In both cases, the range of the frequency

shift has been calculated to be the maximum value of Ω for which the population

in the two lowest eigenstates of the many-body system remains larger than 0.99

for all N ≤ 14.
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Figure 5.9: Analysis of the quantum Fisher information in the regime of τ � 1

using two Landau levels for g = (6/N) × 0.4 and γ = 0.46 × 102 for all cases.

(Top) Lower bound for the precision of the frequency shift as a function of Ω,

given by the Crámer-Rao inequality. (Bottom) Scaling of the lower bound for the

precision of the frequency shift with number of atoms N for two different values

of the frequency shift across the considered range. The blue empty box data

corresponds to the maximum possible value of the frequency shift compatible

with a two-level approximation for all N ≤ 14.
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Figure 5.10: Analysis of the factors determining the Fisher information in the

regime of τ � 1 using two Landau levels for g = (6/N)× 0.7 and γ = 0.46× 102

for all cases. (Top) Magnitude of the coefficient |b1(Ω)|2 in function of Ω, the

frequency shift measured from Ωmin, as obtained from projecting the evolved

state |Ψ(t)〉 onto the static first excited state after the diabatic frequency jump.

(Bottom) Gradient of the energy gap between the GS and the first excited state

as a function of the frequency shift. In both cases, the range of the frequency

shift has been calculated to be the maximum value of Ω for which the population

in the two lowest eigenstates of the many-body system remains larger than 0.99

for all N ≤ 14.
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Figure 5.11: Analysis of the quantum Fisher information in the regime of τ � 1

using two Landau levels for g = (6/N) × 0.7 and γ = 0.46 × 102 for all cases.

(Top) Lower bound for the precision of the frequency shift as a function of Ω,

given by the Crámer-Rao inequality. (Bottom) Scaling of the lower bound for the

precision of the frequency shift with number of atoms N for three different values

of the frequency shift across the considered range. The blue empty box data

corresponds to the maximum possible value of the frequency shift compatible

with a two-level approximation for all N ≤ 14. Notice the logarithmic scale in

both plots.
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Figure 5.12: (Top) Magnitude of the coefficient |b1(Ω)|2 in function of Ω, the

frequency shift measured from Ωmin, as obtained from projecting the evolved

state |Ψ(t)〉 onto the static first excited state after the diabatic frequency jump.

(Bottom) Gradient of the energy gap between the GS and the first excited state

as a function of the frequency shift. In both cases, the range of the frequency

shift has been calculated to be the maximum value of Ω for which the population

in the two lowest eigenstates of the many-body system remains larger than 0.99

for all N ≤ 14.
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Figure 5.13: Analysis of the quantum Fisher information in the regime of τ � 1

using two Landau levels for a fixed value of g = 0.42 and γ = 0.46 × 102 for all

cases. (Top) Lower bound for the precision of the frequency shift as a function of

Ω, given by the Crámer-Rao inequality. (Bottom) Scaling of the lower bound for

the precision of the frequency shift with number of atoms N for three different

values of the frequency shift across the considered range. The blue empty box

data corresponds to the maximum possible value of the frequency shift compatible

with a two-level approximation for all N ≤ 14. Notice the logarithmic scale in

both plots.
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5.3.2 Short waiting time regime

Now we turn to the case of short waiting times. In this case we calculate the

quantum Fisher information by performing a full numerical evaluation using

FQ [|Ψ(Ω0; τ)〉] = 4
[
〈Ψ′(Ω0; τ)|Ψ′(Ω0; τ)〉 − |〈Ψ′(Ω0; τ)|Ψ(Ω0; τ)〉|2

]
, (5.28)

where the state |Ψ(Ω0; τ)〉 is obtained as

|Ψ(Ωmin)〉 → Frequency Shift
to Ω0

→ |Ψ(Ω0; τ = 0)〉 → Free Time
Evolution

→ |Ψ(Ω0; τ)〉,

(5.29)

and its derivative approximated as

|Ψ′(Ω0; τ)〉 ≈ |Ψ(Ω0 + δΩ; τ)〉 − |Ψ(Ω0; τ)〉
δΩ

. (5.30)

The value of δΩ = 1 × 10−5 has been fixed in simulations in order to ensure

convergence of the approximation to the derivative within numeric precision. Due

to computational constraints, we have restricted the simulations to waiting times

of 2400 units for N = 6, 1200 for both N = 8 and N = 10, and only 10 units

for N > 10. Nevertheless, these simulations provide sufficient evidence to assess

the suitability of the system for sub-shot noise behavior in the short waiting time

regime.

The first thing we address using the full numerical calculation is the estimation

of the order of magnitude of τL for which the long waiting time regime is reached.

In order to estimate τL, we found a best fit for the Fisher information using the

functional form of Eq.(5.23), after which the fractional error of approximating

FQ with Eq.(5.24) was calculated, defining τL as the waiting time for which the

fractional error is ∼ 5%. For this purpose, we focused on two different values

of the rotation frequency shift. The first one, ∆Ω = −3.0 × 10−3, for which the

two-level approximation ceases to be a good description below this value, and the

second one ∆Ω = −3.0×10−4, which represents exceedingly small frequency shifts

that would happen as a result of the “probe” system being almost on resonance

with respect to the “test” system. We show in Fig. (5.14) the Fisher information

as obtained from the full numerical calculations along with the best fit, and the
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fractional error of the quadratic approximation for the case of g = (6/N)× 0.44

and ∆Ω = −3 × 10−3. In this case, the long waiting time regime is reached

when τL > 5× 103(∼ 4 s) for ∆Ω = −3.0× 10−3, and τL > 6× 105(∼ 454 s) for

∆Ω = −3×10−4, where the time in seconds is calculated using ω⊥ = 2π×210 Hz.

The fact that τL increases as the frequency shift decreases can be understood as

a consequence of |b1(Ω)|2 and |∂(∆E)/∂Ω| becoming increasingly small as the

frequency shift is reduced. As a result, the magnitude of the quadratic term

in the Fisher information decreases, whereas the magnitude of the oscillations

remains of the same order. This means that τ needs to be larger in order for the

quadratic term to become the leading term in FQ.

In contrast, for g = (6/N) × 1.0, the long waiting time regime is reached

when τL > 35(∼ 26 ms) for ∆Ω = −3.0 × 10−3, and τL > 4 × 104(∼ 30 s) for

∆Ω = −3×10−4. Therefore, the long waiting time regime is reached faster as the

interaction strength is increased. These results show that it takes a prohibitively

long time to reach the results of the previous section when the frequency shift is

very small. However, we see that for an interaction strength of g ∼ (6/N), we

should be able to obtain sub-shot noise behavior for very small waiting times and

for a wider range of frequency shifts as opposed to the case of very small g. Clearly,

these results and the fact that we do not observe sub-shot noise behavior for bat-

like states in the long waiting time regime are not very promising and prompt

us to investigate the features of the system in the opposite regime. Fortunately,

as we will shortly see, we obtain very promising results in the regime of short

waiting times.

For waiting times much shorter than τL, the oscillations of the Fisher informa-

tion as a function of the waiting time become more important for the determina-

tion of FQ, and due to the fact that the frequency of the oscillations changes with

N , the scaling of the Fisher information with N undergoes major fluctuations.

Surprisingly, as τ becomes exceedingly small, where the system enters a regime

for which FQ locally increases in a monotonic way before reaching its first local

maximum for all N , we observe sub-shot noise behavior for most configurations

previously considered in this section, particularly for those that did not produce

sub-shot noise results in the long waiting time regime.
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Figure 5.14: Full numeric calculation of the Fisher information for g = (6/N)×
0.44 and a frequency shift of ∆Ω = −3 × 103. The value γ = 0.46 × 102 was

used for all cases. (Top) The discrete symbols represent the actual results of a

full numeric evaluation of the Fisher information, whereas the solid, dotted and

dashed lines represent the best fit for the numeric results using the functional

form of Eq.(5.23) . (Bottom) The fractional error of approximating the Fisher in-

formation as obtained from the best fit F
(fit)
Q with the quadratic term in Eq.(5.24),

F
(τ�1)
Q . Where Ea = |F (fit)

Q − F (τ�1)
Q |/F (fit)

Q
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Figure 5.15: Full numeric calculation of the scaling of the lower bound for the ro-

tation frequency precision with N for a different number of interaction strengths.

The waiting time for the three sets of data is τ = 10 and γ = 0.46 × 102 for

both panels. Also, the value of 1/
√
FQ has been multiplied by τ (10 units in

this case) for all sets of data for comparison purposes with the Heisenberg and

the standard quantum limit. (Top) Rotation frequency precision for a frequency

shift of ∆Ω = −3×10−5 . (Bottom) Rotation frequency precision for a frequency

shift of ∆Ω = −3× 10−2.
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Figure 5.16: Full numeric calculation of the scaling of the lower bound for the

rotation frequency precision with N for a different number of waiting times. The

interaction strength is g = (6/N)×0.44 and γ = 0.46×102 for both panels. Also,

the value of 1/
√
FQ has been multiplied by τ for all sets of data for comparison

purposes with the Heisenberg and the standard quantum limit. (Top) Rotation

frequency precision for a frequency shift of ∆Ω = −3×10−3 . (Bottom) Rotation

frequency precision for a frequency shift of ∆Ω = −3× 10−4.
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In general, we found that for τ ≈ 10, quantum-limited precision is obtained for

values of the interaction strength ranging from g = (6/N)× 0.44 to (6/N)× 1.0,

and for a wide selection of different frequency shifts; these results are shown in

Fig. (5.15). We only show results for the smallest and the largest frequency shift

considered, ∆Ω = −3 × 10−5 and ∆Ω = −3 × 10−2 respectively. Nonetheless,

we also calculated the Fisher information for two intermediate frequency shifts

of ∆Ω = −3 × 10−4 and ∆Ω = −3 × 10−3, obtaining identical results as those

shown in Fig. (5.15). We have used γ = 0.46× 102 to obtain these results but we

have checked that identical outcomes are obtained for γ ≥ 0.46 × 10−2. Notice,

also, that we were able to calculate the precision of rotation measurements for

frequency shifts as large as ∼ −3×10−2, for which the population of higher states

after the diabatic jump is not negligible, due to the fact that we are performing a

full numeric calculation and hence, it does not rely on any two-level assumption.

Although we have not been able to calculate the Fisher information for N >

14, we surmise from the plots that the quantum-limited precision remains present

even for condensates with a large number of atoms N � 14 for g = (6/N)× 1.0.

As the interaction strength is reduced to values of g ∼ (6/N)× 0.44, the scaling

curve departs from 1/N and eventually meets the SQL one 1/
√
N for a certain

maximum value of N . Thus, the sub-shot noise behavior is limited to a certain

number of atoms depending on the exact form of the entangled state. The fact

that the scaling curve for the Bat state in the long waiting time regime has a

parabola shape, might indicate that in the short waiting time regime the scaling

curve is also a wider parabola that continuously transforms into a narrower one

as τ approaches τL, although we have not been able to prove this.

As τ increases the sub-shot noise behavior starts to degrade in different de-

grees depending on the exact value of the interaction strength. We show in

Fig. (5.16) the case of g = (6/N)×0.44 for different short waiting times to depict

this feature. It is important to know how long we can sustain sub-shot noise be-

havior for in the short waiting time regime in order to find the sensitivity of the

scheme to inaccuracies in timing. Currently, this subject is under more detailed

consideration and is an avenue for future research.

Remarkably, for a fixed number of particles and interaction strength, the

magnitude of the Fisher information is almost independent of the frequency shift.
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This can be understood in terms of the numeric approximation to FQ as calculated

using Eqs.(5.28), (5.29) and (5.30), which can be expressed as

FQ [|Ψ(Ω0; τ)〉] ≈ 4

(δΩ)2

[
1− |〈Ψ(Ω0; τ)|Ψ(Ω0 + δΩ; τ)〉|2

]
, (5.31)

for δΩ� 1.

When we perform a very fast diabatic frequency shift from Ωmin to Ω0 followed

by a free evolution with a small waiting time of τ ≈ 10, the overlap between

|Ψ(Ωmin)〉 and |Ψ(Ω0)〉 is very large because the state has hardly any time to

change and the small waiting time does not make a substantial difference either.

Thus, as a consequence of |Ψ(Ω0)〉 and |Ψ(Ω0 + δΩ)〉 not being very different

from |Ψ(Ωmin)〉 for a very quick frequency shift as used in the simulations (γ =

0.46 × 102), their overlap is large and hardly depends on the actual value of

Ω0. Consequently, FQ from Eq.(5.31) is also approximately independent of the

frequency shift and its value is a small fraction of 4/(δΩ)2. In a realistic scenario,

however, it is unlikely that large constant values of γ can be achieved for large

values of the frequency shift; therefore, these results will be limited to a certain

frequency shift range in experiments.

On the other hand, we see from Eq.(5.31) that the Fisher information can be

vastly increased if the overlap 〈Ψ(Ω0; τ)|Ψ(Ω0 + δΩ; τ)〉 is reduced. This can be

achieved by performing the frequency shift nearly adiabatically and close to the

avoided crossing where the static ground state changes very rapidly with Ω. We

have been able to observe this vast improvement in preliminary simulations and

it is currently the basis of future research.

5.4 Conclusions

We have presented a promising interferometric scheme which enables us to en-

gineer a range of entangled states from bat-like to N00N-like ones and obtain

sub-shot noise precision for rotation measurements. The tunability of these states

is easily achieved using Feshbach resonances to change the magnitude of the in-

teraction strength between atoms. In a general way, the presented part of the

scheme consists of three main steps. The first one is an adiabatic ramping of the
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rotation frequency to bring the condensate to a critical frequency Ωc, where the

ground state is a highly entangled one. We analyzed the feasibility of this process

and concluded that, with proper optimisation, a practical implementation should

be possible for small numbers of atoms N ∼ 10. In fact, this adiabatic ramping

has been already demonstrated for N ∼ 5 by (Gemelke & Chu, 2010). However,

it might be very challenging to create N00N states due to the long nucleation

times compared with the typical lifetime of condensates. Nevertheless, our recent

results show that even for a non-perfect adiabatic nucleation, we are still able to

get quantum enhancement for rotation measurements with a slight modification

to our scheme. As a second step, the adiabatic nucleation is followed by a fast

diabatic frequency shift which represents the coupling of our BEC “probe” with

the “test” system. Then, a third step consists of a free evolution for a waiting

time τ . Right after the free time evolution, the quantum Fisher information

was calculated in order to assess the quantum enhancement in precision for the

scheme.

Remarkably, we found sub-shot noise behavior for all the possible entangled

states that can be produced with this scheme for waiting times of τ ∼ 10(∼ 8 ms).

This enhancement is also independent of the magnitude of the frequency shift

for a constant angular acceleration of γ ≥ 0.46 × 10−3. For bat states with

g = (6/N)× 0.44, the sub-shot noise behavior is limited to a maximum number

of atoms N ∼ 14, whereas for a N00N state with g = (6/N) × 1.0, it does not

seem to be limited to a certain maximum value of N . As τ increases, the quantum

enhancement is degraded in different degrees depending on the exact form of the

entangled state. Again, the N00N state preserves the sub-shot noise behavior

for long waiting times, whereas the bat state completely loses it. From here, an

optimal read-out scheme needs to be engineered in order to reach the lower bound

predicted by our results, and it will be addressed in future research.

In short, a promising set-up for the interferometric scheme was found for

which quantum-limited precision can be achieved for a range of entangled states

from bat states which are robust against particle losses to N00N ones which

achieve the highest precision. Finally, we showed that the set-up is amenable for

experimental investigation and within reach of current technologies.
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Chapter 6

Conclusions

In this chapter, we review the main results of the thesis in a compact and concise

manner. Also, we discuss the ideas for future work, avenues of investigation, and

some thoughts about improvements over our original ideas.

6.1 Summary

We started off by reviewing the concept of an interferometer and the ideas be-

hind performing measurements in quantum physics in chapter 2. We introduced

the concept of quantum Fisher information, which is a standard tool in quantum

metrology that allows one to estimate the best precision possible in the measure-

ment of an unknown parameter which is encoded in a particular quantum system

using the Crámer-Rao inequality. This lower bound for the precision is inde-

pendent of the measurement scheme, and theoretically, it is always possible to

saturate the bound using a particular optimal read-out scheme, although finding

such scheme is usually a difficult problem. Nevertheless, the lower bound that

the Crámer-Rao inequality imposes, allows us to solely focus on optimizing the

input state to an interferometer in order to attain the best performance that the

interferometer is capable of, regardless of the details of the measurement process.

Calculating the quantum Fisher information, we saw that the best precision

possible for measuring a linear phase with N unentangled particles scales as

∆φ ∼ 1/
√
N , which is known as the shot-noise limit or the standard quantum

limit of interferometry. This scaling is actually a pure statistical consequence of
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classical random processes, as can be seen by invoking the central limit theorem.

On the other hand, when the N particles are in a coherent N00N superposition or

“cat” state, which can be regarded as a maximally entangled state, the precision

scales as ∆φ ∼ 1/N , which is a massive 1/
√
N improvement over the unentan-

gled case. This is the Heisenberg limit, which is believed to be the ultimate

precision attainable by any linear interferometric scheme. In general, whenever

the input state has some quantum correlations, it has the potential to show some

improvement in phase precision over the unentangled case.

We then took a look at the details of particular interferometric schemes to

produce some very well-known entangled states in the literature. In particular,

the “bat” state was introduced, which was shown to attain nearly Heisenberg

limited precision for large N . As opposed to N00N states, the bat state performs

much better in realistic scenarios thanks to its robustness against particle losses.

Whereas for a N00N state, the knowledge of the whereabouts of a single particle

betrays the state in which the rest of them are, collapsing the wave function and

destroying the entanglement, the large number variation in the bat state with

particles distributed in different configurations over the two modes does not allow

to obtain the which-way information of all the other particles when one particle

is lost. Therefore, the bat state is better suited for practical implementations.

6.1.1 Main results

We introduced the system studied in this thesis in chapter 3, which is that of

N bosons in a two-dimensional harmonic trap interacting through a contact po-

tential whose strength is characterised by the dimensionless constant g. The N

particles are set in rotation by with the aid of a rotating anisotropic trap whose

strength is measured by A� 1.

In contrast to a classical fluid, a Bose–Einstein condensate does not acquire

angular momentum when stirred until it reaches a particular rotation frequency

Ω1, where a single quantized vortex is nucleated, and the system suddenly ac-

quires N~ units of angular momentum. When A = 0, the rotation frequency

Ω1 corresponds to the first energy crossing of the ground state, which has a

(N/2 + 1)-fold degeneracy. Then, the inclusion of a small anisotropy A� 1 lifts
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the degeneracy, introducing a gap between the ground state and excited states, as

well as an avoided crossing at the critical frequency Ωc, which is roughly located

at Ωc ≈ Ω1 + A. Below this critical frequency, the ground state does not rotate

and the macroscopic density profile shows a well localised peak at the centre of

the trap, whereas above it, the ground state is a single vortex involving all the

particles and the macroscopic density shows a sharp dip in the centre of the trap

corresponding to the position of the vortex. Because the system always remains

in the ground state, it must experience an abrupt symmetry-breaking change as

it transits across the avoided crossing. As a consequence, the SPDM has two

large eigenvalues at rotation frequencies close to Ωc, corresponding to a macro-

scopic occupation of the two single-particle modes by all the bosons. Right at the

critical frequency, these two modes have equal populations, heralding a failure of

the mean-field description of the system, which in turn implies the existence of

quantum correlations and entanglement between the particles. Notably, the form

of the entangled state at Ωc closely resembles the bat state which was introduced

in chapter 2.

This symmetry-breaking process and the resulting entangled state at the

threshold of the first vortex nucleation were first studied by (Dagnino et al.,

2009a), where they relied on the assumption of the system being well described

by the lowest Landau level (LLL) approximation, which is valid in the case of

weak interactions, and allows for a simplified and more tractable description of the

rotating condensate. Under this assumption, the form of the entangled state and

its Fisher information are practically invariant under changes in the interaction

strength. However, the research carried out in this thesis has shown that these

two properties of the ground state at Ωc change dramatically when calculated

with a more precise approximation that includes two Landau levels.

Up to the best of our knowledge, this is the first time that the nucleation

of the first vortex in a non-axisymmetric rotating trap has been studied beyond

the LLL approximation. Our first novel contribution regards the validity of the

LLL approximation in this case. Within the two Landau level framework, we

have demonstrated that, unlike the case calculated with a LLL approximation,

the ground state at Ω1 is only doubly degenerate, and the inclusion of a small

anisotropy A � 1 has now a different consequence on the form of the entangled
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ground state depending on the particular value of g. For a given value of the in-

teraction strength g, there is a threshold value of the anisotropic strength Amin(g)

for which the entangled ground state has a N00N -like form when A < Amin(g).

This N00N -like form is in sharp contrast with the bat-like that is predicted by a

LLL calculation. An even bigger disagreement is found for the quantum Fisher

information as a function of Ω for these states. Whereas the bat state calculated

with the LLL approximation has a relatively broad frequency width, the N00N -

like state has a Fisher information width that is roughly two orders of magnitude

smaller than that of the bat state.

On the other hand, using two Landau levels, for a given value of g and a value

of the anisotropy A > Amin(g), we qualitatively recover the LLL approximation

results, i.e. a bat-like ground state and a broad Fisher information curve as a

function of Ω. The smaller the interaction strength, the better the agreement

with the LLL calculation. Particularly, for gN/6 ≈ 0.4 and A = 0.03, the error of

approximating the Fisher information using a LLL calculation is roughly of 10%

with respect to a two Landau level calculation; also, the width is only twice as

broad. A much better agreement with the LLL results is expected for values of

gN/6 < 0.4; however, a proper study of this requires a larger basis with higher

angular momentum states, since the ground state becomes very sensitive to the

inclusion of these states when g is very small and thus the critical frequency is

very close to the harmonic trap frequency.

In simpler terms, we have shown that, whereas the LLL approximation can

identify reasonably the critical frequency or be sufficient for the purpose of study-

ing symmetry breaking, it is vital to consider a larger basis that includes more

Landau levels in order to identify the details of the produced entangled state and

quantify the quantum Fisher information. As a consequence of this, a rich system

is revealed that offers interesting opportunities for engineering different entangled

states that range from bat-like to N00N -like.

Our second novel contribution is that of an interferometric scheme proposal

that takes advantage of these entangled states in order to achieve nearly Heisen-

berg limited precision for the measurement of rotations. We showed that, by

adiabatically increasing the rotation frequency from Ω0 � Ωc, where the system

is in the non-rotating ground state achieved by relaxation, all the way to Ωc and
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then performing a sudden rotation frequency shift to Ωc±∆Ω, where we finally let

the system evolve freely for a very short time τ ∼ 8 ms(when ω⊥ = 2π×210 Hz),

the lower bound for the precision of a measurement of ∆Ω is nearly Heisenberg

limited for the N00N -like state, and sub-shot noise limited for the bat-like state,

for all the numbers of particles that we were able to simulate (N ≤ 14). Remark-

ably, the precision is independent of ∆Ω, provided that the diabatic rotation

frequency jump is performed very quickly. This is interesting because it allows

to measure both small and large rotations with almost the same precision.

All the necessary requirements to realise a proof-of-principle experiment of this

proposal are within reach of current experimental technologies. Therefore, it is

important to find an optimal read-out scheme that allows us to take advantage of

the sub-shot noise precision in practice, before we test our ideas in the laboratory.

Needless to say, this is one of the main avenues of future research that we are

planning to pursue. In the next section, we discuss this idea and a few other ones

which constitute areas of research that branch out of our current work for future

consideration.

6.2 Future work

6.2.1 Read-out schemes

As it was mentioned before, it is necessary to find an optimal read-out scheme

that achieves the predicted sub-shot noise lower bound of the precision for our

interferometric scheme, before we can put our ideas to the experimental test. Al-

though it is always theoretically possible to find a measurement process that

saturates the lower bound given by the Crámer-Rao inequality for pure and

mixed two-dimensional systems using a two-stage adaptive measurement pro-

cedure (Barndorff-Nielsen & Gill, 2000; Luati, 2004), in practice it might prove

hard to realise it due to the fact that in general, only for rather special cases

will a measurement exist that attains the precision calculated with the Fisher

information for all values of the unknown parameter simultaneously. Also, there

are many practical obstacles which can greatly degrade the precision and thus

need to be circumvented, such as inefficiency in the detectors (Kim et al., 1999).
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Figure 6.1: Non-adiabatic nucleation of the entangled state at the avoided cross-

ing for the case of a N00N state. (Top) A non-adiabatic evolution of the system

populates both the ground state and the first excited state at the anticrossing,

where the system is allowed to evolve for a time τ . (Bottom) A fast rotation

frequency shift away from the anticrossing populates the states |N0〉 and |0N〉,
and the system undergoes another free evolution which imprints a phase between

these two eigenstates that is proportional to N .

Regarding this topic, we plan to investigate a possible read-out scheme that

consists of undoing all the operations performed prior to the free time evolution,

analogous to a standard Mach-Zender interferometer, to end up with the con-

densate in an accesible regime where we can measure the fraction of the atoms

rotating and not rotating, which are expected to reflect an interference patern

from which ∆Ω can be determined. Another idea that we would like to explore
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Figure 6.2: Fisher information obtained for two different angular acceleration

values for N = 6 particles. The Fisher information is calculated for the state

that results after shifting away the rotation frequency from the avoided crossing

by an amount of 0.003. The calculation is obtained with two Landau levels, the

interaction strength is gN/6 = 1, and the anisotropy A = 0.03.

in connection to the read-out procedure is the simulation of time-of-flight mea-

surements, which are the typical standard way to probe BECs in experiments

(Chevy et al., 2000; Cooper, 2008; Dagnino et al., 2009b; Fetter, 2009; Madison

et al., 2000a). We hope more ideas about how to measure the rotation shift can

be revealed by studying the common way people make measurements on BECs.

6.2.2 Sub-shot noise precision without adiabatic nucle-

ation of the entangled state

One of the most limiting features in our interferometric proposal is the need for

nucleating the entangled state via an adiabatic ramping of the rotation frequency.

As we saw in chapters 4 and 5, the energy gap between the ground state and the

first excited state at the avoided crossing is exceedingly small already for small

numbers of particles N ∼ 10, which means that the adiabatic nucleation can take

much longer than the lifetime of the condensate if the process is not optimized,

and thus the whole scheme becomes impractical.
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One possible way to circumvent this problem is by simply not insisting on

having a perfect adiabatic nucleation of the entangled state. To see how this

could work, consider the simplified picture of the nucleation of a cat state in

Fig. (6.1). When the ground state at the avoided crossing is a N00N state

(|N0〉+ |0N〉)/
√

2, the first excited state is orthogonal to it since they correspond

to different eigenstates of the Hamiltonian. Without loss of generality, assume

that the first excited state is (|N0〉 − |0N〉)/
√

2. Now, if we start with the system

in the ground state |N0〉 away from the anticrossing at Ω = Ωmin −∆Ω, a non-

adiabatic evolution resulting from the ramping of Ω up to the rotation frequency

of the avoided crossing will populate both the ground state and first excited state;

at this point the state of the condensate is given by

|Ψ(Ωmin)〉 =
a√
2

(|N0〉 − |0N〉) +
b√
2

(|N0〉+ |0N〉) . (6.1)

Now, instead of immediately shifting away from this rotation frequency, we let

the system evolve for a time τ at the avoided crossing, which introduces a phase

∆Eminτ between these two states. After this free evolution, we proceed as normal

with the fast rotation frequency shift and another free evolution at Ωmin − ∆Ω,

which in turn introduces another phase which can be thought as being equal to

Nφ for the N00N state. Up to this point, the condensate is in the state

|Ψ(Ωmin −∆Ω;φ)〉 =
1

2

[(
a+ be−i∆Eminτ

)
|N0〉+ eiNφ

(
be−i∆Eminτ − a

)
|0N〉

]
.

(6.2)

Straightforward calculation of the Fisher information for this state gives

FQ [|Ψ(Ωmin −∆Ω;φ)〉] = 4N2
(
|B|2 − |B|4

)
, (6.3)

where

|B|2 =
1

2

∣∣be−i∆Emin − a
∣∣2 =

1

2

(
1− 2Re{ab∗ei∆Eminτ}

)
. (6.4)

Thus, we see that in order to recover Heisenberg precision (FQ = N2), we can

choose a waiting time that satisfies ∆Eminτ = π/4 + θ, where θ is the argument

of the complex number ab∗. This means that the maximum waiting time that

might be needed to obtain Heisenberg limited precision is τ = 7π
4∆Emin

. According

to our calculations, for N = 12 particles, an energy gap of ∆Emin ≈ 0.0005,
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and ω⊥ = 2π × 210 Hz, the waiting time is about τ ∼ 8 s. Although this

time is still comparable to the typical lifetime of the condensate ∼ 16 s, it is

a massive improvement over the time that would take to adiabatically nucleate

the entangled state (without optimization) in this case, which is ∼ 105 s . In

spite of these results being calculated with a simplified model of the system

for a cat state, our preliminary calculations show that we obtain similar results

from the simulation of the full dynamics of the system. This is exciting from

an experimental point of view, and it has a high priority in our plans for future

research.

6.2.3 Non-linear phase accumulation

When an unknown parameter is encoded in a quantum system that has N con-

stituents and the Hamiltonian includes all the two-body interactions between

the constituents, the parameter can be in principle measured with precision that

scales as N3/2, even if the system is not initially entangled (Boixo et al., 2007;

Luis, 2004). Also, it has been shown that protocols which do not generate entan-

glement can lead to improvements over the 1/N scaling by means of the dynamics

alone (Boixo et al., 2008). Therefore, our system with its two-body contact in-

teractions and rich dynamics can lend itself to this type of enhancements. As a

matter of fact, we have observed that if the quick rotation frequency shift in our

interferometric scheme is performed rather slowly, we obtain a higher Fisher in-

formation for small waiting times after this frequency shift. A particular example

of this is shown in Fig. (6.2), where it can be observed that a Fisher informa-

tion greater than τ 2N2 is achieved for values of τ up to 10 units, which is an

improvement over the Heisenberg precision.

However, one must be careful not to misinterpret the amount of resources

required in order to obtain this precision and claim sub-Heisenberg scaling, as it

has been pointed out before (Zwierz et al., 2010). Nevertheless, it is theoretically

interesting to study this feature since the system offers the posibility of investi-

gating the role of the time that the constituents spend interacting as a “resource”

to achieve different scalings of the precision when the most important resource

often considered, the number of particles, is fixed.
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6.2.4 Decoherence factors

So far, we have mentioned that the bat-like state is more robust against particle

losses than the cat-like one, which is the result of research carried out for BECs

in ring geometries (Dunningham & Hallwood, 2006). However, the exact details

of this robustness for the present case of a BEC in a rotating anisotropic trap

are not known. Atoms lost in trapped BECs constitute one of the main relevant

decoherence factors for our interferometric scheme, due to the degradation of

the entanglement that it implies, and the fact that the exact critical frequency

depends on the number of atoms, as well as the order of the quantum phase

transition. In the near future, we would like to investigate the impact of three-

body recombination processes on the performance of the interferometer. Three-

body recombination is one of the main mechanisms responsible for the loss of

atoms in the trap, and occurs when three atoms collide, two of them forming a

molecule or dimer, and the released energy is carried away by the third atom,

resulting in the loss of the three atoms from the condensate since the dimer

generally ends up in an excited vibrational state, and the released energy is

usually much larger than the typical depth of the trap (Soding et al., 1999).

Another important decoherence mechanism has already been pointed out by

(Dagnino et al., 2009a), which is small second-order contributions of the laser

fields that make up the stirring potential. This perturbation breaks the parity

symmetry and connects terms in the Hamiltonian differing by one and three units

of angular momentum. As it was shown by Dagnino and colleagues, the inclusion

of a very small parity-breaking term has bold consequences on the features of the

system near criticality. For one thing, unlike the case with no parity-breaking

term, the energy gap at the avoided crossing closes as N increases, thus making

the adiabatic nucleation of the entangled state much more difficult to attain. At

the same time, the form of the entangled state changes and no longer resembles a

bat-like state in the LLL regime, which is a consequence of the two-mode model

not working as well as in the case with no parity-breaking term.

Due to the fact that even a very small parity-breaking perturbation can have

the consequences mentioned above, it is important to investigate its effect on the

performance of our interferometric scheme.
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6.2.5 Miscellaneous

Finally, we would like to briefly mention a couple more ideas that constitute

possible subjects for future research.

Being able to parallelise our code in order to speed up calculations and analyse

larger numbers of particles or include larger angular momentum states in the

basis would be very useful. Also, it could allow us to investigate ideas that were

impractical to test using our current computational facilities.

Also, it is evident that small variations in the initial conditions or small un-

certainties in parameters, such as the critical frequency or waiting times, can lead

to substantial changes in the outcome of our interferometric scheme. Therefore,

it is of interest to study the robustness of the scheme against these imperfections.

One last suggestion for the future concerns the study of entanglement tuning

via changes in the anisotropy of the trap while the interaction strength is kept

fixed. This is of great relevance from the experimental point of view, because

it allows the nucleation of bat states farther away from the centrifugal limit,

where dynamical instabilities can compromise the experiment. Moreover, tuning

entanglement in this way also serves to set the critical frequency by changing the

interaction strength without having to modify the frequency of the harmonic trap

ω⊥, which we want to be large so that nucleation times of entangled states are

short.
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Determination of the Matrix

Elements

A.1 The anisotropic term

First, we determine the matrix elements of the anisotropic term using the wave

functions of Eq.(3.34)

Vk1k2 = 〈ψk1| 2AMω2
xy(x

2 − y2) |ψk2〉 =

∫
ψ∗k1

(~x) 2AMω2
xy(x

2 − y2) ψk2(~x)d2~x

= C∗k1
Ck2

∫ 2π

0

∫ ∞
0

e−imk1
φR∗k1

(ρ, φ) 2AMω2
xyρ

2 cos (2φ) eimk2
φRk2(ρ, φ)ρdρdφ,

(A.1)

where we have used the trigonometric identity x2−y2 = ρ2 cos (2φ) and Ck is the

normalization constant of the wave function in Eq.(3.34). Next, we evaluate the

radial and angular integral separately

Vk1k2 = 2AMω2
xyC

∗
k1
Ck2

∫ 2π

0

ei(mk2
−mk1

)φ cos (2φ)dφ

∫ ∞
0

R∗k1
(ρ, φ)ρ2Rk2(ρ, φ)ρdρ.

(A.2)
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Defining t = mk2 −mk1 , the angular integral is∫ 2π

0

eitφ cos (2φ)dφ =

∫ 2π

0

cos (tφ) cos (2φ)dφ+ i

∫ 2π

0

sin (tφ) cos (2φ)dφ

=

∫ 2π

0

cos (tφ) cos (2φ)dφ

=

[(
φ

2
+

sin (4φ)

8

)
δ|t|,2 +

(
sin (t− 2)φ

2(t− 2)
+

sin (t+ 2)φ

2(t+ 2)

)
(1− δ|t|,2)

]2π

0

= πδ|t|,2 = πδmk2
,mk1

±2, (A.3)

where the sin (tφ) cos (2φ) integral is zero because its integrand is odd. On the

other hand, the radial integral can be expressed in a more convenient parameter-

free way by changing variables as ρ = ρ0x
1/2,∫ ∞

0

R∗k1
(ρ, φ)ρ2Rk2(ρ, φ)ρdρ =

∫ ∞
0

e
− ρ

2

ρ20 ρ|mk1
|+|mk2

|+3L
|mk1

|
nk1

(ρ2/ρ2
0)L

|mk2
|

nk2
(ρ2/ρ2

0)dρ

=
1

2
ρ
|mk1

|+|mk2
|+4

0 I1(k1,k2) (A.4)

where

I1(k1,k2) =

∫ ∞
0

e−xx
|mk1

|+|mk2
|+2

2 L
|mk1

|
nk1

(x)L
|mk2

|
nk2

(x)dx. (A.5)

This last integral does not have a closed form for general values of k1 and k2,

however, it fairly simplifies when nk1
′ = nk2

′ = 0, the so-called Lowest Landau

Level approximation. In this case I1 reduces to

I1(k1
′,k2

′) = Γ

(
|mk1 |+ |mk2 |+ 2

2
+ 1

)
. (A.6)

Finally, the anisotropic term in its second quantized form can be written as

V̂ =
∑
k1k2

Vk1k2a
†
k1
ak2

= 2AMω2
xy

∑
k1k2

C∗k1
Ck2

1

2
ρ
|mk1

|+|mk2
|+4

0 I1(k1,k2)π
(
δmk2

,mk1
±2

)
a†k1

ak2

= A~ωxy
∑
k1k2

√
nk1 !nk2 !

(nk1 + |mk1 |)!(nk2 + |mk2 |)!
I1(k1,k2)

(
δmk2

,mk1
±2

)
a†k1

ak2

(A.7)

where we have used ρ0 =
√

~
mω

.
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A.2 The interaction term

The matrix elements of the interaction term are given by

Uk1k2l1l2 =

∫ ∫
ψ∗k1

(~x1)ψ∗k2
(~x2)g

~2

M
δ(~x2 − ~x1)ψl1(~x1)ψl2(~x2)d2~x1d

2~x2

= g
~2

M
C∗k1

C∗k2
Cl1Cl2

∫ 2π

0

∫ ∞
0

ei(ml2
+ml1

−mk1
−mk2

)φR∗k1
(ρ)R∗k2

(ρ)Rl1(ρ)Rl2(ρ)ρdρdφ.

(A.8)

The angular integral is very easy to calculate and results in∫ 2π

0

ei(ml2
+ml1

−mk1
−mk2

)φdφ = 2πδmk1
+mk2

,ml1
+ml2

. (A.9)

Again, the radial integral can be conveniently expressed as a parameter-free ex-

pression using ρ = ρ0(x/2)1/2,∫ ∞
0

R∗k1
(ρ)R∗k2

(ρ)Rl1(ρ)Rl2(ρ)ρdρ =

(
1

2

)∑
|mt|+4
2

ρ
∑
|mt|+2

0 I2(k1,k2, l1, l2),

(A.10)

where
∑
|mt| = |mk1 |+ |mk2 |+ |ml1 |+ |ml2| and

I2(k1,k2, l1, l2) =

∫ ∞
0

e−xx
∑

|mt|
2 L

|mk1
|

nk1
(
x

2
)L
|mk2

|
nk2

(
x

2
)L
|ml1

|
nl1

(
x

2
)L
|ml2

|
nl2

(
x

2
)dx.

(A.11)

This last integral, just as in the case of the anisotropic term, does not have a

closed form except for the case of the Lowest Landau Level approximation for

which nk1
′ = nk2

′ = nl1
′ = nl2

′ = 0, in such case I2 reduces to

I2(k1
′,k2

′, l1
′, l2

′) = Γ

(
|mk1

′|+ |mk2
′|+ |ml1

′ |+ |ml2
′ |

2
+ 1

)
. (A.12)

Consequently, the quantized interaction term reads

Û =
1

2

∑
k1k2

∑
l1l2

Uk1k2l1l2 â
†
k1
â†k2

âl1 âl2

=
g~ωxy

4π

∑
k1k2

∑
l1l2

1

2
∑

|mt|
2

√∏
t

nt!

(nt + |mt|)!
I2(k1,k2, l1, l2)δmk1

+mk2
,ml1

+ml2
â†k1

â†k2
âl1 âl2 ,

(A.13)
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where∏
t

nt!

(nt + |mt|)!
=

nk1 !nk2 !nl1 !nl2 !

(nk1 + |mk1 |)!(nk2 + |mk2 |)!(nl1 + |ml1 |)!(nl2 + |ml2 |)!
.

(A.14)
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