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Abstract

Veiko Palge “Relativistic entanglement of single and two particle systems”, Ph.D.
thesis, University of Leeds, May 2013.

One of the defining features of quantum theory is entanglement, the notion that
quantum systems can display correlations that are impossible from the classical
point of view. In quantum information theory entanglement has come to be recog-
nised as a physical resource that enables new technologies that perform informa-
tion processing tasks which are beyond the limits of the classical realm. It has been
realised only recently that entanglement is dependent on the frame of reference in
both inertial and accelerated systems. In this thesis, we investigate the relativistic
entanglement of massive spin-1/2 particles in inertial frames by focussing on the
dependence of entanglement on the geometry of the underlying boost scenario. We
first explore the ‘qubit’ of the relativistic setting: a single particle with spin and mo-
mentum, with momentum given by a Gaussian distribution. We study the system
in a variety of different boost scenarios, analysing the behaviour of entanglement
from a geometric point of view. The spin-spin entanglement of two particle systems
is then surveyed for many different discrete product and entangled momenta, with
the spins in the Werner state. We also extend the analysis to continuous momen-
tum states and study them in a variety of geometries. The results obtained from
the analysis of discrete states are applied to continuous states, leading to a better
understanding of the behaviour of entanglement. We lastly discuss the common
view according to which Lorentz boosts leave the total entanglement of the state
invariant.
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Chapter1
Introduction

Quantum mechanics and relativity were born around the same time at the begin-

ning of 20th century. They changed the perception of the world around us in dif-

ferent but equally disturbing ways. Relativity teaches us that the Newtonian pre-

conceptions so deeply ingrained in our everyday views of time and space are at

odds with the deeper structure of spacetime. Quantum theory tells a story that

seems even more peculiar: the behaviour of objects at very small scales does not

fit the framework of any classical theory, exhibiting the peculiar phenomena of su-

perposition and entanglement [1–4, 12]. The quantum world seems to tell us that

the description of nature at microscopic scales implies an overhaul of our classical

notions of logic and probability theory is needed [5, 6, 13]. The rise of quantum

information theory made physicists realise that in addition to fundamental signif-

icance, the quantum weirdness also has practical utility. Entangled systems are at

the heart of a whole range of classically impossible communication protocols and

they give quantum computer its speed.

1.1 Relativistic quantum information

Although questions about the relationship between quantum theory and relativ-

ity had been raised early on, it is since the end of 1990s that one can discern an

increasing number of works focussing on topics concerning relativistic quantum

information. We can divide them into two groups according to whether one deals

with inertial or accelerated frames.

That inertial frames in relativity pose challenges for quantum information that

are not present in Galilean space-time was recognised in [14], which considered

the relativistic version of the famous Einstein-Podolsky-Rosen-Bohm experiment
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with massive spin-1/2 particles. It argued that the degree of violation of the Bell

inequality is dependent on the velocity of the particles, leading to implications for

quantum cryptography. Soon afterwards, the authors of [15, 16] reach the conclu-

sion that the entanglement of a Bell state depends on velocity of an observer, while

in [17] it is stated that it remains invariant if momenta are given by plane wave

states. Almost simultaneously it is demonstrated in [18] that the entropy of a sin-

gle massive spin-1/2 particle changes non-trivially under Lorentz boosts. Massless

particles were considered in [16, 19] and shown to undergo qualitatively similar

non-trivial transformations, while in [20] a single massless particle was claimed to

retain its linear polarisation for a moving observer.

These works, along with others, belong to the literature that established the field

and paved way for a great many papers that have raised a number of different

issues. Questions range from clock synchronisation [21] and distillability [22] to

whether or not one can define a Lorentz-covariant reduced spin density matrix for

single particles [23–25]. The EPR situation has been revisited a number of times [26–

28]. The maps that Lorentz transformations induce on spins have also been studied

from the point of view of open quantum systems [29], as well as in the context

of entanglement generation [30]. Links have been explored to the phenomena of

decoherence and sudden death of entanglement [31–33]. As a natural extension of

bipartite entanglement, there are now also studies into tripartite entanglement [34–

36]. Discussion of massless particles in the context of quantum information can be

found in [37–43]. It is intriguing that one can find similarities between relativistic

phenomena and Berry’s phase [37].

Systems in accelerated frames introduce an even higher level of complexity,

while also showing non-trivial changes of entanglement [44–47]. Various quantum

communication tasks, including key distribution and teleportation have been stud-

ied in noninertial frames and in the vicinity of black holes [48–51]. Recent studies

have focussed on localised systems and investigated entanglement generation, and

even the prospect of creating quantum gates through non-uniform motion [52–57].

Tripartite entanglement has been found to exhibit somewhat different properties

from bipartite entanglement [58, 59].

The overarching conclusion emerging from the literature on both inertial and

accelerated systems is that relativistic entanglement is observer dependent [60]. This

is in stark contrast to the non-relativistic situation where spacetime plays the role

of a passive background canvas on which the quantum events are painted. The

more active character of the relativistic spacetime means it can have two faces:
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that of a friend, or a foe. It appears as a friend to the quantum information the-

orist when the transformations induced by spacetime can be used, for example, to

generate entangled states [54] or either realise, or enhance quantum communica-

tion or computation [61]. Alternatively, relativity may appear as a hindrance when

it causes unwanted disturbances, e.g. in the context of quantum communication,

which need to be taken into account and compensated for, if possible, by clever

engineering [62].

1.2 Thesis aim and motivation

Understanding entanglement in the relativistic context is a key issue in relativis-

tic quantum information. In this thesis, we confine attention to inertial frames.

The main aim of this thesis is to investigate the relativistic entanglement of mas-

sive spin-1/2 particles in single and two particle systems. Whereas previous work

has been somewhat restricted with regards to the boost scenarios and momentum

states involved, in this thesis we wish to extend the treatment. Firstly, although the

literature on Thomas-Wigner rotation is quite clear that the phenomenon is highly

dependent on the underlying geometry, there is almost no work in quantum in-

formation taking this into account. We attempt to fill this lacuna by studying the

dependence of entanglement on the geometry of the underlying boost scenario.

Secondly, in quantum information theory superposition and entanglement are re-

garded as various kinds of resources that can be harnessed to create new quantum

technology, leading to extensive research of such states. This provides a motivation

to study how different sorts of momentum states affect the changes of entangle-

ment under Lorentz boosts in single and two particle systems. Finally, we extend

the analysis to continuous momentum states and study them in a variety of geome-

tries.

1.3 Thesis overview

The thesis is structured as follows. Chapter 2 provides an overview of the topics

that form the background of the discussion in the rest of the thesis. We begin by

outlining the Lorentz group and see how the Thomas-Wigner rotation arises from

the structure of the Lorentz group. Thomas-Wigner rotation is central to the thesis,

hence we need to know how it is represented in quantum mechanics. This is dis-

cussed in the next section, where we give a useful representation of the rotation for

massive spin-1/2 particles, the systems on which the thesis focusses. Thereafter we
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detail the properties of Thomas-Wigner rotation, which will play an important role

in explaining the behaviour of entanglement in both single and two particle sys-

tems. We lastly focus on the notion of entanglement and discuss how to quantify it

for pure and mixed bipartite states.

Chapter 3 explores the ‘qubit’ of our relativistic quantum system: a single mas-

sive spin-1/2 particle. It is the simplest non-trivial system and hence the studying

of which is a prerequisite to the understanding the behaviour of multiparticle sys-

tems. The work on single particle entanglement was initiated in [18], where the

authors establish an intriguing phenomenon: the reduced density matrix of a mas-

sive free spin-1/2 particle is not covariant under Lorentz transformations, implying

that spin entropy has no invariant meaning in relativity. Our treatment begins by

revisiting two idealised models discussed in the literature. This is followed by the

study of a model consisting of a spin-momentum product state with momentum

given by a Gaussian distribution. This system will be then studied in a variety of

different boost scenarios. To analyse the behaviour of entanglement, we adopt a

geometric point of view. We conclude with an analysis of the features observed.

Chapter 4 turns to two particle systems with spin and momenta. The focus

now shifts importantly. Whereas in the single particle chapter we were concerned

with how boosts entangle spin and momenta of a single particle, in this chapter we

will look at how boosts affect the entanglement of the spin degree of freedom of

a two particle system. A key aspect one notices is that the (sometimes seemingly

contradictory) results in the literature rely on different boost scenarios, that is, the

momentum states and geometries assumed. This confirms what we discovered

in our investigation of single particle systems, namely, that entanglement under

Lorentz boosts is highly dependent on the boost scenario in question. The central

question we pose in this chapter is: How do different momentum states and boost

geometries affect the entanglement of a bipartite spin state under Lorentz boosts?

In order to tackle the issue, we focus on an idealised model involving discrete mo-

mentum states. This enables a systematic survey of the structure of the maps that

momenta induce on the spin degree of freedom under Lorentz boosts. Spins in the

Bell and Werner states will be investigated.

Although idealised systems provide valuable insight into the behaviour of en-

tanglement, realistic situations involve wave packets. In chapter 5 we complete

the study of two particle systems by focussing on states with continuous momenta.

We proceed in parallel with the previous chapter in discussing a variety of momen-

tum states in different boost geometries. Due to the complexity of calculations, our
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treatment is numerical throughout and attention is restricted to the states where

the spin subsystem is given by a Bell state.

In chapter 6 we raise the question of how to explain the behaviour of entangle-

ment in relativistic systems. We have learned that it changes non-trivially under

Lorentz boosts. But do we witness a genuine change of the amount of entangle-

ment or is it just that entanglement is shuffled around between subsystems of the

total system while its total amount remains invariant? With a few exceptions, the

latter verdict seems almost unanimous in the literature. We think there are grounds

to believe that the issue needs further analysis. To make progress in clarifying the

issue, we concentrate on the discrete models studied in chapter 4 and examine the

entanglement of different partitions of the systems.

The final chapter 7 contains the summary and discussion of our main results.



Chapter2
Preliminaries

This chapter reviews the topics that form the background of the discussion in the

rest of the thesis. We begin by giving a brief overview of the Lorentz group and see

how the Thomas-Wigner rotation arises. In the next section we will discuss how

the Thomas-Wigner rotation is represented in quantum mechanics. Some of the

properties of Thomas-Wigner rotation will be then highlighted, which will play an

important role in explaining the behaviour of entanglement in both single and two

particle systems. Lastly, we focus on the notion of entanglement and discuss how

to quantify it for pure and mixed bipartite states.

2.1 Special relativity

In the transition from non-relativistic to relativistic quantum mechanics the group

of spacetime symmetries changes from the Galilei group to the Poincare group. The

Poincare group consists of spacetime translations, rotations and Lorentz boosts.

The relativistic effects of interest to quantum information theory that are the focus

of this thesis arise from the properties of the Lorentz group, a subgroup of the

Poincare group, which consists of boosts and rotations [63]. In the following we

will thus restrict attention to the Lorentz group.

The centrepiece of the Lorentz group are the so-called Lorentz boosts which relate

two observers in inertial frames that move with constant velocity v relative to each

other. Suppose the motion is along the common x-axis, then the transformations

are

x′ = γ (x− vt) , y′ = y , z′ = z , t′ = γ
(
t− vx/c2

)
, (2.1)



2.1. Special relativity 7

where γ = (1− v2/c2)−1/2. For convenience, let us denote β = v/c and define a

four vector xµ = (x0, x1, x2, x3) = (t, x, y, z) = (t,x). Let us also assume that we

work in natural units where ~ = c = 1, then the Equations (2.1) become
t′

x′

y′

z′

 =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1




t

x

y

z

 , (2.2)

or in a more compact notation

x′ = Λ(v)x , (2.3)

where Λ ≡ Λ(v) is a boost in the x-direction. We will oftentimes parameterise

boosts using rapidity, defined as ξ = arctanh v, so

β = tanh ξ , γ = cosh ξ , γβ = sinh ξ , (2.4)

and the matrix of a Lorentz boost in Equation (2.2) can be expressed as

Λ(ξ) =


cosh ξ − sinh ξ 0 0

− sinh ξ cosh ξ 0 0

0 0 1 0

0 0 0 1

 . (2.5)

For a particle with mass m we write its four momentum pµ = (p0, p1, p2, p3) =

(E, px, py, pz) = (E(p),p), with E(p) =
√
p2 +m2, where the relation to rapidity is

cosh ξ =

√
p2 +m2

m
, sinh ξ =

|p|
m

. (2.6)

The matrix elements of a generic Lorentz boost in the direction of a unit vector

e = (ex, ey, ez) = p/|p| are given by [64],

Λij(ξ) = δij + (cosh ξ − 1) eiej ,

Λi0(ξ) = Λ0i(ξ) = sinh ξ ei (2.7)

Λ00(ξ) = cosh ξ .



8 Chapter 2. Preliminaries

The Lorentz group also contains pure spatial rotations which are of the form

R =


1 0 0 0

0

0 R(φ)

0

 , (2.8)

where R(φ) ∈ SO(3) is a three dimensional rotation matrix. The collection of all

three rotations forms a subgroup of the Lorentz group.

Now it is an important fact that the same does not hold in general for Lorentz

boosts: they do not form a subgroup of the Lorentz group. This can be verified by

combining two boosts [65], which for simplicity, we choose in the x-direction and

z-direction with rapidities ξx and ξz , respectively,

Λz =


cosh ξz 0 0 − sinh ξz

0 1 0 0

0 0 1 0

− sinh ξz 0 0 cosh ξz

 , Λx =


cosh ξx − sinh ξx 0 0

− sinh ξx cosh ξx 0 0

0 0 1 0

0 0 0 1

 .

(2.9)

Their product is given by

ΛzΛx =


cosh ξz cosh ξx − cosh ξz sinh ξx 0 − sinh ξz

− sinh ξx cosh ξx 0 0

0 0 1 0

− sinh ξz cosh ξx sinh ξz sinh ξx 0 cosh ξz

 , (2.10)

which cannot be written in the symmetric form (2.7). Instead, it can be shown that

the result is a boost and a rotation [66, 67],

ΛzΛx = R(ω)Λ . (2.11)

where R(ω) is a three rotation. This is the origin of the celebrated Wigner rota-

tion or Thomas-Wigner rotation (occasionally abbreviated as TWR), where the latter

form is used in the literature to honour Thomas’ contribution by discovering the

Thomas precession [68, 69]. We will discuss its properties in detail shortly in sec-

tion 2.3 below, for now we we would like to stress that Thomas-Wigner rotation is a

consequence of the structure of the Lorentz group, which characterises relativistic
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spacetime. The relations above show that it occurs when one is dealing with a sit-

uation that involves non-collinear boosts. Incidentally, note that the commutation

relations imply that collinear boosts do form a subgroup. Collinear boosts by v1 and

v2 are subject to the familiar formula of relativistic velocity addition1

v =
v1 + v2

1 + v1v2
. (2.12)

It is noteworthy that by itself, the Thomas-Wigner rotation is a purely kinematic

effect which is independent of the dynamics of the system [71]. It has to be taken

into account both in classical and quantum relativistic situations. In the context of

quantum theory, Thomas-Wigner rotation gives rise to unexpected effects like the

Thomas precession [68].2 More importantly, it also gives rise to intricate entangle-

ment relations when a quantum system is observed from different inertial frames

of reference, the investigation of which is the subject of this thesis.

2.2 Wigner’s little group

To discuss relativistic effects in quantum theory, we need to know how the Lorentz

group is represented on the space of quantum states. This was derived in the

seminal work of Wigner [74]. In the following, we give only a brief outline and

summarise the results needed for the subsequent discussion; for detailed accounts

see [67, 75–77] .

In the language of group theory, we are seeking to represent an element of the

Lorentz group Λ by a unitary operator U(Λ) on the Hilbert space of quantum states.

Let us label basis states |p, σ〉 in terms of their momentum p and spin σ. Consider-

ations based on the structure of the Lorentz group imply that the action of U(Λ) on

a basis state,

U(Λ) |p, σ〉 =
∑
λ

Qλσ(Λ, p) |Λp, λ〉 , (2.13)

is a linear combination of states with label Λp.3 The action of the unitary operator

U(Λ) leaves p2, and if p2 > 0, then also the sign of E, unchanged. Thus it turns out

that for each p2 a different set of operators U(Λ) can be constructed. Since our inter-

1 The literature on Thomas-Wigner rotation is large, see e. g. [70] for a very readable overview.
2 By way of historical note, it is interesting that ‘[E]ven the cognoscenti of relativity theory (including

Einstein himself!) were quite surprised’ that one needed to take into account a relativistic effect to
correctly characterise the hydrogen atom [72, 73].

3 See e.g. [67] for a detailed account.
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est lies in massive particles, in the following we focus on the case p2 = m2 > 0. We

will denote the vectors of the representation by |p, σ〉, where the intended mean-

ing is that p2 is fixed and the zeroth component E can be calculated if necessary.

The notation Λp signifies that one can supply the zeroth component, calculate the

transformation and remove the zeroth component [75].

Equation (2.13) describes a group homomorphism. One can ensure that it holds

by choosingQ in such a way that it leaves invariant a chosen standard momentum.

For massive particles one can fix the standard momentum k to be the particle’s

momentum in the rest frame,

k =

(
m

0

)
. (2.14)

Arbitrary momenta p can be then expressed in terms of the standard momentum,

p = L(p)k , (2.15)

where L(p) is a transformation which depends on p and takes k 7→ p. This implies

state vectors |p, σ〉 can be defined in terms of standard momentum states |k, σ〉,

|p, σ〉 = U [L(p)] |k, σ〉 . (2.16)

Now the Thomas-Wigner rotation is commonly explained to arise from transform-

ing |p, σ〉with an arbitrary U(Λ),

U(Λ) |p, σ〉 = U(Λ)U [L(p)] |k, σ〉
= U

[
L(Λp)L−1(Λp)

]
U(Λ)U [L(p)] |k, σ〉

= U [L(Λp)]U
[
L−1(Λp)ΛL(p)

]
|k, σ〉 , (2.17)

where in the second line we have inserted the identity transformation of the form

L(Λp)L−1(Λp) in the argument ofU and in the third we used the fact we are dealing

with a group homomorphism. The transformation,

W (Λ,p) ≡ L−1(Λp)ΛL(p) , (2.18)

is the Thomas-Wigner rotation. It leaves the standard momentum invariant, i.e.

reading from right to left, Equation (2.18) describes the sequence of maps

W : k 7→ p 7→ Λp 7→ k , (2.19)



2.2. Wigner’s little group 11

The collection of allW forms a subgroup of proper ortochronous Lorentz group L↑+
known as Wigner’s little group. Now since U(W ) does not change k, it can only act

on the spin degree of freedom. On the other hand, U [L(Λp)] transforms according

to (2.16), leaving spin alone. We can then write Equation (2.17) as follows,

U(Λ) |p, σ〉 = U [W (Λ,p)] |Λp, σ〉 . (2.20)

Comparing with (2.13) shows this can be rewritten as

U(Λ) |p, σ〉 =
∑
λ

Dλσ[W (Λ,p)] |Λp, λ〉 , (2.21)

whereD is a representation of the little group elementW . For massive particles, the

little group for the standard momentum is the usual group of ordinary rotations in

three dimensions, SO(3). The corresponding representationD for spin-1/2 particles

that we are interested in is given by SU(2), whose elements have the generic form

Rn(φ) = exp

(
−i
φ

2
σ · n

)
, (2.22)

where φ is an angle of rotation, n = (nx, ny, nz) a real unit vector in three dimen-

sions and σ = (σx, σy, σz) denotes the three component vector of Pauli matrices.

For subsequent calculations, it is useful to obtain a representation of the little

group matrix for spin-1/2 systems as a function of momentum and rapidity. We

will follow the exposition given in [75] in finding this. The desired representation

can be determined directly from expression (2.18) by writing each factor in the 2×2

representation of the Lorentz group [66], and then calculating the product.

We begin by writing the boost L(p), which takes the standard momentum k to

an arbitrary p, in the 2× 2 representation,

C [L(p)] =

(
E(p) +m

2m

) 1
2

+

(
E(p)−m

2m

) 1
2 σ · p
|p| , (2.23)

where p is the spatial part of p. Next, the pure Lorentz transformation K(Λ) with

rapidity ξ in the direction e = (ex, ey, ez) takes the form

K(Λ) = cosh
ξ

2
+ sinh

ξ

2
(σ · e) . (2.24)
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Lastly, the transformation C[L(Λp)] is given by

C[L(Λp)] =

(
E(p′) +m

2m

) 1
2

+

(
E(p′)−m

2m

) 1
2 σ · p′
|p′| . (2.25)

with p′ and E(p′) given by Λp,

E(p′) = E(p) cosh ξ + p · e sinh ξ ,

p′ = [p− (p · e)e] + [E(p) sinh ξ + p · e cosh ξ] e . (2.26)

The rotation U(Λ,p) ≡ U [W (Λ,p)] we are seeking is given by the product (2.18) in

the 2× 2 representation,

U [W (Λ,p)] = C−1[L(Λp)]K(Λ)C[L(p)] . (2.27)

By substituting the expressions of the three factors C−1, K and C from the above

equations one obtains the desired expression. We will omit the somewhat long but

straightforward algebraic manipulations and display the final result,4

U(Λ,p) =
1√

(E(p) +m) (E(p′) +m)

×
{

cosh
ξ

2
(E(p) +m) + sinh

ξ

2
(p · e)− i sinh

ξ

2
σ · (p× e)

}
(2.28)

Both expressions (2.22) and (2.28) will be used in the following to describe the

Thomas-Wigner rotation, but in slightly different contexts.

2.3 Properties of the Thomas-Wigner rotation

We will next review the properties of Thomas-Wigner rotation by relating it to a

particular physical scenario, describing what the rotation angle depends on and

what its magnitude is.

For concreteness, consider three inertial observers O, O′ and O′′ where O′ has

velocity v1 relative to O and O′′ has v2 relative to O′. Above we learned that the

combination of two boosts Λ(v1) and Λ(v2) that relates O to O′′ is in general a boost

and a rotation,

Λ(v2)Λ(v1) = R(ω)Λ(v3) , (2.29)

4 See [75], appendix 3 for details.
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where R(ω) is the Thomas-Wigner rotation with angle ω. To an observer O, the

frame of O′′ appears to be rotated by ω. Perhaps the simplest formula for the angle

of rotation is given by [70, 75],

tan
ω

2
=

sin θ

cos θ +D
, (2.30)

where θ is the angle between two boosts or, equivalently, v1 and v2, and

D =

√(
γ1 + 1

γ1 − 1

)(
γ2 + 1

γ2 − 1

)
, (2.31)

with γ1,2 = (1−v2
1,2)−1/2. The axis of rotation specified by n̂ = v̂2× v̂1 is orthogonal

to the plane defined by v1 and v2. The dependence of Thomas-Wigner rotation on

the angle between two boosts is shown in Figure 2.1.
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v1, v2 = 0.5

Figure 2.1. Dependence of Thomas-Wigner rotation (TWR) on the angle θ between two boosts.

Several interesting characteristics are immediately noticeable. First, for any two

boosts with velocities v1, v2 at an angle θ, the Thomas-Wigner rotation increases

with both v1, v2, approaching the maximum value 180◦ as v1, v2 approach the speed

of light. Second, the maximum value of ω is bounded by the smaller boost. If

v1 = 0.5, then even if v2 becomes arbitrarily close to the speed of light, ω will be

considerably lower than in the case when both boosts approach the speed of light.

Third, the angle θ at which the maximum Thomas-Wigner rotation occurs depends

on the magnitudes of both v1 and v2. It is worth noting that ω approaches the

maximum value 180◦ when both boosts are almost opposite and both v1, v2 → 1.

At lower velocities, maximum rotation occurs earlier. We will see below that all
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these features play an important role in explaining the behaviour of entanglement

in boosted frames.

The foregoing highlights the crucial fact that the Thomas-Wigner rotation is

highly dependent on the boost scenario or boost geometry in question, by which we

mean the specification of the magnitudes of boosts and the boost angle, denoted

by the triple (v1, v2, θ). Alternatively, since velocities and rapidities are in one-one

correspondence, the same can be specified by (ξ1, ξ2, θ). When working with the

representation (2.28) in terms of momentum, rapidity and boost angle, we will use

the quantities (p, ξ, θ) for the same purpose.

For future reference, it is useful to visualise the relationships between ω, θ and

the pair of boosts in a three dimensional manner. To this end, we express boosts in

terms of rapidities for later convenience, (ξ1, ξ2), and subsume them under a single

parameter by setting ξ = ξ1 = ξ2. Using Equation (2.30), ω can be expressed as a

function of ξ and θ,

ω = 2 arctan

(
sin θ

cos θ +D(ξ)

)
, (2.32)

where

D(ξ) =
cosh2 ξ/2

sinh2 ξ/2
. (2.33)

The plot is shown in Figure 2.2, and it is related to Figure 2.1 in a simple way. We
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Figure 2.2. TWR ω as a function of rapidity ξ and boost angle θ. Angles are measured in radians.

saw above that the smaller boost sets a bound to the maximum Thomas-Wigner

angle. Hence the curves characterising different pairs of boosts in Figure 2.1 cor-

respond to different intersections of θ − ω-planes with a fixed ξ = const and the
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surface describing the Thomas-Wigner rotation.

2.4 Entanglement

Quantum entanglement has puzzled physicists since the early days of the theory

and sparked a lot of discussion about the nature of the quantum world as pointed

out in the Introduction. With the birth of quantum information theory, it was re-

alised that this weird quantum phenomenon could be harnessed to power technol-

ogy that goes beyond what can be achieved using any classical theory [78]. This has

led to a renewed interest in the research of entanglement, whose ultimate goal is to

create a comprehensive theory of the phenomenon.

Formally, while in classical theory we use the Cartesian product to combine

the state spaces of n systems into the space describing the total system, in quan-

tum theory we must use the tensor product. The total Hilbert space H is given by

H = ⊗nk=1Hk, where Hk is the Hilbert space of a subsystem [79]. Due to the super-

position principle, a generic pure state has the form,

|ψ〉 =
∑

k1,...,kn

ck1,...,kn |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 , (2.34)

implying that in general the state cannot be written as a tensor product of the states

of individual systems,

|ψ〉 6= |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 . (2.35)

Pure states that cannot be written as products are entangled, while those that can

be are separable. For brevity of notation, we will use |i1〉 |i2〉 · · · |in〉 or |i1, i2, · · · , in〉
in the following instead of |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉.

For mixed states, entanglement does not mean the system is a non-product

state. Instead, a mixed state is said to be entangled if it cannot be described by

a convex combination of product states [80],

ρ 6=
∑
pk

pk ρ
k
1 ⊗ ρk2 ⊗ · · · ⊗ ρkn . (2.36)

By way of illustration, in this thesis we will be mostly concerned with bipartite

systems for which the most prominent examples of entangled states are the Bell
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states,

∣∣Φ±〉 =
1√
2

(|00〉 ± |11〉) ,
∣∣Ψ±〉 =

1√
2

(|01〉 ± |10〉) . (2.37)

They represent the simplest yet highly non-trivial cases of entanglement. Deter-

mining whether or not, or how much a given state is entangled is in general a dif-

ficult task and subject to ongoing research. For two-level bipartite states, however,

we have satisfactory measures of entanglement, which we will review next.

2.4.1 Entropy of entanglement

For pure bipartite states ρAB describing a composite system AB, one can measure

the entanglement using the entropy of entanglement [81]. It is defined in terms of

the von Neumann entropy of the reduced density matrix of either of the subsystem

A or B,

S(ρi) = −Tr(ρi log ρi) , i ∈ {A,B} , (2.38)

where ρi = Trj(ρAB), i, j ∈ {A,B}, i 6= j is the state of the subsystem. If the state of

the subsystem is maximally mixed, then S(ρi) = 1 and the total state is maximally

entangled. If the state of the subsystem is pure, then S(ρi) = 0 and the total state

is a product state. Other cases lie between these extreme values. This allows us to

quantify the degree of entanglement of the total state of the system based on how

mixed the state of the subsystem is.

The Bell states given above in (2.37) have S(ρA) = 1 and thus describe states of

maximal entanglement.

Unfortunately, the utility of entropy is restricted to pure states. This is because

entropy quantifies the degree of mixedness of the subsystem and thus it fails to

correctly distinguish classical and quantum correlations for mixed states. Also, it is

applicable only to bipartite systems. It is nevertheless a useful measure and we will

employ it in chapter 3 to characterise the entanglement between different degrees

of freedom of a single spin-1/2 particle.

2.4.2 Concurrence

Since the state of a two particle system is in general mixed we will use concurrence

to quantify entanglement. Although initially introduced for pure states, it was later

generalised to mixed states as well [82, 83]. Concurrence C of a bipartite state ρ is
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defined as

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} , (2.39)

where the λi are square roots of eigenvalues of a non-Hermitian matrix ρρ̃ in de-

creasing order and

ρ̃ = (σy ⊗ σy) ρ∗ (σy ⊗ σy) , (2.40)

with σy a Pauli matrix, is the spin-flipped state with the complex conjugate ∗ taken

in the standard basis [83].

2.5 Orbit

In order to study the behaviour of a quantum state ρ under Lorentz boosts for two

particle systems, we will investigate the orbit of a state. By this we simply mean

the set of images of a given state under a family of one or two-parameter maps.

Formally, suppose we have a family of one-parameter maps Φω : ρ 7→ ρ′ where ω

takes values in a subset Ω of reals. We then define the orbit t(ω) of the state ρ as the

range of Φω for all ω,

t(ω) = {Φω(ρ) | ω ∈ Ω} . (2.41)

The same definition applies when Φω,λ : ρ 7→ ρ′ has two real parameters ω and λ.

We will typically keep one parameter, e.g. λ, fixed and compute the orbit by varying

ω as given in (2.41).



Chapter3
Single particle

3.1 Introduction

In this chapter, we are going to explore the simplest nontrivial system of interest: a

single massive spin-1/2 particle with momentum. This constitutes the qubit in the

context of relativistic quantum information, studying which is a prerequisite to the

understanding the behaviour of multiparticle systems.

One of the first works on the topic is the seminal paper [18], where the authors

establish an intriguing phenomenon: the reduced density matrix of a massive free

spin-1/2 particle is not covariant under Lorentz transformations, implying that spin

entropy has no invariant meaning in relativity. This stands in stark contrast to the

non-relativistic regime where no such phenomenon occurs. Later, [8] investigate a

particle in a superposition of two different velocities and show that an observer in

a relativistically boosted inertial frame sees the system entangled up to the speed

of light.

Our treatment builds on these works. We begin by deriving the transformation

of the particle’s state under Lorentz transformations. Thereafter we will revisit two

idealised models discussed in the literature. This is followed by a construction of a

model involving Gaussian momenta, which we will study in a large variety of boost

scenarios. We will then analyse the behaviour of entanglement from the geometric

point of view, and conclude with the results obtained.

3.2 The state of a Lorentz boosted particle

We begin by calculating the general transformation of the single massive spin-1/2

particle state under a Lorentz boost. Consider an observer O who sees the particle
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in motion with constant momentum. Using basis vectors of the form |p, λ〉, where

p labels momentum and λ = ±1
2 is spin, we can write a generic pure state of the

particle as

|ψ〉 =
∑
λ

∫
dµ(p)ψλ(p) |p, λ〉 , (3.1)

where

dµ(p) =
1

2E(p)
dp1 dp2 dp3 (3.2)

is the integration measure which remains invariant under Lorentz transformations

Λ [76],

dµ(Λp) = dµ(p) . (3.3)

The wave function satisfies the normalisation condition,

∑
λ

∫
dµ(p) |ψλ(p)|2 = 1 . (3.4)

To an observer O′′ who is Lorentz boosted relative to O by Λ−1 the state of the

particle |ψ〉 appears transformed by U(Λ). The action of U(Λ) on a basis vector is

given by

U(Λ) |p, λ〉 =
∑
κ

Uκλ(R(Λ,p)) |Λp, κ〉 , (3.5)

where U(R) ∈ SU(2) is the spin-1/2 representation of the Thomas-Wigner rotation

R. This means that to the observer O′′ the boosted spin appears rotated by U(R).

We calculate the transformation of the state |ψ′′〉 = U(Λ) |ψ〉 as follows,

∣∣ψ′′〉 =
∑
λ

∫
dµ(p)ψλ(p) |Λp〉 ⊗

∑
κ

Uκλ(R(Λ,p)) |κ〉

=
∑
λ

∫
dµ(Λ−1p′′)ψλ(Λ−1p′′)

∣∣p′′〉⊗∑
κ

Uκλ(R(Λ,Λ−1p′′)) |κ〉

=
∑
κ

∫
dµ(p)ψ′′κ(p) |p, κ〉 , (3.6)
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where in the last line we have changed the dummy variable p′′ 7→ p and signified

ψ′′λ(p) =
∑
κ

Uλκ(R(Λ,Λ−1p))ψκ(Λ−1p) . (3.7)

The above expression shows the transformation that U(Λ) induces on the wave

function of the system. Since we are interested in knowing the spin state ρ′′S accord-

ing to O′′, we trace out the momentum degrees of freedom,

ρ′′S = TrP
(∣∣ψ′′〉〈ψ′′∣∣) =

∫
dµ(p)

〈
p|ψ′′

〉〈
ψ′′|p

〉
=
∑
σ,λ

∫
dµ(p)

∫
dµ(q)

∫
dµ(k) δ3(p− q)δ3(k− p)ψ′′σ(q)ψ′′∗λ (k) |σ〉〈λ|

=
∑
σ,λ

∫
dµ(p)ψ′′σ(p)ψ′′∗λ (p) |σ〉〈λ| , (3.8)

where we used

〈
p′, σ′|p, σ

〉
= 2E(p)δ3(p− p′)δσσ′ . (3.9)

Finally, to quantify how much the entanglement has changed between the spin and

momentum degrees of freedom, we calculate the von Neumann entropy

S(ρ′′S) = −Tr(ρ′′S log ρ′′S) (3.10)

of the boosted spin state ρ′′S .

3.3 Two models

In this section we will discuss two models of single particle systems that have ap-

peared in the literature and which form a prequel to our investigations in the next

section.

One of the first studies of single particle systems was carried out in [18]. The

authors consider a particle with mass m whose momentum wave function in the

rest frame is given by a Gaussian,

ψ(p) = exp

(−p2

2σ2

)
, (3.11)

where σ is width of the wave packet. This is a state of minimum uncertainty. The

spin of the particle points in the z-direction, and spin and momentum degrees fac-
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torise. Hence the corresponding Bloch vector has only one non-zero component

nz = 1 and the von Neumann entropy is zero. Suppose now the system is boosted

in the x-direction with rapidity ξ, then the z-component of the new Bloch vector is

described by

n′z = 1−
(
σ tanh

ξ

2

/
2m

)2

, (3.12)

where it has been assumed that σ/m� 1 and only the leading order has been taken

into account. Importantly, the corresponding entropy is now generally larger than

in the rest frame,

S ' t(1− ln t) , (3.13)

where t = σ2 tanh2 ξ
2/8m

2. The novel consequence is that whereas in the rest frame

spin and momentum factorise, the boosted state in general shows entanglement

between these two degrees of freedom. This is in contrast to the non-relativistic

regime, where no such phenomenon occurs. A Galilei boosted particle with spin

and momentum does not change its degree of entanglement in the boosted frame.

Note that it is not the familiar kind of entanglement encountered in quantum in-

formation theory, where one typically considers entanglement between two spins

or other degrees of freedom that can be represented as two level systems and thus

correspond to qubits.

Figure 3.1 shows the dependency of entropy given by (3.13) for different values

of parameter σ/m. We see that for σ/m = 0.1, entropy increases by approximately

10−2 when boosts become comparable to the speed of light. At smaller values of

the parameter, σ/m = 0.01, increase of entropy is about two orders of magnitude

smaller, saturating at 1.5× 10−4 when boosts approach the speed of light. As σ/m

decreases further to 0.001, saturation occurs at 2.1 × 10−6. So while spin entropy

does indeed increase for a relativistic observer, the effect is of the order of 10−2

or less for widths that satisfy the approximation σ/m � 1. This raises the ques-

tion of whether larger changes of entropy might be observed if the calculation is

carried through without approximation. For instance, a similar model involving

origin centred Gaussian momenta for a two particle system studied in [15] without

approximation displays changes from maximal to zero entanglement. While we

will address this query in the next section, for now we focus on a slightly different

problem: what happens if one alters the momentum state, for instance by replacing

the Gaussian with a superposition of momenta?
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Figure 3.1. Dependence of spin entropy of a Lorentz boosted single spin-1/2 particle on rapidity.
Momentum is given by an origin centered Gaussian momentum. To demonstrate the scale of entropy
in different regimes, data is shown for three values of the parameter σ/m. The shape of entropy for
σ/m = 0.01 and σ/m = 0.001 can be seen in detail in Figures 3.4 and 3.5 below.

This leads to the second model, which was studied in [8]. The particle is as-

sumed to be in a superposition of two momentum eigenstates aligned in the posi-

tive and negative direction of the y-axis1

|ψ〉 =
1√
2

(|p〉+ |−p〉) |0〉 . (3.14)

Spin |0〉 points in the z-direction, with spin and momentum again in product state

in the rest frame. Suppose an observer is moving in the x− z-plane perpendicular

to the momentum of the particle, making an angle φ relative to the z-axis. Since the

momenta of the particle and the observer are not collinear, the observer sees the

spin transformed by

D = σ0 cos
ω

2
+ i sin

ω

2
(cosφσx − sinφσz) , (3.15)

where ω is the angle of Thomas-Wigner’s rotation given by

sin
ω

2
=

√
(γ1 − 1)(γ2 − 1)

2(1 + γ1γ2)
, (3.16)

and γ1,2 = (1 − (v1,2/c)
2)−(1/2). Because the Thomas-Wigner rotation is momen-

tum dependent, spins at different momenta are rotated by the same angle but in

1 The authors use velocity eigenstates in their treatment. We will change the notation slightly and
use momenta in the following to be in line with the foregoing discussion. This changes neither the
quantitative results nor the conceptual structure.
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opposite directions, and the final state is described by

∣∣ψ′〉 =
1√
2

∣∣p′〉 ((cos
ω

2
− i sin

ω

2
sinφ

)
|0〉+ i sin

ω

2
cosφ |1〉

)
+

1√
2

∣∣−p′〉 ((cos
ω

2
+ i sin

ω

2
sinφ

)
|0〉 − i sin

ω

2
cosφ |1〉

)
, (3.17)

where |±p′〉 stand for the boosted momenta. We see again the intriguing phe-

nomenon encountered above, namely, that while in the rest state spin and momen-

tum factorise, the boosted state in general contains spin-momentum entanglement.

The degree of entanglement depends on the parameters ω and φ. In order obtain

the spin state, we trace out the momentum degrees of freedom,

ρ′′S =

(
cos2 ω

2 + sin2 ω
2 sin2 φ sin2 ω

2 sin 2φ

sin2 ω
2 sin 2φ sin2 ω

2 cos2 φ

)
. (3.18)

Let us first concentrate on the situation where φ = 0, which corresponds to the

boost in the z-direction.2 Then the spins lie entirely in the boost plane and the

generic expression (3.18) reduces to

ρ′′S =

(
cos2 ω

2 0

0 sin2 ω
2

)
. (3.19)

The eigenvalues are cos2 ω
2 and sin2 ω

2 , thus the von Neumann entropy of ρ′′S takes

a form,

S(ρ′′S) = − cos2 ω

2
log
(

cos2 ω

2

)
− sin2 ω

2
log
(

sin2 ω

2

)
, (3.20)

where base of log is 2. The plot is shown in Figure 3.2 and it displays interesting

phenomena. Initially when spin and momentum factorise, the spin entropy is zero.

As boosts grow larger, spin and momentum become entangled, leading to mono-

tonic increase of spin entropy. However, in contrast to the previous model, we now

observe significantly larger changes of spin entropy, ranging from zero to the max-

imal value 1 when ω = π/2. The latter corresponds to boosts that approach the

speed of light.

Let us also consider the boost scenario where φ = π/2. The spins are then

2 The discussion to follow will deviate slightly from [8]. While the authors focus on the entanglement
of the momentum degree of freedom, our interest lies in the behaviour of spin entanglement.
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Figure 3.2. Dependence of spin entropy of a Lorentz boosted single spin-1/2 particle on the Thomas-
Wigner angle. Momentum is given by a y-symmetric superposition of momentum eigenstates.

orthogonal to the boost plane and the generic state (3.18) reduces to

ρ′′S =

(
1 0

0 0

)
, (3.21)

describing the pure spin z-up state. The corresponding entropy S = 0 at all boosts,

implying that spin and momentum remain factorised for the moving observer. This

is in stark disagreement with the cases examined so far, demonstrating that while

boost-induced entanglement is a common phenomenon in many geometries, it is

not a universal property of every boost situation.

Summarising the discussion so far, each of the models discussed contains boost

scenarios which exhibit the phenomenon that spin and momentum degrees of free-

dom become entangled for a Lorentz boosted observer. At the same time, each

contains either an approximation or idealisation, thereby limiting the results to cer-

tain parameter regimes, and raising questions of both quantitative and qualitative

nature. Regarding the former, it should be asked how spin entropy is affected when

origin centred Gaussians are not restricted to the approximation σ/m � 1. In the

same vein, it should be investigated whether one would see as large changes of

entropy if the superposed momenta are extended to involve wave packets of finite

width instead of plain waves? In the course of pursuing these quantitative goals,

we would also like to gain conceptual insight. The discrete model involving delta

momenta showed two types of extreme behaviour. For spins lying in the boost

plane, we saw the same qualitative behaviour—increase of entropy in the boosted

frame—as the system consisting of continuous Gaussian momentum state. On the

other hand, the scenario with spins orthogonal to the boost plane lacked any pres-
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ence of boost-induced entanglement. This suggests that the discrete model might

serve as a basis for studying the behaviour of the continuous model as well as the

sensitivity of spin-momentum entanglement to the boost geometry.

3.4 The continuous model

In order to answer the queries raised at the end of the previous section, we will

next develop a model of a single particle system involving continuous momenta

with no approximations, and study both origin centred and symmetric states.

In analogy to the foregoing discussion, we will assume that spin and momen-

tum are initially in the product state,

|ψ〉 =

∫
dµ(p) f0(p,p0) |p, 0〉 , (3.22)

where |0〉 denotes z-up spin and f0(p,p0) signifies a superposition of Gaussian

distributions centred at ±p0 = (±px0, py0, pz0),

f0(p,p0) = [N(σ)]−
1
2 (g(p,p0) + g(p,−p0)) , (3.23)

with N(σ) the normalisation and g(p,p0) a Gaussian of width σ

g(p,p0) = exp

(
(px − px0)2

2σ2

)
exp

(
(py − py0)2

2σ2

)
exp

(
(pz − pz0)2

2σ2

)
. (3.24)

In order to compare with the models above, we will consider two boost scenarios,

in the y-direction and in the z-direction. In the former case the unit vector in the

boost direction is e = (0, 1, 0), hence the boost matrix Λy ≡ Λy(ξ) given by (2.7) is

Λy =


cosh ξ 0 sinh ξ 0

0 1 0 0

sinh ξ 0 cosh ξ 0

0 0 0 1

 . (3.25)

In the latter case the unit vector is e = (0, 0, 1) and we have Λz ≡ Λz(ξ),

Λz =


cosh ξ 0 0 sinh ξ

0 1 0 0

0 0 1 0

sinh ξ 0 0 cosh ξ

 . (3.26)
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To calculate the boosted spin state given in Equation (3.8), we need the unitary

representation of the Thomas-Wigner rotation U(Λ,p). We write the particles’ three

momentum in Cartesian coordinates, p = (px, py, pz) and v1 = |p|/E(p). Then in

case boost is in the y-direction, the generic expression for U(Λ,p) given in (2.28)

takes the form,

U(Λy,p) =

(
δ ν

ν δ∗

)
, (3.27)

with

δ =

√
E +m

E′′ +m

(
cosh

ξ

2
+
py − ipx
E +m

sinh
ξ

2

)
,

ν =
pz√

(E +m)(E′′ +m)
sinh

ξ

2
, (3.28)

where ξ = arctanh v2 is the rapidity of the boost in the y-direction, and

E′′ = E cosh ξ + py sinh ξ . (3.29)

By substituting into the expression (3.8), we obtain the traced out spin state,

ρ′′S(ξ) =

∫
dµ(p) ρ′′(ξ,Λ−1

y p)
∣∣f0

(
Λ−1
y p,p0

)∣∣2 . (3.30)

with

ρ′′(ξ,p) =

(
|δ|2 δν∗

δ∗ν |ν|2

)
. (3.31)

In a similar fashion, we calculate U(Λ,p) for the boost in the z-direction,

U(Λz,p) =

(
α β(px − ipy)

−β(px + ipy) α

)
, (3.32)

where we have signified

α =

√
E +m

E′′ +m

(
cosh

ξ

2
+

pz
E +m

sinh
ξ

2

)
,

β =
1√

(E +m)(E′′ +m)
sinh

ξ

2
, (3.33)
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and ξ is the rapidity of the boost in the z-direction, with

E′′ = E cosh ξ + pz sinh ξ . (3.34)

Next, substituting into (3.8), we get the traced out spin state,

ρ′′S(ξ) =

∫
dµ(p) ρ′′(ξ,Λ−1

z p)
∣∣f0

(
Λ−1
z p,p0

)∣∣2 . (3.35)

where

ρ′′(ξ,p) =

(
α2 −αβ (px − ipy)

−αβ (px + ipy) β2
(
p2
x + p2

y

) )
. (3.36)

To quantify entanglement between spin and momentum we compute the von

Neumann entropy of ρ′′S . Unfortunately, neither of the expressions (3.30) or (3.35)

can be integrated analytically when no approximations are made, so we will resort

to numerical methods. The code that has been used to obtain the numerical results

in the following sections is described in appendix A.

3.4.1 Origin centred Gaussian momenta

We will first return to examine the first model which was treated in terms of ana-

lytic approximation above in section 3.3. The system consists of an origin centred

Gaussian momentum and constant spin field in the z-direction, with spin and mo-

mentum factorising in the rest frame. The particle’s state in the rest frame is given

by (3.22) with p0 = 0 and boost is in the y-direction. The plots comparing the

results of numerical computation with the ones obtained analytically by approxi-

mation (3.13), cf. Figure 3.1, are depicted in Figures 3.3, 3.4 and 3.5. We see that

while there is a slight quantitative difference between the analytical and numerical

results, they are in good agreement on the the qualitative behaviour of spin entropy

in different scales of parameter σ/m.

Since our numerical treatment is not restricted to narrow distributions, we will

next attend to the question of what happens if the width of Gaussian lies in the

regimes σ/m = 1 and σ/m = 4 studied in [15]. We will also generalise the model

in another way. While the origin centred Gaussians provide interesting insight into

relativistic entanglement, they represent a special case. As is evident in Figure 2.1,

the geometry of the Thomas-Wigner rotation is much richer. Boosts at smaller an-

gles tend to result in less Thomas-Wigner rotation, while larger boost angles pro-

duce larger rotation angles; and the magnitude of either boost plays a role as well.
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Figure 3.4. Comparison of dependence of spin entropy on rapidity obtained by numerical computa-
tion (red) and analytic approximation (blue). Momentum is given by origin centred Gaussian with
σ/m = 0.01.

This suggests that the behaviour of entanglement also depends on whether the par-

ticle is moving in the same direction as the observer, or in the opposite direction.

In order to study this dependency, we will consider three different boost scenar-

ios as follows. In the first, the particle’s state in the rest frame has a momentum

component in the same direction as the boost in the y-direction, p0 = (0, 4, 0). The

second scenario involves the origin centred momentum with p0 = (0, 0, 0). Thirdly,

we consider the situation where the momentum component is opposite to the di-

rection of boost, p0 = (0,−4, 0). The results for σ/m = 1 and σ/m = 4 are plotted

in Figures 3.6 and 3.7, respectively.

While all the scenarios show the qualitative pattern already encountered in the

model obtained by analytic approximation, it is intriguing that the increase of en-
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Figure 3.5. Comparison of dependence of spin entropy on rapidity obtained by numerical computa-
tion (red) and analytic approximation (blue). Momentum is given by origin centred Gaussian with
σ/m = 0.001.

tropy is significantly larger, ranging between 0.1 and 0.8. We also discern a dis-

tinctive dependence on whether the particle’s initial velocity is in the same or the

opposite direction as the boost: spin entropy is largest if they are opposite and low-

est if they coincide. Thirdly, the increase of spin entropy depends on the width

of the momentum distribution. Gaussians with larger widths result in higher spin

entropy.

So far we have assumed that the spin field of the system is orthogonal to the

direction of boost. Let us next study the case where the spin field and the boost

both point in the same direction. With no restriction to generality we choose both

to be aligned along the z-direction. In analogy to the above, we consider three sce-

narios with different initial momenta, p0 = (0, 0, 4), at the origin, p0 = (0, 0, 0),

and opposite to the direction of boost, p0 = (0, 0,−4). The results for σ/m = 1

and σ/m = 4 are shown in Figures 3.8 and 3.9. Amongst the non-idealised models,

these display the largest increase of entropy so far. For a Gaussian of given width,

entropy always saturates at a higher level if spin field points in the same direction

as boost. Also, for the first time entropy reaches the maximum value 1, this oc-

curs for σ/m = 4 and p0 = (0, 0,−4). The system with σ/m = 1 and the same

momentum achieves a near maximum value at 0.97 as well.

3.4.2 Symmetric Gaussian momenta

We will next turn to the second idealised model considered above, which involves

superposed momenta in opposite directions. This can be generalised along same

lines as the origin centred system. While the idealised model in [8] assumed that the



30 Chapter 3. Single particle

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

E
n
tr
op

y
S

Rapidity ξ

(0,−4, 0)

(0, 0, 0)

(0, 4, 0)

(a) (b)

Figure 3.6. Spin entropy and boost geometry of a single particle with origin centred Gaussian mo-
menta for σ/m = 1. Boost Λ ≡ Λy(ξ) is in the positive y-direction. (a) Entropy of Gaussian centred
at (0,−4, 0) is shown blue, (0, 0, 0) green and (0, 4, 0) red. (b) Schematic representation of Gaussians
in the rest frame, centered at different p0 = (0, py0, 0) in the momentum space. The width of the
Gaussians shown is not to scale.
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Figure 3.7. Spin entropy and boost geometry of a single particle with origin centred Gaussian mo-
menta for σ/m = 4. Boost Λ ≡ Λy(ξ) is in the positive y-direction. (a) Entropy of Gaussian centred
at (0,−4, 0) is shown blue, (0, 0, 0) green and (0, 4, 0) red. (b) Schematic representation of Gaussians
in the rest frame, centered at different p0 = (0, py0, 0) in the momentum space. The width of the
Gaussians shown is not to scale.
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Figure 3.8. Spin entropy and boost geometry of a single particle with origin centred Gaussian mo-
menta for σ/m = 1. Boost Λ ≡ Λz(ξ) is in the positive z-direction. (a) Entropy of Gaussian centred
at (0, 0,−4) is shown blue, (0, 0, 0) green and (0, 0, 4) red. (b) Schematic representation of Gaussians
in the rest frame, centered at different p0 = (0, 0, pz0) in the momentum space. The width of the
Gaussians shown is not to scale.
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Figure 3.9. Spin entropy and boost geometry of a single particle with origin centred Gaussian mo-
menta for σ/m = 4. Boost Λ ≡ Λz(ξ) is in the positive z-direction. (a) Entropy of Gaussian centred
at (0, 0,−4) is shown blue, (0, 0, 0) green and (0, 0, 4) red. (b) Schematic representation of Gaussians
in the rest frame, centered at different p0 = (0, 0, pz0) in the momentum space. The width of the
Gaussians shown is not to scale.
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Figure 3.10. Spin entropy and boost geometry of a single particle with x-symmetric Gaussian mo-
menta for σ/m = 1. Boost Λ ≡ Λz(ξ) is in the positive z-direction. (a) Entropy of Gaussians centred
at (±4, 0,−4) is shown blue, (±4, 0, 0) green and (±4, 0, 4) red. (b) Schematic representation of Gaus-
sians in the rest frame, centered at different ±p0 = (±px0, 0, pz0) in the momentum space. Boost
angles θa < 90◦, θb = 90◦ and θc > 90◦ correspond to rest frame momenta p0 and are shown for one
peak of each state. The width of the Gaussians shown is not to scale.

particle’s velocity and boost are orthogonal, we have learned that this represents

a special case. The behaviour of entanglement is sensitive to the boost angle θ.

To study this dependency for superposed momenta, we will again consider three

cases, in all of which spins are assumed to lie entirely in the boost plane. The reason

is that we would like to study maximal changes of entropy, which as we observed

above occurred for spin fields aligned to the direction of boost.

In the first scenario, the particle has a momentum component pz0 in the same

direction as the boost in the z-direction. Thus the centers of Gaussian wave packets

at ±p0 = (±px0, 0, pz0) make angles of θa < 90◦ to the direction of boost, see Fig-

ure 3.10b. In the second scenario, the initial momenta±p0 = (±px0, 0, 0) are orthog-

onal to the boost, so θb = 90◦. In the third, the particle’s momentum has a pz0 com-

ponent opposite to the boost direction, hence θc > 90◦ and ±p0 = (±px0, 0,−pz0).

Plots for σ/m = 1 and σ/m = 4 are shown in Figures 3.10 and 3.11.

Curiously, although for σ/m = 4 the entropy saturates at a marginally higher

value than for the origin centred momenta, the increase is quite pronounced for

σ/m = 1. The latter reveals strong dependence of entropy increase on the boost

angle. It also shows novel behaviour. When the particle’s velocity has a component

in the direction opposite to the boost, i.e. when boost angle θ > 90◦, entropy reaches

the maximum value 1 at ξ = 2.3 and decreases thereafter as boosts grow larger,

saturating at a lower than maximum value when boosts approach the speed of

light.
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Figure 3.11. Spin entropy and boost geometry of a single particle with x-symmetric Gaussian mo-
menta for σ/m = 4. Boost Λ ≡ Λz(ξ) is in the positive z-direction. (a) Entropy of Gaussians centred
at (±4, 0,−4) is shown blue, (±4, 0, 0) green and (±4, 0, 4) red. (b) Schematic representation of Gaus-
sians in the rest frame, centered at different ±p0 = (±px0, 0, pz0) in the momentum space. Boost
angles θa < 90◦, θb = 90◦ and θc > 90◦ correspond to rest frame momenta p0 and are shown for one
peak of each state. The width of the Gaussians shown is not to scale.

The latter suggests that such a pattern might become even more marked at

larger boost angles. To verify this hypothesis, we compute two scenarios for the

system with σ/m = 1, where in the first the particle’s momentum in the rest frame

is described by ±p0 = (±7.05, 0,−21.20), which corresponds to the boost angle

and the particle’s speed (θe = 161◦, v1 = 0.999). The second involves momentum

p0 = (±17.13, 0,−98.5) or equivalently (θf = 170◦, v1 = 0.99995). The results shown

in Figure 3.12 indeed confirm the pattern, displaying remarkable decrease of entan-

glement as rapidity crosses a critical value at about 2.4 when θ = 161◦, and at about

2.6 when θ = 170◦. Also, entropy saturates at a significantly lower value, at about

0.15 for the larger boost angle, compared to 0.41 when the angle is smaller.

3.5 Momenta as control qubits

In the foregoing discussion we have repeatedly said that spin rotations are mo-

mentum dependent. It turns out that the sense of dependence at work here can be

made more precise using concepts from quantum information theory. The analogy

we will describe was first mentioned in [84].

In quantum computation, a prominent multi-qubit gate is the so-called con-

trolled NOT or CNOT gate [85]. The gate has two input qubits, where the first is

called the control qubit and the second is the target qubit. The action of the gate is to

change the target qubit depending on the value of the control qubit. If the control
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Figure 3.12. Spin entropy and boost geometry of a single particle with x-symmetric Gaussian mo-
menta for σ/m = 1 and large boost angles. Boost Λ ≡ Λz(ξ) is in the positive z-direction. (a) Entropy
for two boost geometries (θe = 161◦, v1 = 0.999) and (θf = 170◦, v1 = 0.99995). (b) Schematic repre-
sentation of Gaussians in the rest frame, centered at different±p0 = (±px0, 0, pz0) in the momentum
space. Boost angle θc > 90◦ corresponds to rest frame momenta p0 and is shown for one peak of the
state. The width of the Gaussians shown is not to scale.

qubit is set to 0, then the target qubit is left alone. If the control qubit is 1, then the

target qubit is flipped. This can be described in equations,

|00〉 7→ |00〉 , |01〉 7→ |01〉 , |10〉 7→ |11〉 , |11〉 7→ |10〉 . (3.37)

Alternatively, it can be written in the operator form,

UCN = 1⊗ |0〉〈0|+ σx ⊗ |1〉〈1| , (3.38)

where σx is the Pauli operator which performs spin flip in the computational basis.

The significance of CNOT for quantum computation lies in the universality result,

according to which any multiple qubit logic gate may be composed from CNOT

and single qubit gates [85].

A natural extension of the CNOT gate is a controlled-U gate. It has a single

control qubit and n target qubits, which are transformed by U depending on the

value of the control qubit. It can be represented as an operator,

UCU = 1⊗ |0〉〈0|+ U⊗n ⊗ |1〉〈1| , (3.39)

where U⊗n is an operator on n qubits. CNOT appears as a special case when there

is only a single target qubit and U = σx.

Now it is pointed out in [84] that we can conceive of a Lorentz boost as a kind

of controlled operation in analogy to controlled-U operations. Momenta play the



3.6. The geometric point of view 35

role of control qubits and spins are the target qubits. Boosting generates a uni-

tary operation, the Thomas-Wigner rotation, on the target qubits, i.e. the spins. For

instance, when an idealised system whose momenta are given by the superposi-

tion (|p0〉+ |p1〉) is boosted with Λ ≡ Λ(ξ), the state undergoes a transformation

described by an operator

U(Λ,p0)⊗ |Λp0〉〈p0|+ U(Λ,p1)⊗ |Λp1〉〈p1| . (3.40)

This can be generalised to finitely many momenta,

∑
p

U(Λ,p)⊗ |Λp〉〈p| , (3.41)

and formally also to continuous momenta,∫
dµ(p)U(Λ,p)⊗ |Λp〉〈p| . (3.42)

However, in the subsequent discussion the latter forms will not be used. For us

the main import lies in the conceptualisation of momenta as control qubits. This,

accompanied with the geometric view of how the boosts affect spin entropy in the

next section, forms the basis of the conceptual framework that we will use to ex-

plain the phenomena both for the single and two particle systems.

3.6 The geometric point of view

To understand the behaviour of entanglement, it is useful to adopt a geometric

perspective. One can think of vectors |p, λ〉 in Hilbert space as vector fields λ(p)

on the mass-shell of a particle with mass m [67]. Whereas the geometric picture

applies to both the continuous and discrete case, the essential qualitative behaviour

can be understood in terms of a discrete model of four spins in Figure 3.13 which

we will use from now on. The spin state ρ′′S , found by tracing out momentum, can

be viewed as taking a (possibly infinite) convex sum of spin projection operators

|λ(p)〉 〈λ(p)| = Πλ(p) over the support of the Gaussian. In our discrete example

this reduces to

ρ′′S = α(−p2)Πλ(−p2) + α(−p1)Πλ(−p1)

+ α(p1)Πλ(p1) + α(p2)Πλ(p2) , (3.43)
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Figure 3.13. In the rest frame, the Gaussian spin field (circle) is given by a constant field of z-up spins
(dashed). In the boosted frame, each spin λ(pi) of the field is Thomas-Wigner rotated by a particular
ωi ≡ ω(pi). For a fixed boost ξ, rotation angle increases with |pi|. Boost Λ ≡ Λz(ξ) is in the positive
z-direction.

where the coefficients satisfy
∑

i α(pi) = 1.

It is now relatively easy to see how entanglement between spin and momentum

arises. Suppose the rest frame state is given by a product of spin and momentum

as in Equation (3.22). This corresponds to a constant spin (operator) field in the

momentum space, depicted by dashed arrows in Figure 3.13. When the field is

Lorentz boosted, each individual spin λ(p) in Figure 3.13 is rotated by a different

Thomas-Wigner angle ωi, whose magnitude is determined by |pi|, boost ξ and the

angle θ between p and the boost direction. Hence after the boost each spin in the

momentum space points in a different direction and the total state does not factor-

ize any more: spin and momentum have become entangled. This means the spin

operators Πλ(pi) on the Bloch sphere in Figure 3.14 also point to different direc-

tions and summing them up yields in general a mixed state ρ′′S . Combined with the

Figure 3.14. Tracing out momentum amounts to forming a convex sum of spins Πλ(pi) that are
Thomas-Wigner rotated by ωi ≡ ω(pi), here represented on the Bloch sphere. The resulting spin
state ρ′′S (boldface arrow) is generally mixed.
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properties of Thomas-Wigner rotation, we can now explain all the qualitative fea-

tures of spin-momentum entanglement shown in the Figures of sections 3.4.1 and

3.4.2—saturation, its level, and whether or not there is a bump.

3.7 Discussion

Saturation was first noted in [15] where the authors study two spin-1/2 particles

in a Bell state with a Gaussian product momentum as an initial state. Our results

confirm that saturation occurs for a single particle with a Gaussian product momen-

tum. The reason can be traced back to the properties of Thomas-Wigner rotation.

Given any two boosts at a particular angle θ, when both boosts approach the speed

of light, Thomas-Wigner rotation asymptotically approaches a particular maximum

value ωm (see, for example, Figure 2.1). This implies that each individual spin of

the field asymptotically approaches a particular p-dependent maximum rotation

angle ωm(p) as both boosts approach the speed of light. Since entropy is a mono-

tonic function of spin, its behaviour follows the same pattern: entropy approaches

asymptotically a particular level as rapidity grows arbitrarily large.

Although this explains why saturation occurs, it requires some qualification to

account for why saturation reaches different levels for Gaussians initially centered

at different pz0. This originates in the fact that the maximum value of Thomas-

Wigner rotation ωm depends on the angle θ between two boosts. In our boosting

schemes depicted above, the boost angle θ is determined by the center p0 of the

Gaussian wave packet. However, specifying θ amounts to setting a bound on the

maximum value of rotation, that is, specifying ωm. The latter, in turn, sets a bound

to the maximum rotation of spin operators on the Bloch sphere in Figure 3.14 or,

equivalently, entropy. As a result, for two Gaussians with angles θa and θb, where

θa < θb, entanglement saturates at a lower level for θa than for θb.

For boost geometries with θ ≥ 90◦ entanglement initially reaches a maximum

value and thereafter saturates at a lower value. It might seem that this contradicts

what we just said about saturation. In light of the spin field picture, however, the

bump is to be expected in such boost geometries. By way of example, consider the

scenario with v1 = 0.999, θ = 161◦ in Figure 3.12. Initially, as rapidity starts to grow,

spins start to rotate in opposite directions at either Gaussian and so entanglement

starts to increase in line with the explanation above. At ξ = 2.4, the effective spin

of either Gaussian in Figure 3.14 has rotated by |ω| = 90◦, hence the spins of the left

and right Gaussians become orthogonal and entanglement attains the maximum
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value 1. Now as rapidity increases further, spins ‘over-rotate’, becoming again non-

orthogonal and spin entropy starts to decrease. As rapidity grows even larger, the

Thomas-Wigner rotation attains a maximum value ωm and entropy saturates at a

value less than 1. The larger the θ, the larger is ωm and the lower is the final level

of saturation as is seen in Figure 3.12. In the limiting case of large boosts v1, v2 → 1,

narrow Gaussians, σ → 0 and boost angles θ → 180◦, the boosted state approaches

a product state and entanglement vanishes.

3.8 Conclusion

In this chapter, we studied the behaviour of a single massive spin-1/2 particle un-

der Lorentz boosts. We confirm the general conclusion that boosts change the en-

tanglement of the spin and momentum degrees of freedom, implying that the spin

state transforms in general non-trivially for a moving observer. While previous

works in the literature focussed on systems involving various idealisations, the im-

portance of this study lies in generalising the treatment in three ways, which to the

best of our knowledge had not been done before. First, we have extended the dis-

cussion to realistic systems described by Gaussian wavepackets with finite width.

We have secondly generalised the analysis to geometries involving a large variety

of boost angles and established that the behaviour of entanglement is sensitive to

the boost geometry. Maximal entanglement between spin and momentum compo-

nents of a single particle can be achieved with sub-luminal boosts. However, due

to rich geometric setting, boost parameters must be chosen carefully as too large

boosts lead to deterioration of entanglement. The effect persists for wave packets.

Lastly, we have provided a natural geometric explanation, in terms of which all the

diverse qualitative features of entanglement behaviour of systems with discrete

and continuous momenta can be understood in a simple manner.



Chapter4
Two particles I: discrete momenta

4.1 Introduction

In the previous chapter we investigated the behaviour of a single particle under

Lorentz boosts. This laid groundwork for the current chapter, where we turn to

two particle systems with spin and momenta. Our focus will now shift importantly.

Whereas in the previous chapter we were concerned with how boosts entangle spin

and momenta of a single particle, in this chapter we will look at how boosts affect

the entanglement of the spin degree of freedom of a two particle system. It is in this

sense that single particle systems provided a foundation: the physical mechanism

which leads to nontrivial transformations of two spins is precisely the one that

causes entanglement between momentum and spin of a single particle. Yet the

characterisation of composite spin behaviour is considerably less straightforward

because the geometry of the two particle state space is much more complicated.

The behaviour of entanglement in massive spin-1/2 two particle systems in the

relativistic setting has been subject to extensive research. Early work on the topic

found that although the particles undergo rotations under Lorentz boosts, the en-

tanglement fidelity of the bipartite state remains invariant [17]. Almost simultane-

ously it was reported in [15] that the entanglement of a relativistic bipartite spin

system does not remain invariant. These results produced a flurry of papers [9,

14, 16, 24, 86], some of which confirm the invariance of entanglement while others

claim entanglement depends on the magnitude of boost.

A key aspect one notices is that the (sometimes seemingly contradictory) re-

sults in the literature rely on different boost scenarios, that is, the momentum states

and geometries assumed. This confirms what we discovered in our investigation

of single particle systems: entanglement under Lorentz boosts is highly dependent
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on the boost scenario in question. We also learned that in the relativistic context it

is fruitful to view momenta as qubits that perform controlled unitary operations

on spins. These considerations lead to the question, how do different momen-

tum states and boost geometries affect the entanglement of a bipartite spin state

under Lorentz boosts? In order to tackle the issue, we will systematically survey

the structure of maps that momenta induce on the spin degree of freedom under

Lorentz boosts. By making progress on the question, one might hope to clarify at

least some of the questions posed in the literature. We proceed in two stages. In this

chapter we focus on an idealised model involving discrete momentum states. This

provides a convenient framework to analyse entanglement in a simplified setting.

However, realistic systems involve wave packets, so in the next chapter we extend

treatment to continuous momenta.

The chapter is organised as follows. We begin by characterising the model to

be used throughout the chapter. Sections 4.3 and 4.4 describe the momenta and

boost scenarios, and spin states, respectively, of the bipartite system. Thereafter we

turn to studying the behaviour of pure and the mixed spin states in different boost

scenarios. We conclude with an analysis of the results obtained.

4.2 The discrete model

Our aim in this chapter is to study the landscape of maps that Lorentz boosts induce

on the spin degree of freedom of a two particle system. To achieve this, we will

make a number of simplifications about momenta. One of the most important is

that throughout the chapter momenta are regarded as discrete. We will assume that

momentum states are sufficiently narrow so we can use orthogonal state vectors at

different momentum values, formally satisfying the relationship

〈pi|pj〉 = δij , (4.1)

allowing us to treat momenta as a discrete basis. Each |pi〉will then generate a sin-

gle Thomas-Wigner rotation R(pi). In essence, as highlighted in the discussion of

single particle systems, we view momenta as control qubits that generate transfor-

mations on spins [84]. We acknowledge that such narrow momenta are an idealisa-

tion; but for several reasons it constitutes a system worthwhile studying. Discrete

momenta are computationally easier to deal with than continuous ones but dis-

play qualitative features that carry over to systems with continuous momenta. We

will encounter examples of this in the next chapter where we are concerned with
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continuous systems. Secondly, and relatedly, continuous momenta can be approx-

imated by a finite (but possibly large) number of discrete momenta. Indeed, part

of our strategy is to investigate, and model, continuous Gaussian systems by first

studying simpler, discrete systems.

We will next assume that spin and momentum are initially, i.e. in the rest frame,

in a product state, so the total state of the system is given by

|ψ〉 = |M〉 ⊗ |Ψ〉 , (4.2)

where |Ψ〉 ∈ HS ⊗ HS is the spin state of the particles, and |M〉 ∈ HP ⊗ HP , is

momentum,

|M〉 =
∑

|pi,qj〉∈Q

ψ(pi,pj) |pi,qj〉 (4.3)

where |pi,qj〉 ∈ HP ⊗ HP denote pairs of particles’ momenta given by the set Q.

In order to calculate how the state appears to an observer O′′ who is boosted by

Λ−1 relative to the rest frame, we note that the action of the boost Λ ≡ Λ(ξ, φ) on

the composite system is given by the direct product of single particle transforms

U(Λ)⊗ U(Λ),

|ψ〉 7−→
∣∣ψ′′〉 = U(Λ)⊗ U(Λ) |ψ〉 . (4.4)

Combining (4.2), (4.3) and (4.4) we get

∣∣ψ′′〉 =
∑

|pi,qj〉∈Q

ψ(pi,qj) |Λpi,Λqj〉 ⊗ U(Λ,pi,qj) |Ψ〉 , (4.5)

where U(Λ,pi,qj) stands for a product of spin-1/2 rotations,

U(Λ,pi,qj) ≡ U(Λ,pi)⊗ U(Λ,qj) . (4.6)

For brevity of notation we will use the shorthand

R(ωi) ≡ U(Λ,pi) (4.7)

for single particle rotations, assuming that a rotation by angle ωi ∈ [0, π] is realised

by a particular geometry encoded in either momenta, rapidity and boost angle,

(pi, ξ, φ), or equivalently, velocities vi = |pi|/E(pi), v2 = tanh ξ and boost angle,

(vi, v2, φ). In the same vein we will write R(ωi, χj) instead of U(Λ,pi,qj) for two
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particle rotations.

The latter provides a significant layer of abstraction in our treatment in this

chapter. In essence, in the following calculations we will hide away the particular

geometry which is given in terms of momenta, rapidity and boost angle. Instead,

we will use the Thomas-Wigner angle ω as a parameter that takes values in the

range [0, π], assuming that some actual geometry, not necessarily a unique one, re-

alises such a rotation. A worry might be raised that no actual boost scenario exists

that realises a rotation by a given angle. This will be addressed in two stages. The

next section elaborates on the boost scenarios that we will study below, showing

how each arises and what momentum state implements a given scenario. Second,

in the next chapter where we study realistic, Gaussian momentum states, we will

perform calculations using concrete momentum states, so spin rotations R(ωi, χj)

that we take as primitive in this chapter arise there as a result of boosting the parti-

cles in a particular geometry (pi, ξ, φ). In other words, in the next chapter we take

a step from the abstract level down to the level of implementation. Since the two

different calculations, in terms of angles in this chapter and in terms of concrete

momenta in the next, are in agreement, the abstraction we use here is justified.

Note that whereas the rest frame state (4.2) factorises between spin and mo-

mentum, the boosted state (4.5) does not. This entails that the assumption made

at the beginning, namely that spin and momentum factorise, is less restricting than

seems at first sight. By studying how spin–momentum product states are trans-

formed to entangled states, we are also investigating the dual situation where en-

tangled states are mapped to product states. This is simply because we can regard

either frame as rest frame and the other a moving frame since all inertial frames are

on equal footing. Neither can be singled out as the rest frame or the moving frame.

Also, we are always guaranteed to have inverses of maps since Lorentz boosts form

a group. In this thesis however we will be concerned mostly with the analysis of

spin–momentum product states, proper analysis of spin–momentum entanglement

is beyond the scope of this thesis and will be left for another occasion.

Since we are interested in how the spin state changes under boosts, we trace out

momenta in Equation (4.5), obtaining the spin state ρ′′S = Trp,q (|ψ′′〉 〈ψ′′|),1

ρ′′S =
∑
〈ωi,χj〉

|ψ(pi,qj)|2R(ωi, χj)ρR
†(ωi, χj) . (4.8)

1 Equation (4.8) is an instance of a separable operation Φ on a bipartite quantum system [79, 87, 88],
ρ′ = Φ(ρ) =

∑
m(Am ⊗Bm)ρ(A†m ⊗B†m) , where the Kraus operators Am ⊗Bm satisfy the closure

condition,
∑
mA

†
mAm ⊗ B†mBm = 1 ⊗ 1 . In the present case Am and Bm are unitary, then Φ is

called a separable random unitary channel [89].
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In general, the evolution of the spin state belongs to the class of maps described

in the theory of open quantum systems in the sense that it ‘evolves’ from a pure

state into a mixed state and vice versa. Hence we use concurrence to quantify how

much entanglement has changed in the course of the transformation ρS 7→ ρ′′S from

frame O to O′′, see section 2.4.2.

4.3 Boost scenarios and spin rotations

The behaviour of spin entanglement depends on the map generated by the mo-

menta, hence it will be of interest to study different classes of momentum states. In

this section, we will discuss the various forms of momenta to be studied in detail

in the rest of the chapter.

We begin with the simplest case,

∣∣M1
〉

= |p,q〉 . (4.9)

Momenta of this form represent an oft discussed case in the literature [14, 16, 17, 24,

86]. Setting q = −p corresponds to the well-known Bohm version of the Einstein-

Podolsky-Rosen setup where the spins are in a Bell state, and the first particle

moves in the p-direction while the other particle moves in the opposite direction

[90, 91].

In the case of the single particle in the previous chapter, the momentum state

was of the form of symmetrically displaced terms (|p〉+ |−p〉), and we saw that

such a state generated maximal entanglement between spin and momentum. This

suggests that similar behaviour for two particles might be observed when momenta

contain analogous terms for both particles,

∣∣MΣ
〉

=
1

2
(|p〉+ |−p〉) (|q〉+ |−q〉) . (4.10)

where Σ signifies the fact momenta take symmetric values.

Generalising further, we get a momentum state where both particles are in a su-

perposition of momenta along a given direction |±p〉 and a direction perpendicular

to this, |±p⊥〉,

∣∣M×〉 =
1

4
(|p〉+ |−p〉+ |p⊥〉+ |−p⊥〉) (|q〉+ |−q〉+ |q⊥〉+ |−q⊥〉) . (4.11)

We will see below that momenta of such a form provide a good approximation to

the two particle model considered in the seminal paper [15].
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Another class of states we would like to study are entangled momenta since

they give rise to interesting behaviour in the quantum domain. We assume the

generic form of the momenta is given by

∣∣ME
±
〉

=
1√
2

(|p1,q1〉 ± |p2,q2〉) , (4.12)

where the superscript E stands for ‘entangled’. Since we are surveying the logical

structure of spin rotations and would like to study the maximal changes that mo-

menta might generate, we will choose momenta to be maximally entangled. For

instance, by setting p1 = q1 = −p2 = −q2 = p, we get

∣∣MΦ±〉 =
1√
2

(|p,p〉 ± |−p,−p〉) , (4.13)

which correspond to the Bell states |Φ±〉. Likewise, by choosing p1 = −q1 = −p2 =

q2 = p, we obtain counterparts of the Bell states |Ψ±〉,

∣∣MΨ±〉 =
1√
2

(|p,−p〉 ± |−p,p〉) . (4.14)

This state has been studied to some extent in [92, 93].

As we will see shortly, in general momenta need not lie along the same axis. For

example, specifying that momenta of the first particle are given by p1 = −p2 = px,

whereas the second particle has q1 = −q2 = py leads to states that resemble |Φ+〉,
so we will signify ∣∣∣M [Φ±]

〉
=

1√
2

(|px,py〉 ± |−px,−py〉) . (4.15)

A variant of |Ψ+〉 like state can be obtained if we choose p1 = −p2 = px and

q1 = −q2 = −py, ∣∣∣M [Ψ±]
〉

=
1√
2

(|px,−py〉 ± |−px,py〉) . (4.16)

Note that (relative) phases of momenta do not matter as long as spin behaviour

is concerned. This is because the expression for the boosted spin state, Equa-

tion (4.8), contains only the squared modulus of the momentum wave function,

entailing that two momenta ψ(p) and ψ′(p) that are related by a local gauge trans-

formation

ψ(p) 7→ ψ′(p) = eφ(p)ψ(p) (4.17)
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induce the same spin orbits [92]. Thus it suffices when we consider only
∣∣MΦ+

〉
,∣∣MΨ+

〉
,
∣∣M [Φ+]

〉
and

∣∣M [Ψ+]
〉
, the other Bell states and their counterparts will pro-

duce exactly the same spin behaviour.

Although we have specified the general forms that momenta will take, the ge-

ometry they might realise is still undetermined. We will now turn to discussing

how the generic states are implemented by particular momenta and relate them to

different types of rotations generated on spins. This provides the link between two

layers: the layer of concrete realisation of boost geometry in terms of momenta and

the more abstract layer of rotations that act on spins.

Momenta of both particles can be aligned along the same axes, for instance

particle A and B can be in a superposition of momenta along the x-axis, yielding

the state,

∣∣MΣ
XX

〉
=

1

2
(|px〉+ |−px〉) (|qx〉+ |−qx〉) . (4.18)

Or momenta of both particles can be aligned along different axes, for instance par-

ticle A might be in a superposition of momenta along the x-axis and particle B in a

superposition along the y-axis, giving the state,

∣∣MΣ
XY

〉
=

1

2
(|px〉+ |−px〉) (|qy〉+ |−qy〉) . (4.19)

Substituting momentum
∣∣MΣ

XX

〉
into (4.5) and assuming boost is in the z-direction,

we get for the boosted state,

∣∣ψ′′〉 =
1

2

(
|Λzpx,Λzqx〉 R(Λz,px)⊗R(Λz,qx)

+ |Λzpx,−Λzqx〉 R(Λz,px)⊗R(Λz,−qx)

+ |−Λzpx,Λzqx〉 R(Λz,−px)⊗R(Λz,qx)

+ |−Λzpx,−Λzqx〉 R(Λz,−px)⊗R(Λz,−qx)
)
⊗ |Ψ〉 , (4.20)

or using the shorthand notation of (4.7),

∣∣ψ′′〉 =
1

2

(
|Λzpx,Λzqx〉 RY (ω)⊗RY (χ)

+ |Λzpx,−Λzqx〉 RY (ω)⊗RY (−χ)

+ |−Λzpx,Λzqx〉 RY (−ω)⊗RY (χ)

+ |−Λzpx,−Λzqx〉 RY (−ω)⊗RY (−χ)
)
⊗ |Ψ〉 , (4.21)

where RY (ω) signifies a rotation around the y-axis given by (2.22). Thus we see
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that the momenta
∣∣MΣ

XX

〉
generate rotations of the form

RY (±ω)⊗RY (±χ) , RY (±ω)⊗RY (∓χ) (4.22)

on the spin state. In the same vein, if the momenta are given by
∣∣MΣ

XY

〉
the z-boosted

state will have terms that generate rotations

RY (±ω)⊗RX(±χ) , RY (±ω)⊗RX(∓χ) (4.23)

on the spin state. Following considerations along these lines we see that by tak-

ing momenta along different combinations of axes for both product and entangled

momenta, one obtains three different types of rotations that can occur on the spin

state,

(i) Ri ⊗ 1 ,

(ii) Ri ⊗Ri , (4.24)

(iii) Ri ⊗Rj , i 6= j ,

where i, j ∈ {X,Y, Z} and each type of rotation can be realised by some set of

suitably chosen momenta. For instance, we saw that Ri ⊗ Ri is instantiated by

RY ⊗ RY when momenta are given by the product state
∣∣MΣ

XX

〉
and the boost is

in the z-direction. Another implementation of the same type is RX ⊗ RX when

momenta are again product but located along the y-axis,
∣∣MΣ

Y Y

〉
, and the boost is

in the z-direction.

To be precise, although we have been speaking as if momenta always lie along

some axis, it need not be and typically it is not the case in a general geometry

(p, ξ, φ) as we saw in Chapter 3 in the discussion of single particle systems. To

generate maximal spin rotations large boost angles are needed, which are imple-

mented by momentum vectors typically not aligned with an axis. For instance, if

boost is in the positive z-direction, then Gaussians centred at px = (±px0, 0,−pz0)

realise a state not lying along the x-axis and making an angle to the boost direction

which increases as the z-component decreases. However, it is the x-component that

determines the boost plane (when boost is assumed to be in the z-direction), and

hence the direction of the particular rotation occurring on the spin. We will there-

fore adopt the convention that we denote by |pi〉, i ∈ {x, y, z} any state that lies in

the boost plane, that is, the plane defined by the i-axis and the unit vector n̂ in the

direction of boost, but where the boost angle is left unspecified. The reason is that
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if we are interested only in whether or not the rotation occurs around a given axis,

then any momentum state |pi〉 in the boost plane will do. If we are also interested in

specifying the boost angle, then we need to choose a particular vector in the boost

plane.

We will next give a few examples of boost geometries that implement the dif-

ferent types of rotations listed in (4.24).

Type Ri ⊗ 1. In this scenario, only the first particle undergoes rotation. The mo-

mentum of the second particle is chosen so that it leaves the spin alone. Denoting

such a momentum by |0〉, the following pairs of boosts and momenta listed on the

left hand side generate rotations given on the right hand side,

Λz , |py, 0〉 7−→ RX ⊗ 1 ,

Λz , |px, 0〉 7−→ RY ⊗ 1 , (4.25)

Λy , |px, 0〉 7−→ RZ ⊗ 1 .

Type Ri ⊗ Ri. For scenarios in which both particles are rotated around the same

axis but not necessarily in the same direction, we obtain the following boosts and

momenta,

Λz , |py,qy〉 7−→ RX ⊗RX ,

Λz , |px,qx〉 7−→ RY ⊗RY , (4.26)

Λy , |px,qx〉 7−→ RZ ⊗RZ .

Type Ri⊗Rj , i 6= j. Scenarios where particles undergo rotations around different

axes can be realised by

Λy , |pz,qx〉 7−→ RX ⊗RZ ,
Λz , |py,qx〉 7−→ RX ⊗RY , (4.27)

Λx , |pz,qy〉 7−→ RY ⊗RZ .

In many cases these different implementations of a given type of rotation pro-

duce spin orbits that differ only by some symmetry transformation in the state

space. They fall in the same equivalence class which we denote using a specific

boost scenario specified by the concrete realisation of rotation, the momentum and

spin state, for example [RX ⊗ 1,MΣ
XX ,Φ

+]. However, it is in general not true that
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different realisations of given type, e.g. Ri ⊗ Ri, give rise to only one type of spin

behaviour. For instance, when the spin state |Ψ〉 is an eigenstate of operators of the

form RX(±ω) ⊗ RX(±ω) but not of RY (±ω) ⊗ RY (±ω), then the former produces

trivial spin behaviour whereas the latter may result in non-trivial state change and

thus of concurrence. Thus we expect that both the behaviour of states and of en-

tanglement will fall into a small number of equivalence classes. Finding out what

these classes are will occupy us for the rest of the chapter.

4.4 Spin state and its visualisation

Since we are interested in how entanglement changes under boosts, we will begin

by assuming that the bipartite spin state |Ψ〉 is initially maximally entangled, taking

the form of one of the Bell states |Φ±〉, |Ψ±〉. Later in section 4.6 we will relax

this condition and extend our investigation to include states whose entanglement

varies between maximal entanglement and no entanglement, the so-called Werner

states [80].

In order to gain better understanding of dynamics, the state change of a sin-

gle particle is commonly visualised using the Bloch sphere. We would like to ac-

complish the same for the bipartite system. Unfortunately, visualisation of a two

particle state is in general impossible since N2 − 1 independent real parameters

are needed to characterise the density matrix on the Hilbert space with dimension

N , which in the current case N = 4 equals 15. However, if the orbit of a state

is restricted to a lower dimensional space that can be represented in three dimen-

sions, then visualisation is feasible. Fortunately this turns out to be the case for the

entangled states that we are going to study.

A boost on a bipartite system will in general map the rest spin state ρS into a

mixed state ρ′′S , as can be seen in Equation (4.8), so it is useful to work in the Hilbert-

Schmidt space of operators B(H), defined on the Hilbert space H with dim = N

[87]. B(H) becomes a Hilbert space of N2 complex dimensions when equipped

with a scalar product defined as 〈A|B〉 = Tr(A†B), with A,B ∈ B(H), where the

squared norm is ‖A‖2 = Tr(A†A). The vector space of Hermitian operators is an

N2 real-dimensional subspace of Hilbert-Schmidt space and can be coordinatized

using a basis that consists of identity operator and the generators of SU(N). For

a qubit N = 2 and we obtain the familiar Bloch ball. For a bipartite qubit system

N = 4, B(H) = B(HA)⊗ B(HB) where Hi is the single particle space, and we can

use a basis whose elements are tensor products {1⊗ 1,1⊗σ,σ⊗ 1,σ⊗σ}, where
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σ = (σx, σy, σz) is the vector of Pauli operators. The density operator for a 2 × 2

dimensional system can be written in the general form,

ρ =
1

4

1⊗ 1 + rσ ⊗ 1 + 1⊗ sσ +
∑
i,j

tijσi ⊗ σj

 , (4.28)

where the coefficients r = (rx, ry, rz), s = (sx, sy, sz) and tij , i, j ∈ {x, y, z} are the

expectation values of the operators σ ⊗ 1, 1⊗ σ and σi ⊗ σj .
For the projectors on the Bell states si = ri = 0 and the matrix tij is diagonal.

This implies we only need to consider the values of diagonal components tii which

constitute a vector in 3-dimensional space, allowing us to represent the states in

Euclidean three space [94]. The Bell states correspond to vectors,

tΦ+ = (1,−1, 1) , tΦ− = (−1, 1, 1) ,

tΨ+ = (1, 1,−1) , tΨ− = (−1,−1,−1) . (4.29)

which, in turn, correspond to the vertices of a tetrahedron T in Figure 4.1. By

taking convex combinations of these, one obtains further diagonal states; the set of

all such states is called Bell-diagonal and is represented by the (blue) tetrahedron T
in Figure 4.1. The set of separable states forms a double pyramid, an octahedron, in

the tetrahedron. The octahedron is given by the intersection of T with its reflection

through the origin, −T . The maximally mixed state 1
414 has coordinates (0, 0, 0)

and it lies at the origin. The entangled states are located outside the octahedron in

the cones of the tetrahedron, see Figure 4.1.

We can now visualise the behaviour of spin by calculating the orbits of Bell

states under all types of rotations as functions of the Thomas-Wigner angle ω,

t(ω) = (txx, tyy, tzz) with tii = Tr(ρ′′S(ω)σi ⊗ σi) , i ∈ {x, y, z} . (4.30)

We will use a single parameter ω to characterise rotations on both particles, making

the assumption that momenta of both particles are of equal magnitude, |p| = |q|,
and both are transformed by boosts with the same rapidity ξ. In a more general

setting these assumptions may be relaxed, meaning that particles could be subject

to different boost geometries, which in turn implies that spins may undergo differ-

ent rotations. When surveying the topic for the first time, however, we would like

to keep the model simple enough in order to gain some insight into how various

kinds of momenta affect spin entanglement. In principle, these results can be then
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Figure 4.1. The geometry of Bell diagonal states. The vertices of the tetrahedron T correspond to the
four Bell states

∣∣Φ+
〉
,
∣∣Φ−〉, ∣∣Ψ+

〉
, and

∣∣Ψ−〉. Convex combinations of projectors on the Bell states,
the Bell diagonal states, lie on or in the tetrahedron. A Bell diagonal state is separable iff it lies in
the double pyramid formed by the intersection of the tetrahedron T and its reflection through the
origin −T .

later refined by allowing a distinct boost scenario for each particle.

4.5 Entangled pure spins: Bell states

4.5.1 Product momenta |M1〉

If momenta are initially in the product state
∣∣M1

〉
= |p,q〉, the boosted state is

given by

∣∣ψ′′〉 = |Λp,Λq〉R(Λ,p)⊗R(Λ,q) |Ψ〉 . (4.31)

We see that each particle undergoes a momentum dependent rotation and the final

spin state is described by a Bell state that is transformed by a local unitary of the

form U1 ⊗ U2. Local unitaries leave the entanglement of Bell states invariant, hence

Lorentz boosting momenta of such form does not change entanglement between

spins. This was noted first in [17], where the authors carry out a thorough study of

both massive spin-1/2 particles and massless photons. The conclusion holds for all
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three types of rotations because they are all special cases of the form U1 ⊗ U2.

In the context of this work, momenta of such form represent a special case. We

will see shortly that in boost scenarios where momenta contain more terms entan-

glement will in general not remain invariant since spins undergo more complicated

transformations.

4.5.2 Product momenta
∣∣MΣ

〉
In the following sections 4.5.2.1–4.5.2.3, we will study spin rotations induced by the

product momenta of symmetric form

∣∣MΣ
〉

=
1

2
(|p〉+ |−p〉) (|q〉+ |−q〉) . (4.32)

4.5.2.1 Case Ri ⊗ 1

Rotations of the form Ri(ω) ⊗ 1 can be realised by various geometries as listed

in (4.25). For instance, if we choose the boost to be in the z-direction, the rota-

tion RX(ω)⊗ 1 occurs in a scenario where the momenta of the first particle lie in

the y − z-plane while the second particle’s momentum |0〉 is located at the origin.

The momenta then take the form (|py〉+ |−py〉) |0〉 /
√

2. Boosting in the z-direction

translates |0〉 along the z-axis, yielding no rotation. For the initial spin |Φ+〉 the

boosted state is given by

ρ′′S(ω) =
1

4
(14 + σx ⊗ σx − cosω σy ⊗ σy + cosω σz ⊗ σz)

= ρΦ+ cos2 ω

2
+ ρΨ+ sin2 ω

2
, (4.33)

This corresponds to the vector

tX⊗1(ω) = (1,− cosω, cosω) . (4.34)

The concurrence is given by

C(ω) = |cosω| . (4.35)

Plots for the orbit of the state and concurrence are shown in Figure 4.2.

We can now understand the action of boosts on |Φ+〉. As mentioned above, in

general a boost maps a pure state into a mixed one. Equation (4.33) shows that

the Bell state |Φ+〉 is mapped into a mixture of itself and the projector on |Ψ+〉, the

states depicted by the red line in Figure 4.2. As boost increases, the state moves
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Figure 4.2. Spin orbit and concurrence underRi⊗1 with ω ∈ [0, π]. (a) Initial state
∣∣Φ+

〉
corresponds

to vertex (1,−1, 1), orbit for RX ⊗ 1 is shown red, RY ⊗ 1 green and RZ ⊗ 1 blue. (b) Concurrence
has the same shape for all Ri ⊗ 1.

along the line towards the center of the face, reaching a separable state at ω = π/2.

Boosts with even higher speeds result again in entangled states. Finally, as the

Thomas-Wigner rotation angle approaches π, the boosted observer sees the state

|Ψ+〉 instead of |Φ+〉.
Direct calculation shows that other rotations induce similar orbits. For RY ⊗ 1

and RZ ⊗ 1 we obtain

tY⊗1(ω) = (cosω,−1, cosω) ,

tZ⊗1(ω) = (cosω,− cosω, 1) , (4.36)

with the concurrence given by the expression (4.35). The three orbits ti⊗ 1 of |Φ+〉
are related by rotations of 2πn/3, n = 1, 2, of the tetrahedron T where the axis of

rotation is the line through (0, 0, 0) and the vertex (1,−1, 1) representing |Φ+〉.
Calculating rotations for other Bell states produce similar orbits, the only differ-

ence being the initial state. For a given state, orbits under different rotations Ri⊗ 1

are related again by rotations of 2πn/3 of the tetrahedron around the axis through

the origin and the vertex representing the respective state.

All in all, orbits of rotations of type Ri ⊗ 1 generated by the product momenta∣∣MΣ
〉

for all the Bell states belong to the same equivalence class which we denote

by [RX ⊗ 1,MΣ
Y 0,Φ

+].
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Figure 4.3. Spin orbit and concurrence underRi⊗Ri with ω ∈ [0, π]. (a) Initial state
∣∣Φ+

〉
corresponds

to the vertex at (1,−1, 1),RX⊗RX is shown red,RY ⊗RY green andRZ⊗RZ blue. (b) Concurrence
has the same shape for all Ri ⊗Ri.

4.5.2.2 Case Ri ⊗Ri

Rotations of the form Ri(ω)⊗ Ri(ω) can be again implemented by various geome-

tries. For example, when the boost is in the z-direction, then RX(ω) ⊗ RX(ω) is

realised by the state (|py〉+ |−py〉) (|qy〉+ |−qy〉) /2 where momenta of both parti-

cles lie in the y − z-plane. A Lorentz boost sends the spin state |Φ+〉 to

ρ′′S(ω) =
1

4

(
14 + σx ⊗ σx − cos2 ω σy ⊗ σy + cos2 ω σz ⊗ σz

)
= ρΦ+

(
1 + cos2 ω

2

)
+ ρΨ+

(
1− cos2 ω

2

)
, (4.37)

which corresponds to the vector,

tX⊗X(ω) = (1,− cos2 ω, cos2 ω) . (4.38)

We calculate that the concurrence is given by

C(ω) = cos2 ω . (4.39)

Plots for the orbit of the state and concurrence are shown in Figure 4.3.

The effect of boosts on |Φ+〉 starts out qualitatively in a similar fashion to the

previous case. Initially, as rotation increases, |Φ+〉 is again mapped into a mixture

of itself and |Ψ+〉, corresponding to a point on the line connecting the two states.

When ω = π/2, the moving observer sees a separable state. However, at boosts
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that generate rotations larger than π/2 the orbit differs from the previous case since

the boosted state moves back along the same path towards the rest frame state. At

ω = π, we obtain the original rest frame state |Φ+〉.
The concurrence is rather similar to the previous type in that it decreases mono-

tonically from 1 to 0 between [0, π/2] and increases monotonically from 0 to 1 be-

tween [π/2, π], while the precise expression differs slightly from the previous case.

Analysis of other rotations and Bell states runs along similar lines. Rotations

RY ⊗RY and RZ ⊗RZ produce orbits

tY⊗Y (ω) = (cos2 ω,−1, cos2 ω) ,

tZ⊗Z(ω) = (cos2 ω,− cos2 ω, 1) . (4.40)

These are related to tX⊗X by a rotation of 2πn/3, n = 1, 2, around the axis through

origin and the vertex corresponding to |Φ+〉. By directly computing the trajectories

for other Bell states we obtain orbits of similar form, where the only difference

lies in the initial state. All these orbits are related by rotations of multiples 2π/3

in the state space. In summary, orbits corresponding to rotations of type Ri ⊗ Ri
generated by the product momenta

∣∣MΣ
〉

fall in the same equivalence class; we

denote [RX ⊗RX ,MΣ
Y Y ,Φ

+].

4.5.2.3 Case Ri ⊗Rj

Mixed rotations Ri⊗Rj can be implemented by momenta that lie in different boost

planes. For instance, when boost is in the z-direction, then spins are rotated by

RX ⊗ RY given that momenta are of the form (|py〉+ |−py〉) (|qx〉+ |−qx〉) /2. In

this case a boost maps |Φ+〉 to the state

ρ′′S(ω) =
1

4

(
14 + cosω σx ⊗ σx − cosω σy ⊗ σy + cos2 ω σz ⊗ σz

)
= ρΦ+ (1 + cosω)2

4
+ ρΦ− (1− cosω)2

4

+
(
ρΨ+ + ρΨ−)(1− cos2 ω

4

)
, (4.41)

This corresponds to the vector

tX⊗Y (ω) =
(
cosω,− cosω, cos2 ω

)
. (4.42)
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Figure 4.4. Spin orbit and concurrence under Ri ⊗ Rj , i 6= j and ω ∈ [0, π]. (a) Initial state
∣∣Φ+

〉
corresponds to the vertex at (1,−1, 1), RX ⊗ RY is shown red, RX ⊗ RZ green and RY ⊗ RZ blue.
(b) Concurrence has the same shape for all Ri ⊗Rj .

The concurrence is given by

C(ω) =

{
1
4 (−1 + 4|cosω|+ cos 2ω) if 0 ≤ ω < ω−, ω+ < ω < π

0 if ω− ≤ ω ≤ ω+

(4.43)

where we find that ω∓ = arccos(∓1±
√

2) by solving the equation C(ω) = 0 for ω.

Plots for spin orbit and concurrence are shown in Figure 4.4. The behaviour of

spin under mixed rotations is quite different from the two previous cases. As is seen

in Figure 4.4, the spin orbit has the shape of a curve that starts at the vertex (1,−1, 1)

representing the rest state |Φ+〉. It then evolves towards the origin, reaching it at

ω = π/2. The second half of the orbit for values ω ∈ [π/2, π] is symmetric to the first

half. The state evolves towards the vertex (−1, 1, 1) representing the Bell state |Φ−〉,
reaching it when boosts approach the speed of light. The orbit lies in the plane that

intersects the initial state |Φ+〉, the origin and the final state |Φ−〉.
It is interesting that spins become separable when the Thomas-Wigner angle

lies between [ω−, ω+], Figure 4.4b. While this might look puzzling if we only knew

the behaviour of concurrence, the plot of the orbit clearly shows what is happening.

The spin state evolves in the plane that intersects the octahedron of separable states,

hitting the face of the octahedron when ω = ω−, and then following a path towards

the maximally mixed state 1
414 represented by (0, 0, 0). When ω = π/2, the moving

observer sees the maximally mixed state. The concurrence of the boosted state

becomes non-zero again as ω becomes greater than ω+, this corresponds to the point
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where the spin state leaves the octahedron.

Other rotations RX ⊗RZ and RY ⊗RZ produce similar orbits,

tX⊗Z(ω) = (cosω,− cos2 ω, cosω) ,

tY⊗Z(ω) = (cos2 ω,− cosω, cosω) . (4.44)

In analogy to the cases above, they are related to tX⊗Y by rotations of 2πn/3,

n = 1, 2 around the axis through the origin and the vertex corresponding to |Φ+〉.
In the same vein, we calculate that other Bell states produce similar orbits albeit

with different initial states. In conclusion, orbits representing mixed rotations of

type Ri ⊗Rj , i 6= j, for the product momenta
∣∣MΣ

〉
belong to the same class which

we denote by [RX ⊗RY ,MΣ
Y X ,Φ

+].

4.5.3 Product momenta |M×〉

The case of product momenta |M×〉 falls into two classes, the Ri ⊗ 1 and the com-

bination of Ri⊗Ri with Ri⊗Rj . The latter is because |M×〉 consists of momentum

terms that generate both types of rotation. For instance, if boost is in the z-direction

and momenta are constrained to lie in the x − z- and y − z-planes, we get terms

|±px,±px〉, |±py,±py〉, |±px,±py〉 and |±py,±px〉, which generate the respective

rotations RX ⊗RX , RY ⊗RY , RY ⊗RX and RX ⊗RY . It also follows that the maps

and orbits of both classes can be calculated as convex combinations of transforma-

tions we have obtained above.

4.5.3.1 Case Ri ⊗ 1

Let us consider the single particle rotation scenario where boost is in the z-direction

and the first particle is in a superposition of momenta |±py〉 and |±px〉. The result-

ing orbit of |Φ+〉 is a convex sum of the orbits tX⊗1 and tY⊗1 from section 4.5.2.1,

tXY⊗1(ω) =
1

2
(tX⊗1(ω) + tY⊗1(ω)) ,

=
(

cos2 ω

2
,− cos2 ω

2
, cosω

)
. (4.45)

The corresponding concurrence is given by

C(ω) =

{
cosω if 0 ≤ ω < π/2 ,

0 if π/2 ≤ ω ≤ π .
(4.46)

Plots of spin orbit and concurrence are shown in Figure 4.5. Since the orbit is a
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Figure 4.5. Spin orbit and concurrence underRi⊗1 generated by momenta
∣∣M×〉with ω ∈ [0, π]. (a)

Initial state
∣∣Φ+

〉
corresponds to the vertex at (1,−1, 1), the orbit tXY⊗1 is shown red, tXZ⊗1 green

and tY Z⊗1 blue. (b) Spin concurrence has the same shape for all orbits.

convex sum of tX⊗1 and tY⊗1, it is represented by a line connecting the initial

state (1,−1, 1) and the point that corresponds to the equal mixture of projectors

onto |Ψ+〉 and |Ψ−〉. Accordingly, concurrence displays the same behaviour until

ω = π/2. In contrast to single particle rotations though it vanishes for all values of

ω greater than π/2. This is because when boosts induce rotations larger than π/2,

the state follows a path on the face of the octahedron until ω = π.

The other rotations produce similar orbits,

tXZ⊗1(ω) =
(

cos2 ω

2
,− cosω, cos2 ω

2

)
,

tY Z⊗1(ω) =
(

cosω,− cos2 ω

2
, cos2 ω

2

)
. (4.47)

They are again related to each other by rotations in the state space analogously

to the cases discussed above. Other Bell states have similar orbits, and all orbits

belong to the same equivalence class which we denote [RXY⊗1,M
×
Y X0,Φ

+].

4.5.3.2 Case Ri ⊗Ri and Ri ⊗Rj

For two particle rotations let us consider the scenario where the boost is in the

z-direction and momenta are constrained to lie in the x− z- and y − z-planes. The

state |M×〉 then consist of momentum terms of the form |±px,±px〉, |±py,±py〉,
|±px,±py〉 and |±py,±px〉, which generate respective rotation terms RY ⊗ RY ,

RX ⊗ RX , RX ⊗ RY and RY ⊗ RX . The spin orbit can be calculated by combining
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Figure 4.6. Spin orbit and concurrence underRi⊗Ri andRi⊗Rj generated by momenta
∣∣M×〉with

ω ∈ [0, π]. (a) Initial state
∣∣Φ+

〉
corresponds to the vertex at (1,−1, 1), the orbit tX⊗Y is shown red,

tX⊗Z green and tY⊗Z blue. (b) Spin concurrence has the same shape for all orbits.

the respective orbits,

tM×X⊗Y (ω) =
1

4

(
tMΣ
X⊗X + tMΣ

X⊗Y + tMΣ
Y⊗X + tMΣ

Y⊗Y
)

=
(

cos4 ω

2
,− cos4 ω

2
, cos2 ω

)
, (4.48)

where we have used superscripts to distinguish between the orbits generated by∣∣MΣ
〉

and |M×〉. The concurrence is

C(ω) =


1
16 (− |4 cosω − cos 2ω − 3|+ 4 cosω

+7 cos 2ω + 5) if 0 ≤ ω < ω1 ,

0 if ω1 ≤ ω ≤ π ,
(4.49)

where we find that ω1 = 1.23 rad by solving the equation C(ω) = 0 for ω. It is

the angle at which the state enters the octahedron and becomes separable. Plots of

spin orbit and concurrence are shown in Figure 4.6. The orbit exhibits interesting

behaviour, starting out in a manner similar to tX⊗Y generated by the symmetric

momentum
∣∣MΣ

〉
. After entering the octahedron, it changes course and evolves

towards the tip of the top pyramid, ending at the state which corresponds to the

equal mixture of projectors onto |Φ+〉 and |Φ−〉 when ω = π. This explains why

concurrence vanishes at all boosts that induce rotations larger than 1.23 rad.

Orbits induced by other rotations have similar form,

tX⊗Z(ω) =
(

cos4 ω

2
,− cos2 ω, cos4 ω

2

)
,

tY⊗Z(ω) =
(

cos2 ω,− cos4 ω

2
, cos4 ω

2

)
, (4.50)
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where we have omitted superscripts for brevity. Other Bell states produce orbits

of similar structure. All belong to the same equivalence class, which we denote

[RX⊗Y ,M
×
Y X ,Φ

+].

The significance of this momentum state lies in that it can be employed to model

quite accurately the continuous momenta discussed in the seminal paper [15], see

chapter 5 below.

4.5.4 Entangled momenta

In the following sections we will assume that momenta are entangled and take the

form of Bell states
∣∣MΦ+

〉
,
∣∣MΨ+

〉
or Bell-like states

∣∣M [Φ+]
〉
,
∣∣M [Ψ+]

〉
. The former

are instantiated by rotations of typeRi⊗Ri whereas the latter occur when rotations

are around different axes, Ri ⊗ Rj , i 6= j. As mentioned above, there is no need to

consider momenta with other relative phases since they induce the same orbits for

the spin state. Also, the case Ri ⊗ 1 will be omitted since it is equivalent to the

rotation generated by product momenta. This is because if only the first particle is

rotated, the product momenta and the entangled momenta collapse into the same

state. We will also leave out the implementations of concrete rotations since they

are analogous to those of product momenta.

4.5.4.1 Case Ri ⊗Ri

The case of two-rotationsRi⊗Ri for entangled momenta is quite dissimilar from the

behaviour generated by the product momenta. We begin by calculating the orbit

of |Φ+〉 generated by
∣∣MΦ+

〉
. The three rotations fall into two cases. The RX ⊗RX

and RZ ⊗RZ produce orbits

tX⊗X(ω) = (1,− cos 2ω, cos 2ω) ,

tZ⊗Z(ω) = (cos 2ω,− cos 2ω, 1) , (4.51)

whereas RY ⊗RY leaves the state invariant,

tY⊗Y (ω) = (1,−1, 1) . (4.52)

This asymmetry arises from the fact that
∣∣MΦ+

〉
consists of momentum terms which

induce rotations in the positive direction, Ri(ω) ⊗ Ri(ω), and in the negative di-

rection Ri(−ω) ⊗ Ri(−ω). |Φ+〉 is an eigenstate of such rotations around the y-

axis, RY (±ω) ⊗ RY (±ω), but not around the other axes, RX(±ω) ⊗ RX(±ω) and
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Figure 4.7. Spin orbit and concurrence of
∣∣Φ+

〉
under Ri ⊗ Ri with i ∈ {X,Z} and ω ∈ [0, π].

Entangled momenta are given by either
∣∣MΦ+

〉
or
∣∣MΨ+

〉
. (a) Initial state

∣∣Φ+
〉

corresponds to vertex
(1,−1, 1), orbit for RX ⊗RX is shown red and RZ ⊗RZ is blue. (b) Concurrence has the same shape
for both orbits.

RZ(±ω) ⊗ RZ(±ω). The concurrence corresponding to the trivial orbit tY⊗Y is

C = 1, whereas the nontrivial orbits tX⊗X and tZ⊗Z give

C(ω) = |cos 2ω| , (4.53)

Plots for non-trivial state evolution and concurrence are shown in Figure 4.7.

Other Bell states display similar systematic behaviour. Depending on whether

or not they are eigenstates of the particular rotation, they do or do not show non-

trivial behaviour. There are two equivalence classes, the non-trivial one which we

denote [RX ⊗RX ,MΦ+
Y Y ,Φ

+] and the one with trivial orbit, [RY ⊗RY ,MΦ+
XX ,Φ

+].

The expression for spin concurrence in Equation (4.53) was first reported in [92].

The authors consider a geometry where momenta of both particles make an angle

π/2 to the direction of boost, obtaining a change of entanglement shown between

[0, π/2] in Figure 4.7.

4.5.4.2 Case Ri ⊗Rj

Mixed rotations Ri ⊗ Rj , i 6= j realised by entangled momenta induce spin orbits

that are not diagonal. For instance, the coefficient matrices ti⊗j with i, j ∈ {X,Y, Z},
generated by the momentum state

∣∣M [Φ+]
〉

for the rest frame spin |Φ+〉 are as fol-
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lows,

tX⊗Y (ω) =


cosω 0 0

− sin2 ω − cosω 0

0 0 cos2 ω

 , tX⊗Z(ω) =


cosω 0 0

0 − cos2 ω 0

sin2 ω 0 cosω

 ,

tY⊗Z(ω) =


cos2 ω 0 0

0 − cosω 0

0 − sin2 ω cosω

 . (4.54)

We calculate that concurrence is the same for all three orbits,

C(ω) = cos2 ω , (4.55)

which we recognise as being identical to the concurrence of Ri ⊗ Ri generated by

product momenta
∣∣MΣ

〉
. The plot is shown in Figure 4.8
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Figure 4.8. Spin concurrence for mixed rotations Ri ⊗ Rj , i 6= j, generated by entangled momenta∣∣∣M [Φ+]
〉

and
∣∣∣M [Ψ+]

〉
.

Although the states are not diagonal, the structure of ti⊗j suggests that the or-

bits are isomorphic to each other. All three matrices contain the same diagonal

terms as the orbit of Ri ⊗ Rj induced by product momenta. In addition, all ma-

trices contain an off-diagonal term ± sin2 ω, whose location varies systematically.

This allows us to represent the matrices ti⊗j by a four vector consisting of the di-

agonal and off-diagonal terms, (tkk,± sin2 ω). The three states can be thus seen to

be related by a one-one map. They seem to share similar geometric structure as

well. The first three components of the four vector represent the orbit of Ri ⊗ Rj ,
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the fourth component varies in the same way (modulo sign) albeit in a different

subspace for different rotations.

The expression for concurrence (4.55) is identical to that of Ri ⊗ Ri generated

by product momenta. Could it be then that the orbit exhibits the same shape as

well? This is not the case. Whereas the orbit of the product rotation is cyclic since

it returns to the initial state at ω = π, the orbit here starts at |Φ+〉 when ω = 0 and

ends at |Φ−〉with ω = π.

We conclude that more investigation is needed to to determine the geometric

structure of the orbit but we will not pursue the issue further since it is not crucial

at this point. By directly computing rotations for other Bell states we observe the

same structure shared by all orbits and the concurrence is always given by (4.55).

All in all there is one equivalence class whose orbits can be represented by four

vectors and we denote [RX ⊗RY ,MΦ+
Y X ,Φ

+].

4.5.5 Intermediate summary

We summarise the results of the analysis of product and entangled momenta in Ta-

bles 4.1 and 4.2, excluding the simple product momenta
∣∣M1

〉
which leave entan-

glement invariant. We discern eight equivalence classes into which the behaviour

State Orbit Concurrence Equivalence class∣∣MΣ
〉

(1,− cosω, cosω) max {0, |cosω|} [RX ⊗ 1,MΣ
Y 0,Φ

+]

(1,− cos2 ω, cos2 ω) max
{

0, cos2 ω
}

[RX ⊗RX ,M
Σ
Y Y ,Φ

+]

(cosω,− cosω, cos2 ω)
max

{
0, 1

4
(−1 + 4|cosω|

+ cos 2ω)
[RX ⊗RY ,M

Σ
Y X ,Φ

+]

|M×〉
(
cos2 ω

2 ,− cos2 ω
2 , cosω

)
max {0, cosω} [RXY ⊗ 1,M×

Y X0,Φ
+]

(
cos4 ω

2 ,− cos4 ω
2 , cos2 ω

) max
{

0, 1
16

(− |4 cosω − cos 2ω

−3|+ 4 cosω

+7 cos 2ω + 5)

[RX ⊗RY ,M
×
Y X ,Φ

+]

Table 4.1: Spin orbit and concurrence of the Bell states generated by product momenta
∣∣MΣ

〉
and |M×〉. The second column shows a typical orbit.

of spin and spin entanglement falls under Lorentz boosts generated by product and

entangled momenta. Further investigation is needed to determine the shape of the

orbit of [RX ⊗RY ,MΦ+
Y X ,Φ

+].
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Rotation Orbit Concurrence Equivalence class

Ri ⊗Ri (cos 2ω,−1, cos 2ω) max {0, |cos 2ω|} [RX ⊗RX ,M
Φ+
Y Y ,Φ

+]

trivial 1 [RY ⊗RY ,M
Φ+
XX ,Φ

+]

Ri ⊗Rj not diagonal max
{

0, cos2 ω
}

[RX ⊗RY ,M
Φ+
Y X ,Φ

+]

Table 4.2: Spin orbit and concurrence of the Bell states generated by entangled momenta∣∣MΦ+
〉
,
∣∣MΨ+

〉
,
∣∣M [Φ+]

〉
and

∣∣M [Ψ+]
〉
. The second column shows a typical orbit.

4.6 Mixed spins: Werner states

So far we have studied the behaviour of Bell states under Lorentz boosts; they

are the pure states that span the set of Bell diagonal states. But the Bell diagonal

states contain mixed states as well. We saw above that they have a rich structure,

comprising both entangled and separable states. This raises the intriguing question

of how the mixed spin states behave under Lorentz boosts, is the structure they

display similar to that of the Bell states or is it quite different? We will tackle this

question in the following sections by extending our treatment to mixed spin states.

As before the momentum space is assumed to be finite dimensional and spin–

momentum degrees factorize, so the total state of the system is of the form,

ρψ = ρM ⊗ ρΨ , (4.56)

where ρΨ is the spin state and ρM is momentum. As regards the spin state, we

would like to cover many different cases and find the possibly widest range of be-

haviour. Orbits of different Bell states turned out to be isomorphic to each other, we

expect to witness similar effect for mixed states. Another consideration is that we

wish to study mixed states of different degrees of entanglement, possibly ranging

from states with maximal entanglement to no entanglement at all. These considera-

tions naturally lead to the so-called Werner states. The family of generalised Werner

states are the states that interpolate between the maximally mixed and maximally

entangled state P+ = |Φ+〉 〈Φ+| ,

ρW (λ) = λ
∣∣Φ+

〉 〈
Φ+
∣∣+ (1− λ)

1

N
1 with λ ∈ [0, 1] , (4.57)

where in the present case N = 4 for the bipartite two level systems. The Werner

states lie on the line connecting the origin to the vertex (1,−1, 1) that represents the

maximally mixed Bell state |Φ+〉, see Figure 4.9. They contain both entangled and

separable mixed states which have interesting properties. For certain values of the
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Figure 4.9. The geometry of Bell diagonal states. Werner states ρW (λ) (green dashed) lie on the line
connecting the origin and the vertex at (1,−1, 1).

parameter λ the Werner states are entangled but do not violate the Bell inequal-

ity [80]. As the mixture moves from the origin, which represents the maximally

mixed state, towards the vertex corresponding to the Bell maximally entangled

state, it becomes entangled when crossing the face of the octahedron. This corre-

sponds to λsep = 1/3, or the distance 1/
√

3 from the origin. However, as was shown

in [95], the mixed state state violates the Bell inequality only when the distance is

greater than
√

3/
√

2 from the origin, corresponding to λ = 1/
√

2. These features

of Werner states make them particularly suitable for the purpose of probing the

behaviour of a wide range of mixed states with different degrees of entanglement.

We proceed in analogy to the Bell states and calculate the spin orbit as a function of

the Thomas-Wigner angle ω and the parameter λ.

We would like to retain the same momenta used for the pure states, so we can

take ρM in (4.56) to be projectors on the product,
∣∣MΣ

〉 〈
MΣ

∣∣ = PMΣ, or the en-

tangled states, for instance,
∣∣MΦ+

〉 〈
MΦ+

∣∣ = PMΦ+, and accordingly for the other

entangled states. On the other hand, as long as we are only interested in the boosted

spin state, we can also take momenta to be the mixed states that consist of the di-

agonal elements of the projector on the corresponding pure momenta,

ρMd = diag |M〉 〈M | . (4.58)
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This is because if we assume that the momenta of the total rest frame state are given

by mixed momenta that comprise the diagonal elements of the corresponding pure

momenta,

ρψ =
∑
|ψ(pi,qj)|2 |pi,qj〉 〈pi,qj | ⊗ ρΨ , (4.59)

then a Lorentz boost Λ transforms this to

ρψ
′′

=
∑
|ψ(pi,qj)|2 |Λpi,Λqj〉 〈Λpi,Λqj | ⊗R(Λ,pi,qj)ρ

ΨR†(Λ,pi,qj) . (4.60)

By tracing out momenta we obtain the spin state

ρψ
′′

S =
∑
|ψ(pi,qj)|2R(Λ,pi,qj)ρ

ΨR†(Λ,pi,qj) , (4.61)

which is identical to the expression (4.8) that describes the boosted spin resulting

from pure spin–momentum states [92]. In other words, only the diagonal elements

of the momentum matrix contribute to the final spin state. This implies that we

would have obtained the same results above if we had used mixed momenta (4.58)

for the pure spin states. It also means we would arrive at the same spin state if

we used the pure momentum state for the mixed spins. In the following calcula-

tions we will use mixed momenta (4.58) since we will be only interested in the spin

state.2

4.6.1 Product momenta ρM1

We begin by discussing briefly the simplest product state ρM1 =
∣∣M1

〉 〈
M1
∣∣. The

analysis runs along the same lines as in the case of pure momentum. ρM1 generates

a unitary map of the form U1 ⊗ U2 on the spin state, which takes the spin Werner

state to

U1 ⊗ U2 : ρW (λ) 7−→ ρ′W (λ) = λ
∣∣Φ′〉 〈Φ′∣∣+ (1− λ)

1

4
14 , (4.62)

where |Φ′〉 = U1 ⊗ U2 |Φ+〉 is a maximally entangled pure state because the unitary

does not change the degree of entanglement. The final spin state ρ′W (λ) again

displays the form of a mixture of a maximally entangled and maximally mixed

state parameterised by λ, thus containing the same amount of entanglement as

the initial ρW (λ). In summary, the degree of entanglement of spin Werner states

2 However, if we were interested in the total state, then we would need to distinguish between pure
and mixed momenta since they generate different total spin–momentum states.
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remains invariant under maps generated by simple product momenta ρM1.

4.6.2 Product momenta ρΣ
d

In the following sections 4.6.2.1–4.6.2.3 we will focus on the mixed momenta

ρMΣ
d = diag

∣∣MΣ
〉 〈
MΣ

∣∣ , (4.63)

which form the counterpart of pure product momenta
∣∣MΣ

〉
for the pure spin

states.

4.6.2.1 Case Ri ⊗ 1

We calculate that the orbit of the single particle rotation RX ⊗ 1 is given by

tX⊗1(ω, λ) = λ (1,− cosω, cosω) . (4.64)

The concurrence has the form,

C(ω, λ) =

{
max

{
0, 1

2 (−1 + λ+ 2λ|cosω|)
}

if λ ∈ (λsep, 1]

0 if λ ∈ [0, λsep]
(4.65)

where λsep corresponds to the point on the face of the octahedron where the initial

state crosses the boundary of entangled and separable states. Figure 4.10 shows

plots of state change and concurrence. We illustrate spin behaviour by plotting

three orbits in Figure 4.10a for three different values of λ. This provides helpful

insight into the behaviour of entanglement. For λ = 1 we recover the orbit of

the Bell state |Φ+〉. As λ decreases, the initial state becomes mixed, moving closer

to the center of the octahedron. At λ = 3/5, the initial state lies just outside the

octahedron, still containing some entanglement at C = 2/5. Now, when the state

is boosted, it moves along the orbit which is parallel to the orbit of the Bell state,

becoming separable as it enters the octahedron. By setting concurrence zero in the

first line of Equation (4.65), we find that the corresponding value of ω is

ω± = arccos ±
(

1− λ
2λ

)
, (4.66)

which for λ = 3/5 evaluates to ω+ = 1.23 and ω− = 1.91. Thus in the range

ω ∈ [1.23, 1.91] spins appear fully separable to the boosted observer. However,

as boosts increase even further, entanglement becomes non-zero again when ω is
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Figure 4.10. Typical spin orbit and concurrence under Ri ⊗ 1 with ω ∈ [0, π] generated by mixed
momenta ρMΣ

d . (a) Initial states ρW (λ) lie on the line connecting the origin to the vertex (1,−1, 1)
and correspond to values λ = 1, 3/5, 1/3 with the respective colours red, blue and orange. Note
that the figure has been rotated relative to the previous ones. (b) Concurrence is shown for λ =
1, 4/5, 3/5, 2/5, 1/3 with the respective colours red, green, blue, magenta, orange.

larger than 1.91. The orbit leaves the octahedron and enters the region of entangled

states. As boosts near the speed of light, the Thomas-Wigner angle approaches π

and the state is mapped to the point which is a mirror image of the initial state

with respect to the plane P that intersects the origin and the vertices (1,−1,−1)

and (1, 1, 1). This is a generalisation of the phenomenon we saw in the Bell states

where boosts at the speed of light mapped |Φ+〉 to |Ψ+〉. In the present case, maxi-

mal boosts map the Werner state ρW (λ) to a another Werner state, which is written

as a mixture of |Ψ+〉 〈Ψ+| and the maximally mixed state,

ρWΨ+ = λ
∣∣Ψ+

〉 〈
Ψ+
∣∣+ (1− λ)

1

4
14 with λ ∈ [0, 1] . (4.67)

When ω = π, concurrence attains 2/5, the same value it has in the rest frame.

States that lie initially in the octahedron, for instance when λ = 1/3, are separa-

ble. Boosts map the state to an orbit which is again parallel to that of the Bell state,

with the total orbit being of symmetric shape with respect to the plane P . How-

ever, because the whole orbit remains inside the octahedron of separable states,

concurrence is zero at all boost values.

Other rotations display symmetric behaviour, there is only one equivalence

class which we denote, in analogy to pure states, [RX ⊗ 1, ρMΣ
d , ρW ].
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Figure 4.11. Typical spin orbit and concurrence under Ri ⊗ Ri with ω ∈ [0, π] generated by mixed
momenta ρMΣ

d . (a) Initial states ρW (λ) lie on the line connecting the origin to the vertex (1,−1, 1)
and correspond to values λ = 1, 3/5, 1/3 with the respective colours red, blue and orange. (b) Con-
currence is shown for λ = 1, 4/5, 3/5, 2/5, 1/3 with the respective colours red, green, blue, magenta,
orange.

4.6.2.2 Case Ri ⊗Ri

For boost scenarios involving rotations on two particles, we calculate the orbit of

RX ⊗RX ,

tX⊗X(ω, λ) = λ
(
1,− cos2 ω, cos2 ω

)
, (4.68)

which gives for concurrence

C(ω, λ) =

{
max

{
0, −1

2 + λ+ 1
2λ cos 2ω

}
if λ ∈ (λsep, 1]

0 if λ ∈ [0, λsep]
(4.69)

where as above λsep is the value where the rest frame state becomes separable. Plots

of spin orbits and concurrence are shown in Figure 4.11.

Many characteristics are similar to the previous case. Orbits for initial states

with less than maximal entanglement are parallel to the orbit of the Bell state |Φ+〉.
As boost increases, an initially entangled state moves towards the octahedron and

becomes separable when entering the octahedron. To find the corresponding values

of ω, we set the concurrence to zero in Equation (4.69) and solve for ω, obtaining

ωk,± =
1

2

(
2kπ ± arccos

(
1− 2λ

λ

))
, k ∈ N . (4.70)

The solutions relevant in the present case are ω0,+ and ω1,−. This means ρ′′S is sep-

arable if ω ∈ [ω0,+, ω1,−]. For instance, a state for which λ = 3/5, whose orbit
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is shown blue in Figure 4.11, concurrence vanishes if ω ∈ [0.96, 2.19], correspond-

ing to points at which the orbit enters and leaves the octahedron. In the similar

vein, initial states that lie inside the octahedron and are separable follow an or-

bit for which entanglement remains zero. There is a difference from the previous

case: when boosts approach the speed of light, the state is mapped back to the orig-

inal state.

Other rotations again generate symmetric orbits and there is only one equiva-

lence class which we denote [RX ⊗RX , ρMΣ
d , ρW ].

4.6.2.3 Case Ri ⊗Rj

For boost scenarios that contain terms with different rotations for either particle we

calculate that the orbit generated by RX ⊗RZ is

tX⊗Z(ω, λ) = λ
(
cosω,− cos2 ω, cosω

)
, (4.71)

and concurrence is

C(ω, λ) =


max

{
0, 1

8

(∣∣ |2 + λ+ 4λ cosω + λ cos 2ω|
− |2 + λ− 4λ cosω + λ cos 2ω|

∣∣+ 2 (−2 + λ+ λ cos 2ω)
)}

if λ ∈ (λsep, 1]

0 if λ ∈ [0, λsep]

(4.72)

where at λsep the state becomes separable. Figure 4.12 shows plots of orbits and

concurrence. We recognise a pattern of behaviour that is similar to the previous

cases, albeit with a few differences. As before, the states follow an orbit that resides

in the octahedron for a range of values around π/2. However, the region where

concurrence vanishes is considerably larger than in the previous cases. Also, while

above orbits of mixed states were parallel to the orbit of the Bell state, here all the or-

bits pass through the maximally mixed state 1
414. To find the values of ω for which

concurrence vanishes, we set concurrence to zero in the first line of Equation (4.72)

and solve for ω,

ωk,± = kπ ± arccos

(
λ−
√
λ+ λ2

λ

)
, k = 0, 1 , (4.73)

entailing that the state is separable if ω ∈ [ω1,−, ω0,+]. For example, when λ = 3/5,

entanglement vanishes in the interval ω ∈ [0.89, 2.25]. Orbits of other rotations
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Figure 4.12. Typical spin orbit and concurrence under Ri ⊗ Rj , i 6= j with ω ∈ [0, π] generated
by mixed momenta ρMΣ

d . (a) Initial states ρW (λ) lie on the line connecting the origin to the vertex
(1,−1, 1) and correspond to values λ = 1, 3/5, 1/3 with the respective colours red, blue and orange.
(b) Concurrence is shown for λ = 1, 4/5, 3/5, 2/5, 1/3 with the respective colours red, green, blue,
magenta, orange.

belong to the same equivalence class which we denote [RX ⊗RZ , ρMΣ
d , ρW ].

4.6.3 Product momenta ρM×d

The analysis of product momenta ρM×d runs along the same lines as for the pure

spins. It divides into two classes, the Ri ⊗ 1 and the combination of Ri ⊗ Ri with

Ri ⊗ Rj , where the orbits of each can be found by taking convex combinations of

the respective trajectories of maps found earlier.

4.6.3.1 Case Ri ⊗ 1

Starting with the momentum where the first particle is a mixture of projectors on

|±py〉 and |±px〉, we calculate the convex combination in analogy to the pure states,

Equation (4.45),

tXY⊗1(ω, λ) = λ
(

cos2 ω

2
,− cos2 ω

2
, cosω

)
. (4.74)

Orbits of the other states can be obtained in the same fashion; they exhibit similar

structure. The corresponding concurrence is

C(ω, λ) =

{
max

{
0, 1

2 (−1 + λ+ 2λ cosω)
}

if λ ∈ (λsep, 1]

0 if λ ∈ [0, λsep]
(4.75)
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Figure 4.13. Typical spin orbit and concurrence under Ri ⊗ 1 generated by momenta ρM×d with
ω ∈ [0, π]. (a) Initial states ρW (λ) lie on the line connecting the origin to the vertex (1,−1, 1) and cor-
respond to values λ = 1, 3/5, 1/3 with the respective colours red, blue and orange. (b) Concurrence
is shown for λ = 1, 4/5, 3/5, 2/5, 1/3 with the respective colours red, green, blue, magenta, orange.

where λsep is the value at which the initial spin state becomes separable. Figure 4.13

shows plots of spin orbit and concurrence. For states with λ < 1, the states disen-

tangle at lower values of ω. This is because the orbits remain parallel to the orbit

of the Bell state and thus enter the octahedron sooner. Since they are also parallel

to the face of the bottom pyramid, the state never escapes the region of separabil-

ity. Other rotations generate similar orbits, there is one equivalence class which we

denote [RXY ⊗ 1, ρM×d , ρW ].

4.6.3.2 Case Ri ⊗Ri and Ri ⊗Rj

In a scenario where boost is in the z-direction and momenta are constrained to

the x − z- and y − z-planes, we calculate tX⊗Y by taking a convex combination of

respective orbits as in Equation (4.48),

tX⊗Y (ω, λ) = λ
(

cos4 ω

2
,− cos4 ω

2
, cos2 ω

)
. (4.76)

Other orbits are similar and the concurrence is given by

C(ω, λ) =


max

{
0, 1

16 (− |4λ cosω − λ cos 2ω + λ− 4|
+ 4λ cosω + 7λ cos 2ω + 9λ− 4)} if λ ∈ (λsep, 1]

0 if λ ∈ [0, λsep] .

(4.77)

Plots of spin orbit and concurrence are shown in Figure 4.14. While on the face of it
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Figure 4.14. Typical spin orbit and concurrenceRi⊗Ri andRi⊗Rj generated by momenta ρM×d with
ω ∈ [0, π]. (a) Initial states ρW (λ) lie on the line connecting the origin to the vertex (1,−1, 1) and cor-
respond to values λ = 1, 3/5, 1/3 with the respective colours red, blue and orange. (b) Concurrence
is shown for λ = 1, 4/5, 3/5, 2/5, 1/3 with the respective colours red, green, blue, magenta, orange.

the concurrence is of almost analogous shape as the previous case, the reason why

this occurs is quite different as the orbit follows a rather dissimilar path. The or-

bit initially moves downward as in the previous case, with the state disentangling

slightly earlier; soon after entering the octahedron the orbit turns upward and ends

at a point which lies at a point almost opposite to the point representing the final

state under RXY ⊗ 1. Visualisation of the orbit clearly reveals the difference be-

tween the two cases. Other rotations produce similar orbits, we denote the only

equivalence class by [RX ⊗RY , ρM×d , ρW ].

4.6.4 ‘Entangled’ momenta

We will next focus on mixed momenta that correspond to the pure entangled states,

ρMΦ+
d = diag

∣∣MΦ+
〉 〈
MΦ+

∣∣ ,
ρMΨ+

d = diag
∣∣MΨ+

〉 〈
MΨ+

∣∣ ,
ρ
M [Φ+]
d = diag

∣∣∣M [Φ+]
〉〈

M [Φ+]
∣∣∣ , (4.78)

ρ
M [Ψ+]
d = diag

∣∣∣M [Ψ+]
〉〈

M [Ψ+]
∣∣∣ .

They are clearly not entangled since they contain only the diagonal elements of

the projectors on entangled states. We will, however, categorise the resulting spin

states as if they had been generated by entangled momenta for the reason high-

lighted above, namely, that entangled momenta would lead to the same spin states.
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Figure 4.15. Typical spin orbit and concurrence under Ri ⊗ Ri with ω ∈ [0, π] generated by mixed
momenta ρMΦ+

d or ρMΨ+
d . (a) Initial states ρW (λ) lie on the line connecting the origin to the vertex

(1,−1, 1) and correspond to values λ = 1, 3/5, 1/3 with the respective colours red, blue and orange.
(b) Concurrence is shown for λ = 1, 4/5, 3/5, 2/5, 1/3 with the respective colours red, green, blue,
magenta, orange.

4.6.4.1 Ri ⊗Ri

In analogy to the pure momenta, the case of rotations around the same axis splits

into two distinct classes. Taking cue from the pure momenta, we first calculate the

non-trivial orbits generated by ρMΦ+
d under RX ⊗RX and RZ ⊗RZ ,

tX⊗X(ω, λ) = λ (1,− cos 2ω, cos 2ω) ,

tZ⊗Z(ω, λ) = λ (cos 2ω,− cos 2ω, 1) , (4.79)

which have the concurrence

C(ω, λ) =

{
max

{
0, 1

2 (−1 + λ+ 2λ|cos 2ω|)
}

if λ ∈ (λsep, 1]

0 if λ ∈ [0, λsep] .
(4.80)

The plots of orbits and concurrence are shown in Figure 4.15.

We also get the second equivalence class for ρMΦ+
d which contains the trivial

orbit generated by RY ⊗ RY . The concurrence C(λ) = (−1 + 3λ)/2 of this class

does not depend on ω.

The non-trivial orbits share the characteristics of the orbits induced by the pure

momenta. The orbits of mixed spins are parallel to those of pure spins, and traverse

the state space twice as fast as the single particle maps Ri ⊗ 1 induced by product

momenta, yielding an oscillating plot of concurrence in Figure 4.15b. In analogy

to the single particle map, the state is sent to ρWΨ+; but in contrast to the single

particle map, this happens now already at ω = π/2. When the rotation achieves the
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maximal value π, the boosted observer sees again the original state ρW (λ). Accord-

ingly, and in contrast to the rotation Ri ⊗ 1, there are now two separable regions

because the state moves forward and backward through the octahedron. The lower

the initial degree of entanglement, the larger the part of the orbit in the octahedron,

and thus the larger the region of vanishing concurrence, see Figure 4.15b.

In summary, we get two equivalence classes, the non-trivial and the trivial,

[RX ⊗RX , ρMΦ+
d , ρW ] and [RY ⊗RY , ρMΦ+

d , ρW ], depending on whether or not the

spin state is an eigenstate of the rotation in question.

4.6.4.2 Ri ⊗Rj

In analogy to the pure states, the mixed rotations present a case where the orbits are

not Bell diagonal. For instance, the momentum state ρM [Φ+]
d generates the following

orbits for ρW (λ),

tX⊗Y (ω, λ) = λ


cosω 0 0

− sin2 ω − cosω 0

0 0 cos2 ω

 ,

tX⊗Z(ω, λ) = λ


cosω 0 0

0 − cos2 ω 0

sin2 ω 0 cosω

 , (4.81)

tY⊗Z(ω, λ) = λ


cos2 ω 0 0

0 − cosω 0

0 − sin2 ω cosω

 .

The concurrence is given by

C(ω, λ) =

{
max

{
0, −1

2 + λ+ 1
2λ cos 2ω

}
if λ ∈ (λsep, 1]

0 if λ ∈ [0, λsep] .
(4.82)

Plots of concurrence for different values of λ are shown in Figure 4.16. We discern

the same structure as in the case of product momenta under Ri ⊗ Ri. The same

considerations apply about the geometric structure of the orbits as in the case of

Bell states. We denote the equivalence class [RX ⊗RY , ρM [Φ+]
d , ρW ].
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Figure 4.16. Spin concurrence under Ri ⊗ Rj , i 6= j with ω ∈ [0, π] generated by mixed momenta
ρ
M [Φ+]
d and ρ

M [Ψ+]
d . Concurrence is shown for λ = 1, 4/5, 3/5, 2/5, 1/3 with the respective colours

red, green, blue, magenta, orange.

4.7 Summary and discussion

In this chapter we examined entanglement in the spin degree of freedom of a two

particle system. We systematically studied various boost scenarios involving both

product and entangled momenta with the aim of surveying and classifying the

structure of maps that momenta induce on spins. Momenta were assumed to be

discrete and spins in the Werner state. The latter subsume the Bell states when

λ = 1. Because the Bell states play such a fundamental role in quantum information

theory they were discussed separately. The results are summarised in Tables 4.3

and 4.4.

State Orbit Concurrence Equivalence class

ρMΣ λ(1,− cosω, cosω) max
{

0, 1
2

(−1 + λ + 2λ|cosω|)
}

[RX ⊗ 1, ρMΣ
d , ρW ]

λ(1,− cos2 ω, cos2 ω) max
{

0, − 1
2

+ λ + 1
2
λ cos 2ω

}
[RX ⊗RX , ρ

MΣ
d , ρW ]

λ(cosω,− cos2 ω, cosω)

max
{

0, 1
8

(∣∣ |2 + λ + 4λ cosω

+λ cos 2ω| − |2 + λ

−4λ cosω + λ cos 2ω|
∣∣

+2 (−2 + λ + λ cos 2ω))}

[RX ⊗RZ , ρ
MΣ
d , ρW ]

ρM× λ(cos2 ω
2 ,− cos2 ω

2 , cosω) max
{

0, 1
2

(−1 + λ + 2λ cosω)
}

[RXY ⊗ 1, ρM×
d , ρW ]

λ(cos4 ω
2 ,− cos4 ω

2 , cos2 ω)
max

{
0, 1

16
(− |4λ cosω − λ cos 2ω

+λ− 4| + 4λ cosω + 7λ cos 2ω

+9λ− 4)}
[RX ⊗RY , ρ

M×
d , ρW ]

Table 4.3: Spin orbit and concurrence for ρW (λ) generated by product momenta ρMΣ
d and

ρM×. The second column shows typical orbit.

The overall lesson we draw is that Lorentz boosts generally cause non-trivial be-
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Rotation Orbit Concurrence Equivalence class

Ri ⊗Ri λ(cos 2ω,−1, cos 2ω) max
{

0, 1
2

(−1 + λ + 2λ|cos 2ω|)
}

[RX ⊗RX , ρ
MΦ+
d , ρW ]

trivial (−1 + 3λ)/2 [RY ⊗RY , ρ
MΦ+
d , ρW ]

Ri ⊗Rj not diagonal max
{

0, − 1
2

+ λ + 1
2
λ cos 2ω

}
[RX ⊗RY , ρ

M [Φ+]
d , ρW ]

Table 4.4: Spin orbit and concurrence for ρW (λ) generated by momenta ρMΦ+
d , ρMΨ+

d , ρM [Φ+]
d

and ρM [Ψ+]
d . The second column shows typical orbit.

haviour in the spin degree of freedom of two particle systems. However, whether

or not, and to what extent, the state and entanglement of spins changes depends

substantially on the spin and momentum states involved, as well as on the geome-

try of the boost scenario. Whereas some states and geometries leave entanglement

invariant, others give rise to rapid changes of concurrence. Examples of the for-

mer comprise Bell states with product momenta of the form |p,q〉, as well as the

interesting special case of type Ri ⊗ Ri for entangled momenta where spin is an

eigenstate of rotation, represented by the equivalence class [RY ⊗RY , ρMΦ+
d , ρW ].

All other types of rotations and momenta were found to bring about entanglement

change that ranges from maximal to zero, with the class [RX ⊗RX ,MΦ+,Φ+] for

the entangled momenta causing the fastest decay and rebirth of entanglement.

While the literature on relativistic entanglement commonly analyses pure en-

tangled states, it is important to consider mixed states as well in order to gain

full understanding. The present work makes a step in this direction by classifying

the behaviour of the Werner states, whose entanglement ranges between maximal

and no entanglement at all. Compared to pure states, they display less change as

the maximal degree of entanglement is bounded by the parameter λ. The latter

highlights an important conclusion, which applies to both pure and entangled spin

states: spin entanglement cannot be increased under Lorentz boosts if there is no

spin-momentum entanglement present in the first place. This was first proved for

pure states in [15]. Our investigation shows that this result holds true for mixed

spin states as well if spin and momentum initially factorise. It should be stressed

though that the result is valid only for initial states whose spin-momentum fac-

torise [15]. If spin and momentum degrees are initially entangled, the boosted state

might be more entangled than the initial one. Although proper study of this very

interesting case is beyond the scope of the current thesis, as noted in section 4.2, it

has been implicit to some extent in the scenarios we examined.

Perhaps even more valuable are the qualitative insights. The basic geometric
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framework introduced in the chapter on single particle systems remains in place.

The geometric approach unifies the various results reported in the literature, i.e.

that spin entanglement did or did not change in a particular boost scenario, by

explaining them in a convenient, simplified framework which involves discrete

momenta and spins. For example, while the authors of [17] report no change of en-

tanglement, the study in [15] reports up to maximal decay of entanglement for the

moving observer. These results are consistent since they employ different momen-

tum states. The model considered in [17] consists of product momenta |p,q〉, whose

action leaves Bell states invariant as discussed above. The authors of [15], however,

assume continuous origin centred momenta. As we will see in more detail in the

next chapter, these continuous momentum states can modelled in many situations

quite accurately in terms of the state |M×〉, which decay the entanglement of spins

as documented above.

Finally, in the context of possible implementations of quantum computation, or

quantum communication protocols, in the relativistic setting, the import of our re-

sults is twofold. On the one hand relativity might appear as a phenomenon that

causes disturbance in the given problem setting, for instance, by reducing fideli-

ties or channel capacities when implementing a quantum communication protocol.

Then the results obtained in this chapter might be used to engineer states so that

the negative relativistic effects are diminished. On the other hand, relativity may

appear as a resource that could be used to generate entangled states or realise, or

enhance quantum communication or computation, see e.g. [54, 61]. The results here

could be helpful in finding states and scenarios that help achieve the desired goal.

As part of the future work, we envisage working out the implications of foregoing

results to quantum information theory in more detail.



Chapter5
Two particles II: continuous

momenta

5.1 Introduction

In this chapter we will complete the study of two particle systems by focussing

on states involving continuous momenta. In many ways, the discussion will be

parallel to that of systems with discrete momenta, with the difference that the spin

subsystem will be restricted to the Bell states.

The chapter is organised as follows. We begin by deriving the generic transfor-

mation of the two particle’s state under Lorentz transformations. We then construct

a two particle model involving Gaussian momenta of different kinds, which we

thereafter systematically study in various boost scenarios involving both product

and entangled momenta.

5.2 Two particle state under Lorentz boosts

We begin by computing the generic transformation of a two particle state under

Lorentz boosts. Proceeding along the same lines as for the single particle system

and using basis vectors of the form |p, λ〉, where p is the label for the single particle

momentum and λ = ±1
2 is spin, we write a generic pure state of two particles as

|ψ〉 =
∑
λη

∫
dµ(p, q)ψλη(p,q) |p, λ〉 |q, η〉 , (5.1)
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where dµ(p) = (2E(p))−1dp is the Lorentz invariant integration measure and we

have abbreviated dµ(p, q) = dµ(p)dµ(q). The wave function satisfies the normali-

sation condition

∑
λη

∫
dµ(p, q)|ψλη(p,q)|2 = 1 , (5.2)

and the (improper) spin and momentum eigenstates satisfy the orthogonality con-

dition

〈p′, λ′|p, λ〉 = 2E(p)δ3(p− p′)δλλ′ . (5.3)

An observer O′′ who is Lorentz boosted relative to O by Λ−1 sees the state of the

particle |ψ〉 as transformed by the product U(Λ)⊗ U(Λ),

∣∣ψ′′〉 = U(Λ)⊗ U(Λ) |ψ〉 . (5.4)

In order to calculate the transformation on the wave function, we note the action of

U(Λ) on a basis vector of the single particle, given by Equation (3.5), and substitute

(5.1) into (5.4), obtaining

∣∣ψ′′〉 =
∑
λη

∫
dµ(p, q)ψλη(p,q) |Λp〉 ⊗

(∑
κ

Uκλ(R(Λ,p)) |κ〉
)

⊗ |Λq〉 ⊗
(∑

ν

Uνη(R(Λ,q)) |ν〉
)

=
∑
λη

∫
dµ(Λ−1p′′,Λ−1q′′)ψλη(Λ

−1p′′,Λ−1q′′)
∣∣p′′〉

⊗
(∑

κ

Uκλ(R(Λ,Λ−1p′′)) |κ〉
)
⊗
∣∣q′′〉⊗(∑

ν

Uνη(R(Λ,Λ−1q′′)) |ν〉
)

=
∑
κν

∫
dµ(p, q)ψ′′κν(p,q) |p, κ〉 |q, ν〉 , (5.5)

where in the last line we have replaced the dummy variables with p and q, and

denoted

ψ′′κν(p,q) =
∑
λη

Uκλ(R(Λ,Λ−1p))Uνη(R(Λ,Λ−1q))ψλη(Λ
−1p,Λ−1q) . (5.6)

In the following we will be interested in how the entanglement of the spin state

changes in various boost scenarios. To obtain the boosted spin state ρ′′S , we trace
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out the momentum degrees of freedom,

ρ′′S = TrP,Q
(∣∣ψ′′〉 〈ψ′′∣∣) =

∫
dµ(p, q)

〈
p,q|ψ′′

〉〈
ψ′′|p,q

〉
=
∑
κνλη

∫
dµ(p, q)

∫
dµ(k, t) dµ(v, w) δ3(p− k)δ3(q− t)δ3(v − p)

× δ3(w − q)ψ′′κν(k, t)ψ′′∗λη(v,w) |κ〉〈λ| ⊗ |ν〉〈η|

=
∑
κνλη

∫
dµ(p, q)ψ′′κν(p,q)ψ′′∗λη(p,q) |κ〉〈λ| ⊗ |ν〉〈η| , (5.7)

where we used (5.3). In analogy to the discrete case, we will use concurrence to

quantify how much entanglement has changed in the course of the transformation

ρS 7→ ρ′′S from frame O to O′′.

5.3 Entangled spins: Bell states

We proceed in analogy to the discussion of discrete systems and assume that spin

and momentum initially factorise,

|ψ〉 =

∫
dµ(p, q)ψ(p,q) |p,q〉 ⊗ |Ψ〉 , (5.8)

where the spin state is a Bell state, |Ψ〉 = |Φ+〉. Momenta are taken to be combina-

tions of Gaussian wave packets in product and entangled forms which correspond

to the discrete product and entangled states,
∣∣MΣ

〉
, |M×〉 and

∣∣MΦ+
〉
, examined in

the previous chapter. For the former we have,

fΣ(p,q,p0,q0) = [N(σ)]−
1
2 (g(p,p0) + g(p,−p0)) (g(q,q0) + g(q,−q0)) (5.9)

and

f×(p,q,p0,q0) = [N(σ)]−
1
2

(
g(p,p0) + g(p,−p0) + g(p,p⊥0 ) + g(p,−p⊥0 )

)
×
(
g(q,q0) + g(q,−q0) + g(q,q⊥0 ) + g(q,−q⊥0 )

)
, (5.10)

and the entangled state is described by

fΦ+(p,q,p0,q0) = [N(σ)]−
1
2 (g(p,p0) g(q,q0) + g(p,−p0) g(q,−q0)) , (5.11)
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where N(σ) is the normalisation and g(p,p0) a Gaussian of width σ

g(p,p0) =

[
exp

(
(px − px0)2

2σ2

)
exp

(
(py − py0)2

2σ2

)
exp

(
(pz − pz0)2

2σ2

)] 1
2

. (5.12)

Throughout boosts are assumed to be in the z-direction, Λ ≡ Λz(ξ),

Λ =


cosh ξ 0 0 sinh ξ

0 1 0 0

0 0 1 0

sinh ξ 0 0 cosh ξ

 . (5.13)

This implies that the unitary representation of the Thomas-Wigner rotation U(Λ,p)

acting on the one particle subsystem takes the same form as in the discussion of the

single particle,

U(Λz,p) =

(
α β(px − ipy)

−β(px + ipy) α

)
, (5.14)

where as before we have denoted

α =

√
E +m

E′′ +m

(
cosh

ξ

2
+

pz
E +m

sinh
ξ

2

)
,

β =
1√

(E +m)(E′′ +m)
sinh

ξ

2
, (5.15)

with ξ being the rapidity of the boost in the z-direction, and

E′′ = E cosh ξ + pz sinh ξ . (5.16)

Because the expression of the boosted spin state in Equation (5.7) is too complex to

be tackled by analytic methods, we will resort to numerical treatment in determin-

ing the concurrence and the orbits of states. The computer code that has been used

to obtain the numerical results in the following sections is described in appendix B.

As in the case of single particle, no numerical approximations are involved except

for the discretisation of the momentum space.
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5.3.1 Product momenta fΣ

In the following sections 5.3.1.1-5.3.1.3 we focus on spin rotations generated by

the product momenta of the form fΣ(p,q,p0,q0). In order to compare the con-

tinuous and discrete systems, the boost scenarios will be chosen so that spins un-

dergo almost maximum Thomas-Wigner rotation. In realising these we will of-

tentimes make use of the same geometric vectors as in chapter 3, section 3.4.2,

±pX0 = (±17.13, 0,−98.5) and ±pY 0 = (0,±17.13,−98.5), to be specified in de-

tail below.

5.3.1.1 Ri ⊗ 1

It is not easy to implement rotations of typeRi⊗1 in the continuous regime as long

as we are concerned with the physical situation where the observer moves relative

to both particles. The problem lies in realising the identity map. If the particle

is not in the rest frame, the spin state undergoes non-trivial transformation as we

learned in studying the continuous momentum models in the single particle case in

section 3.4 above. A wave packet of non-zero width induces non-trivial changes of

spin entropy, with the effect becoming more noticeable as the width increases. We

will thus adopt the strategy of constructing a model that approximates the identity

map to as high a degree as possible.

Above we fixed the boost to be always in the z-direction. In order to realise

Ri ⊗ 1 rotations, we follow the discrete case and take the momentum of the first

particle to lie in the z − x-plane with ±p0 = ±pX0, while the momentum of the

second particle is located at the origin of the x − y-plane with the z-component

equal to that of the first particle, q0 = (0, 0,−98.5). Since the momentum of the

second particle is aligned with the direction of the boost, the resulting rotation of

the spin field approximates the identity map.

Plots of the orbit and concurrence are shown in Figure 5.1. While the behaviour

agrees quite well with the discrete system in the first part until concurrence be-

comes zero, the approximate character of the model becomes evident in the second

part when boosts become larger than 2.7. Even for σ/m = 1 the fit with the discrete

model is relatively bad. Although the concurrence initially begins to increase for

rapidities larger than 2.7, thereby resembling the discrete model, it only reaches

the value 0.6 and declines thereafter for ξ > 4.16. Such deviation from the discrete

model is still more dramatic for σ/m = 2, with the σ/m = 4 bearing little resem-

blance to the discrete case at all. Since the disagreement correlates with the growth

of the Gaussian width, it is most likely caused by the deteriorating approximation
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Figure 5.1. Spin orbit and concurrence under Ri ⊗ 1 for Gaussian momenta with σ/m = 1, 2, 4.
Product momenta are given by fΣ. Data for σ/m = 1 is shown red, σ/m = 2 green and σ/m = 4
blue. (a) Initial state

∣∣Φ+
〉

corresponds to vertex (1,−1, 1). (b) Concurrence. Due to difficulties in
numerical integration concurrence could not be obtained for ξ > 4.8.
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of the identity map. This demonstrates that the features of realistic wave packets

may be quite distinct from those of idealised models. We will gain more insight

into origin centred momenta in section 5.3.2 below.

5.3.1.2 Ri ⊗Ri

To implement the type of rotation where both particles undergo the same rotation,

the momenta p0 and q0 need to lie in the same boost plane. Since the boost is in

the z-direction, we will assume that the Gaussians are centered at the geometric

vectors ±q0 = ±p0 = ±pX0, realising the rotation RY ⊗RY . Plots of the orbit and

concurrence are shown in Figure 5.2.

Comparing with the plots of the discrete model in Figure 4.3, we see that for

σ/m = 1 the behaviour of the continuous model and of the discrete model coincide

to quite a high degree of accuracy. The orbit of the continuous model follows the

same path as the discrete model, almost reaching the rest frame state |Φ+〉. The

reason it stops short of |Φ+〉 is that while in the discrete model we assume that the

system reaches the maximum Thomas-Wigner rotation of 180◦, the maximum ro-

tation implemented by the continuous model at ξ = 6.5 is ωm ≈ 163◦ or 2.81 rad.

Substituting ωm into the expression (4.40) that describes the discrete orbit yields

tY⊗Y (ωm) = (0.9,−1, 0.9), which is in good agreement with the numerically calcu-

lated value (0.89,−0.99, 0.90) representing the final state for σ/m = 1 in Figure 4.3.

Likewise, Equation (4.39), which describes the concurrence of the discrete model,

evaluates to C(ωm) = 0.89, showing again good fit with the continuous model. The

orbits for σ/m = 2 and σ/m = 4 diverge from the behaviour of the discrete model,

with the disagreement growing larger as the width increases. This is to be expected

since larger Gaussians contain spins, some of which undergo less and others more

rotation than spins at the centre of the wave packet, thereby causing the traced out

spin state to be in general a mixed state. Larger values of σ/m lead in general to a

higher degree of mixedness of the boosted state, and the effect becomes more pro-

nounced at extremely large boosts: at ξ = 6.5, the boosted state with σ/m = 4 is

closer to the centre of the octahedron than the states with lower σ/m.

5.3.1.3 Ri ⊗Rj

In order to realise mixed rotations the centres of Gaussians need to lie in different

boost planes. With the boost in the z-direction, we will choose ±p0 = ±pY 0 and

±q0 = ±pX0, which means that the spin state is rotated by RX ⊗RY . The orbit and

concurrence are given in Figure 5.3.
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Figure 5.2. Spin orbit and concurrence under Ri ⊗ Ri for Gaussian momenta with σ/m = 1, 2, 4.
Product momenta are given by fΣ. Data for σ/m = 1 is shown red, σ/m = 2 green and σ/m = 4
blue. (a) Initial state

∣∣Φ+
〉

corresponds to vertex (1,−1, 1). (b) Concurrence.
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Figure 5.3. Spin orbit and concurrence underRi⊗Rj , i 6= j for Gaussian momenta with σ/m = 1, 2, 4.
Product momenta are given by fΣ. Data for σ/m = 1 is shown red, σ/m = 2 green and σ/m = 4
blue. (a) Initial state

∣∣Φ+
〉

corresponds to vertex (1,−1, 1). (b) Concurrence.
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We observe a good fit with the discrete model for the narrower Gaussian with

σ/m = 1. In analogy to Figure 4.4 of the discrete model, the orbit follows a path

through the centre of the octahedron, evolving towards the vertex (−1, 1, 1), which

represents the Bell state |Φ−〉. As in the previous case, at ξ = 6.5 the system achieves

maximum Thomas-Wigner rotation ωm ≈ 163◦, with the spin state represented by

(−0.94, 0.94, 0.90). This is quite well approximated by the discrete orbit given by

Equation (4.42), from which we calculate tX⊗Y (ωm) = (−0.96, 0.96, 0.92). The dis-

crete concurrence, given by Equation (4.43), and yielding C(ωm) = 0.92, shows

relatively good agreement with the value 0.89 of the continuous model too. Gaus-

sians with larger σ/m = 2 and σ/m = 4 diverge from the idealised, discrete model

for the reasons highlighted above, and tend to be more mixed at extremely large

boosts.

5.3.2 Origin centred Gaussians

We will next examine Gaussians centred at the origin, and more generally at any

(0, 0, pz), extending to two particles what we did for the single particle system

above in section 3.4.1. Note that such momenta were not studied in the previous

chapter since they show non-trivial behaviour only for systems whose momentum

wave packets have non-zero width.

The same scenarios will be considered as for the single particle, with momenta

centred at (0, 0,−4), (0, 0, 0) and (0, 0, 4). Plots for σ/m = 1 and σ/m = 4 are shown

in Figure 5.4 and 5.5. We note that for σ/m = 1 and σ/m = 4 with the momentum

at (0, 0, 0) we recover the results for concurrence which were first reported in the

seminal paper [15].

The results for single and two particle systems are not directly comparable be-

cause the entanglement in question is between different degrees of freedom and it

has been generated by maps whose structure is dissimilar. Also, the initial states

for the two kinds of systems are not the same. Despite this a number of analogies

are manifest. For instance, the scenario with (0, 0, 4) which contains momenta in

the direction of boost displays less pronounced changes of entanglement than the

one with momenta (0, 0,−4) which are opposite to the direction of boost. As we

have learned above, this originates in the sensitivity of Thomas-Wigner’s rotation

to the angle between boosts. Secondly, as for the single particle, Gaussians with

larger widths show in general more rapid changes of concurrence, which can be

traced back to the dependance of Thomas-Wigner’s rotation on the magnitude of

boost. Third, both single and two particle systems exhibit saturation, which comes
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Figure 5.4. Spin orbit and concurrence for origin centred Gaussian momenta with σ/m = 1. Data for
(0, 0,−4) is shown red, (0, 0, 0) green and (0, 0, 4) blue. (a) Initial state

∣∣Φ+
〉

corresponds to vertex
(1,−1, 1). (b) Concurrence.
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Figure 5.5. Spin orbit and concurrence for origin centred Gaussian momenta with σ/m = 4. Data for
(0, 0,−4) is shown red, (0, 0, 0) green and (0, 0, 4) blue. (a) Initial state

∣∣Φ+
〉

corresponds to vertex
(1,−1, 1). (b) Concurrence.
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from the fact that the Thomas-Wigner rotation achieves a maximum value which,

for a given boost angle, is determined by the smaller boost.

Let us next turn to the case of extreme rotations. Plots for σ/m = 1, 2, 4, 8 with

p0 = (0, 0,−98.5) are shown in Figure 5.6. Interestingly, contrary to what one might

have expected based on the findings so far, entanglement declines slower than in

the previous scenarios. For instance, states with σ/m = 1 remain nearly maximally

entangled for rapidities up to about 2 and decohere thereafter, but this occurs later

than with the momenta (0, 0,−4), which on the face of it generate less rotation than

the extreme momenta (0, 0,−98.5). However, such puzzling behaviour can be ex-

plained using the properties of Thomas-Wigner’s rotation. Instead of a Gaussian,

let us think of a rough, simple model consisting of discrete momenta as depicted

in Figure 5.7. We know that larger momenta generate more rotation, but their am-

plitude is smaller, so for the sake of argument, let us assume the Gaussian is rep-

resented by two momenta at the distance of 0.75 its width. We will next argue

that concurrence changes more rapidly for the Gaussian centred at or close to the

origin than for the one centred at the very large momentum (0, 0,−98.5). The key

is to realise that the boost angle θ is π/2 for the origin centred Gaussian, while it

is larger, about 170◦ or 2.97 rad, for the Gaussian at (0, 0,−98.5). In Figure 2.2,

which describes the dependence of Thomas-Wigner’s angle on boost angle and ra-

pidity, these states lie, respectively, in the middle and almost at the right end of

the horizontal axis. Boosting the system means we keep θ fixed and move towards

the back of the surface representing the Thomas-Wigner angle for given θ and ξ.

Now for θ = π/2, the rotation grows initially faster than for θ = 2.85, meaning

that the concurrence of the origin centred Gaussian changes sooner than the one

at the extremely large momentum. However, as rapidity grows even larger, the

rotation increases rapidly for θ = 2.85, leading to the decrease of concurrence as

seen in Figure 5.6. The decrease becomes steeper as width increases, as is to be ex-

pected since larger width means we move towards slightly lower values of θ which

cause faster rotations and hence quicker drop of concurrence. Along the same lines,

for Gaussians at (0, 0,−4) which are relatively close to the origin in comparison to

(0, 0,−98.5), θ is slightly but not significantly larger than π/2, still leading to faster

initial increase than for the extremely large momenta.

To substantiate these qualitative considerations with a rough numerical model,

we plot the dependence of Thomas-Wigner’s rotation on rapidity for four momenta

in Figure 5.8. The first one at (3, 0, 0) corresponds to the origin centred Gaussian

and the second (3, 0,−4) to the one close to the origin. The third (3, 0,−98) repre-



5.3. Entangled spins: Bell states 91

-1.0
-0.5

0.0

0.5

1.0

tXX

-1.0
-0.5

0.0
0.5

1.0

tYY

-1.0

-0.5

0.0

0.5

1.0

tZZ

(a)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

C
on

cu
rr
en
ce
C

Rapidity ξ

(b)

Figure 5.6. Spin orbit and concurrence for origin centred Gaussian momenta with σ/m = 1, 2, 4, 8
and p0 = (0, 0,−98.5). Data for σ/m = 1 is shown red, σ/m = 2 green, σ/m = 4 blue and σ/m = 8
yellow. (a) Initial state

∣∣Φ+
〉

corresponds to vertex (1,−1, 1). (b) Concurrence.
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Figure 5.7. Schematic representation of an origin centred Gaussian spin field.
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Figure 5.8. Thomas-Wigner rotation for origin centred Gaussians in different geometries.

sents a distribution with the same width at the extreme momentum and the fourth

(8, 0,−98) corresponds to a Gaussian with larger width at the extreme momen-

tum. The qualitative behaviour of Thomas-Wigner’s rotation and hence of con-

currence follows the pattern we have just outlined. Quantitatively, however, our

discrete considerations in the 2D setting cannot accurately represent the more com-

plex workings of realistic 3D Gaussian wave packets. The model in Figure 5.8 does

not reproduce the precise numerical values for concurrence in Figures 5.4, 5.5 or 5.6.

All in all, the claim we make is that for a Gaussian of given width, reasons of the

sorts given do cause the differences of behaviour observed above.

Another intriguing aspect of Figure 5.6 is that the orbits resemble closely the

orbits generated by |M×〉 in the previous chapter. We will explore this in more

detail shortly.
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5.3.3 Product momenta f×

While in the previous chapter the states |M×〉 entered the discussion more as a

logical followup of
∣∣MΣ

〉
, we can now appreciate their true significance. The sim-

ilarity between the orbits of |M×〉 in Figure 4.6 and those of Gaussians centred at

(0, 0, pz) in the previous section suggests that the latter can be modelled in terms of

the former. Indeed this is the claim we will explore below. We will first verify the

correspondence between the discrete and the Gaussian states and then focus on the

modelling aspect.

We will consider the scenario where the geometric vectors in the state f× are

described by

±p0 = ±q0 = ±pY 0 , ±p⊥0 = ±q⊥0 = ±pX0 ,

which generate maximum spin rotations. Figure 5.9 shows plots of orbits and con-

currence for σ/m = 1, 2, 4. In previous chapter we calculated from Equation (4.49)

that the concurrence of the discrete system becomes zero at ω = 1.23 rad. This cor-

responds to about ξ = 2.3 in the continuous model, showing good fit between the

two. Likewise, the discrete orbit in Equation (4.48) evaluates to t(ωm) = (0, 0, 0.92)

at the maximum Thomas-Wigner angle ωm ≈ 163◦, while the numerical model

gives (0, 0, 0.90) for σ/m = 1 and (0, 0, 0.89) for σ/m = 4. In contrast to the other

types of product momenta, there is somewhat less dependence on width. We hy-

pothesise that this might be caused by the symmetry of the state, but will not pur-

sue it further at this point.

We will next turn to the correspondence between the z-axis centred momenta

and the f×model. When analysing the curious behaviour of the z-axis Gaussians in

the previous section, we resorted to a naive 2D model. Realistic Gaussians however

involve a third dimension as well, and generalising the 2D model to three dimen-

sions naturally leads to the state which in the discrete case is given by |M×〉 and in

the continuous case by f×. The latter explains why there is a close match between

the orbits of the z-axis centred states containing extreme momenta (0, 0,−98.5) and

those of |M×〉 and f× above. This raises the question of whether the z-axis cen-

tred states shown in Figure 5.5 can be modelled using the f× states with suitably

chosen momenta. Proceeding in the same naive way as above for the 2D model,

let us approximate the states in Figure 5.5 with f× by assuming that momenta are

given by

±p0 = ±q0 = (0,±3, pz) , ±p⊥0 = ±q⊥0 = (±3, 0, pz) ,
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Figure 5.9. Spin orbit and concurrence for Gaussian momenta with σ/m = 1, 2, 4. Product momenta
are given by f× with ±p0 = ±pX0 and ±p⊥0 = ±pY 0. Data for σ/m = 1 is shown red, σ/m = 2
green and σ/m = 4 blue. (a) Initial state

∣∣Φ+
〉

corresponds to vertex (1,−1, 1). (b) Concurrence.
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where pz = −4, 0, 4. Figure 5.10 shows plots for σ/m = 0.25, which we have chosen

smaller than in the models above to minimise width related effects.

While the agreement with Figure 5.5 is not perfect, we can easily recognise the

features present in the original z-axis case. The concurrence of the f× model ex-

hibits, roughly, the same kind of dependence to the boost angle as the z-axis cen-

tred states. While the momenta with pz = 4 diverge considerably from those with

(0, 0, 4) in Figure 5.5, the fit is relatively good for pz = −4 and pz = 0 considering

this is a simple model. The orbits follow the same pattern, with the one for pz = 4

deviating more, and those for pz = 0 and pz = −4 relatively little from the z-axis

centred states.

To recap, we have been arguing all along that systems involving continuous

momenta, and specifically those of Gaussian form, can be understood in terms of

discrete models, possibly containing many momentum eigenstates. The foregoing

discussion demonstrates that in some cases Gaussian momenta admit very sim-

ple models, in particular the momenta centred at the axis parallel to the direction

of boost can be modelled in terms of four narrow Gaussians, which approximate

discrete momenta.

5.3.4 Entangled momenta

In the following two sections we will examine spin transformations generated by

entangled Gaussians of the form fΦ+. We will leave out concrete realisations since

they are analogous to the scenarios for the product momenta. As before maximum

rotation angles generated by pX0 and pY 0 will be used.

5.3.4.1 Ri ⊗Ri

The case of Ri ⊗ Ri realised with entangled momenta falls into two equivalence

classes as we learned above in section 4.5.4.1 in the discussion of discrete systems.

We will consider only the interesting, non-trivial case, which will be implemented

by RX ⊗RX . Plots of orbits and concurrence are shown in Figure 5.11.

The idiosyncratic double dip behaviour found in the discrete case is clearly

recognisable for σ/m = 1, compare Figure 4.7. The orbit of σ/m = 1 follows the

path of the discrete state to quite a high degree of precision. We calculate that,

for the maximum Thomas-Wigner rotation ωm ≈ 163◦ in the continuous model,

the discrete state yields tX⊗X(ωm) = (1,−0.84, 0.84), which agrees relatively well

with the numerically calculated values (0.99,−0.80, 0.80) for the continuous state.

The discrete concurrence in Equation (4.53) gives C(ωm) = 0.84, showing relatively
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Figure 5.10. Spin orbit and concurrence for Gaussian momenta with σ/m = 0.25. Product momenta
are given by f×. Data for (3, 3,−4) is shown red, (3, 3, 0) green and (3, 3, 4) blue. (a) Initial state∣∣Φ+

〉
corresponds to vertex (1,−1, 1). (b) Concurrence.
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Figure 5.11. Spin orbit and concurrence under Ri ⊗ Ri for entangled Gaussian momenta with
σ/m = 1, 2, 4. Momenta are given by fΦ+. Data for σ/m = 1 is shown red, σ/m = 2 green and
σ/m = 4 blue. (a) Initial state

∣∣Φ+
〉

corresponds to vertex (1,−1, 1). (b) Concurrence.
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good fit with the numerically determined value 0.79. In analogy to the previous

cases, Gaussians with larger widths σ/m = 2 and σ/m = 4 diverge from the ide-

alised behaviour and end up in increasingly more mixed states for extremely large

boosts ξ = 6.5 as the width grows. Also, larger widths lead to degradation of the

double dip pattern as the state does not quite reach |Ψ+〉, represented by (1, 1,−1),

when ω = 90◦, and traverse the top part of the octahedron on their way back to

|Φ+〉.

5.3.4.2 Ri ⊗Rj

We will focus on the implementationRX⊗RY whose concurrence is plotted in Fig-

ure 5.12. Unfortunately, the orbit cannot be visualised since it is not Bell diagonal.
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Figure 5.12. Spin concurrence under Ri ⊗ Rj , i 6= j for entangled Gaussian momenta with
σ/m = 1, 2, 4. Momenta are given by fΦ+. Data for σ/m = 1 is shown red, σ/m = 2 green and
σ/m = 4 blue.

The generic pattern observed in previous cases is present here as well. From

Equation (4.55) characterising the concurrence of the discrete model, we calculate

C(ωm) = 0.92, which is in relatively good agreement with the numerically obtained

value 0.89. Gaussians of larger widths show almost the same behaviour until

ω = 90◦ but diverge increasingly thereafter as width and rapidity become larger.

The larger the width, the lower the concurrence at extremely large boosts ξ = 6.5.
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5.4 Summary and discussion

In this chapter we studied spin entanglement of two particles with continuous mo-

menta. The treatment has been parallel to the one of discrete momenta in the pre-

vious chapter in that we systematically surveyed a number of boost scenarios with

momenta both in product and entangled states. We have confined attention to pure

spins only, which were assumed to be in the Bell state |Φ+〉.
As expected, we observe relatively good agreement between discrete systems

and Gaussians of narrower widths with σ/m = 1. Wave packets of larger widths

lead to deviation from the idealised discrete models. In analogy to the the single

particle system, the analysis has been numerical throughout as the two particle sys-

tem is too complex to be tackled by analytic methods. However, the lack of analytic

models is to some extent compensated by the discrete model, which was introduced

in the discussion of the single particle. In this picture, systems involving three di-

mensional Gaussians can be thought of as fields comprising spins at a large number

of discrete momenta, where boosting means that each spin undergoes a different,

momentum dependent rotation for a given value of rapidity. It is remarkable that

such a complex behaviour can be reduced to simple models. In particular, we note

two successful cases which further justify its use. In section 5.3.2 we were able to

understand the somewhat counterintuitive behaviour of z-axis centred Gaussians

in terms of a simple discrete 2D model involving two spins. And in section 5.3.3

we employed the |M×〉 and f× states to obtain another simple model involving

four narrow Gaussians whose behaviour agreed, in many cases, with that of the

z-centred Gaussian momenta to a surprisingly high degree of accuracy.

As in case of discrete systems, further insight into the workings of continu-

ous systems was provided by visualisation of their orbits. We gained a more de-

tailed understanding of how varying the initial states, their widths and momenta,

changes the entanglement of spins.



Chapter6
Transfer of entanglement

6.1 Is there transfer of entanglement?

In the two previous chapters we studied two particle entanglement and established

that it changes non-trivially under Lorentz boosts. This raises the question of how

to explain the behaviour of entanglement in relativistic systems. Do we witness

a genuine change of the amount of entanglement or is it just that entanglement

is shuffled around between subsystems of the total system while its total amount

remains invariant? Many authors have concluded that the latter is the case. The

verdict seems to originate in the very first papers published on the subject. For in-

stance, in [15] the authors claim that “Lorentz boosts introduce a transfer of entan-

glement between degrees of freedom, that could be used for entanglement manipu-

lation. While the entanglement between spin or momentum alone may change due

to Lorentz boosts, the entanglement of the entire wave function (spin and momen-

tum) is invariant.” They reason that Lorentz boosts perform local unitary trans-

formations of the form U(Λ) ⊗ U(Λ) and since local unitaries do not change the

measure of entanglement, the total entanglement of the wave function remains in-

variant. The appearance of the change of entanglement comes from the fact that

some degrees of freedom are traced out. For instance, if we trace out momen-

tum degrees of freedom, then spin-spin entanglement does indeed change. Yet this

constitutes merely transfer of entanglement between different degrees of freedom,

while the sum total of entanglement remains intact under Lorentz boosts. In the

same vein, in [44] the authors state that “Entanglement was shown to be an invari-

ant quantity for observers in uniform relative motion in the sense that, although

different inertial observers may see these correlations distributed among several

degrees of freedom in different ways, the total amount of entanglement is the same
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in all inertial frames”, and a similar conclusion is reached in [60, 96].

However, we think there are grounds to believe that the issue needs further

analysis. Recall that above we observed that in single particle systems in general

the total entanglement between spin and momentum degrees of freedom does not

remain invariant under Lorentz boosts. A spin-momentum product state can be

be transformed into an entangled state. More importantly, we saw that Lorentz

boosts can be regarded as controlled operations where momentum plays the role of

a control qubit and spin is a target qubit. This implies that Lorentz boosts perform

nonlocal transformations on single particle systems. This, in turn, suggests entan-

glement in two particle systems might be not merely shuffled around between dif-

ferent degrees of freedom but could be genuinely generated and destroyed under

Lorentz boosts. Indeed, in [92] the authors explicitly challenge the claim of entan-

glement transfer in two particle systems. They observe that a decrease of spin-spin

entanglement under a Lorentz boost is not accompanied by an increase of momen-

tum entanglement, casting doubt on the claim that the amount of entanglement is

invariant under Lorentz boosts.

Our aim in this chapter is to make progress in clarifying the issue by studying

the behaviour of entanglement of the momentum state in different boost scenar-

ios [92]. To ease the discussion, we will adopt the same simplifying assumptions

about momenta as in chapter 4 above. The momenta will be regarded as suffi-

ciently narrow that we can use orthogonal state vectors at different momentum

values, formally satisfying the relationship 〈pi|pj〉 = δij . This allows us to treat

momenta as a discrete basis. Each momentum state will then generate a single

Thomas-Wigner rotation. The model we are going to study essentially reduces to a

four qubit system of two momenta and two spins, where momenta can be viewed

as control qubits and spins are target qubits. Note also that by considering only

finite dimensional momenta we avoid the complication of having to deal with the

entanglement of continuous variables, see [97, 98] for review.

The chapter is organised as follows. We start by discussing the idea that entan-

glement transfer occurs between the spin and momentum degrees of freedom and

consider the boost scenarios studied in the previous chapters. Thereafter we turn

to looking at the hypothesis that entanglement might be changing with respect to

the partitioning of the system into two particles. We summarise our findings in

section 6.4.
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6.2 Degrees of freedom partitions

The common opinion has it that if the total amount of entanglement remains in-

variant, while the entanglement in the spin degree of freedom decreases, then mo-

menta must become more entangled. To see whether or not this inference is valid,

we will calculate the entanglement of the momentum state for the boost scenarios

discussed in the two previous chapters.

6.2.1 Product momenta

We start by considering product momenta, which can be written in a succinct form∣∣MΣ
〉

=
∑2

i,j=1 ψ(pi,qj) |pi,qj〉. The initial state of the two particle system is given

by

|ψ〉 =

 2∑
i,j=1

ψ(pi,qj) |pi,qj〉

⊗ |Ψ〉 . (6.1)

A Lorentz boost Λ transforms the state to

∣∣ψ′′〉 =
2∑

i,j=1

ψ(pi,qj) |Λpi,Λqj〉 ⊗R(pi,qj) |Ψ〉 , (6.2)

where we have used the abbreviation R(p1,p2) ≡ U(Λ,p1) ⊗ U(Λ,p2) for two

particle rotations. The corresponding density matrix ρ′′ = |ψ′′〉 〈ψ′′| is given by

ρ′′ =

2∑
i,j,k,m=1

ψ(pi,qj)ψ
∗(pk,qm) |Λpi,Λqj〉 〈Λpk,Λqm| ⊗R(pi,qj) |Ψ〉 〈Ψ|R†(pk,qm) .

(6.3)

In order to obtain the momentum state we trace out the spin degrees of freedom,

ρ′′M = Trspin(ρ′′),

ρ′′M =

2∑
k,m,i,j=1

ψ(pi,qj)ψ
∗(pk,qm) |Λpi,Λqj〉 〈Λpk,Λqm|

× 〈Ψ|R†(pk,qm)R(pi,qj) |Ψ〉 . (6.4)

Since we have labelled the momentum of each particle separately, i, j, k,m ∈ {1, 2},
the correspondence with a 4 × 4 matrix enumeration is 11 7→ 1, 12 7→ 2, 21 7→ 3,

22 7→ 4, and the diagonal elements of ρ′′M are just |ψ(pi,qj)|2 |Λpi,Λqj〉 〈Λpi,Λqj |,
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i, j = 1, 2. For the six independent off-diagonal elements we need to calculate prod-

ucts R†(pk,qm)R(pi,qj) of rotation matrices. By substituting the product momen-

tum
∣∣MΣ

〉
into (6.4), we obtain the following expressions for off-diagonal elements

in the 4× 4 enumeration,

(ρ′′M )12 : R†(p1,q2)R(p1,q1) = 1⊗R−1(q2)R(q1)

(ρ′′M )13 : R†(p2,q1)R(p1,q1) = R−1(p2)R(p1)⊗ 1

(ρ′′M )14 : R†(p2,q2)R(p1,q1) = R−1(p2)R(p1)⊗R−1(q2)R(q1)

(ρ′′M )23 : R†(p2,q1)R(p1,q2) = R−1(p2)R(p1)⊗R−1(q1)R(q2) (6.5)

(ρ′′M )24 : R†(p2,q2)R(p1,q2) = R−1(p2)R(p1)⊗ 1

(ρ′′M )34 : R†(p2,q2)R(p2,q1) = 1⊗R−1(q2)R(q1) .

We will next consider concrete scenarios and assume throughout that the spin state

|Ψ〉 is given by |Φ+〉.

6.2.1.1 Case Ri ⊗ 1

To implement single particle rotations, we choose the momentum state to be the

same as in section 4.5.2.1,
∣∣MΣ

〉
= (|py〉+ |−py〉) |q1〉 /

√
2, where |q1〉 is a momen-

tum that leaves the second particle alone. The first particle is rotated around the

x-axis and we denote RX(±ω) ≡ RX(±py). Substituing
∣∣MΣ

〉
into (6.5), we obtain

only one independent non-vanishing off-diagonal element (ρ′′M )13,

(ρ′′M )13 =
1

2

〈
Φ+
∣∣ (R†X(−ω)⊗ 1)(RX(ω)⊗ 1)

∣∣Φ+
〉

=
1

2

〈
Φ+
∣∣RX(2ω)⊗ 1

∣∣Φ+
〉

=
cosω

2
. (6.6)

To find concurrence, we calculate the eigenvalues of the matrix ρρ̃. They all vanish,

which implies that concurrence C(ρ′′M ) = 0.

6.2.1.2 Case Ri ⊗Ri

For two particle rotations around the same axis we choose the momenta to lie along

the x-axis,

∣∣MΣ
〉

=
1

2
(|px〉+ |−px〉) (|px〉+ |−px〉) . (6.7)

Supposing the boost is in the z-direction, the Thomas-Wigner rotation will occur

around the y-axis, RY (±ω) ≡ RY (±px). By substituting momentum into (6.5), we
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calculate the products for the off-diagonal elements,

(ρ′′M )12 : 1⊗R†Y (−ω)RY (ω) = 1⊗RY (2ω)

(ρ′′M )13 : R†Y (−ω)RY (ω)⊗ 1 = RY (2ω)⊗ 1

(ρ′′M )14 : R†Y (−ω)RY (ω)⊗R†Y (−ω)RY (ω) = RY (2ω)⊗RY (2ω)

(ρ′′M )23 : R†Y (−ω)RY (ω)⊗R†Y (ω)RY (−ω) = RY (2ω)⊗RY (−2ω)

(ρ′′M )24 : R†Y (−ω)RY (ω)⊗ 1 = RY (2ω)⊗ 1

(ρ′′M )34 : 1⊗R†Y (−ω)RY (ω) = 1⊗RY (2ω) . (6.8)

Since we have assumed the the spin state is |Φ+〉, the off-diagonal elements evaluate

as follows,

(ρ′′M )12 = (ρ′′M )13 = (ρ′′M )24 = (ρ′′M )34 =
cosω

4
,

(ρ′′M )23 =
cos 2ω

4
, (ρ′′M )14 =

1

4
. (6.9)

To find concurrence, we calculate the eigenvalues of the matrix ρρ̃,

sin4 ω

4
,

sin4 ω

4
, 0 , 0 ,

which implies that the concurrence C(ρ′′M ) = 0.

6.2.1.3 Case Ri ⊗Rj

In order to implement mixed rotations, we choose the momentum to be

∣∣MΣ
〉

=
1

2
(|py〉+ |−py〉) (|px〉+ |−px〉) , (6.10)

and supposing boost is in the z-direction, the first particle undergoes RX(±ω) and

the second RY (±ω) rotations. We calculate for the off-diagonal elements,

(ρ′′M )12 : 1⊗R†Y (−ω)RY (ω) = 1⊗RY (2ω)

(ρ′′M )13 : R†X(−ω)RX(ω)⊗ 1 = RX(2ω)⊗ 1

(ρ′′M )14 : R†X(−ω)RX(ω)⊗R†Y (−ω)RY (ω) = RX(2ω)⊗RY (2ω)

(ρ′′M )23 : R†X(−ω)RX(ω)⊗R†Y (ω)RY (−ω) = RX(2ω)⊗RY (−2ω)

(ρ′′M )24 : R†X(−ω)RX(ω)⊗ 1 = RX(2ω)⊗ 1

(ρ′′M )34 : 1⊗R†Y (−ω)RY (ω) = 1⊗RY (2ω) . (6.11)
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For the spin state |Φ+〉, the off-diagonal elements evaluate as follows,

(ρ′′M )12 = (ρ′′M )13 = (ρ′′M )24 = (ρ′′M )34 =
cosω

4
,

(ρ′′M )14 = (ρ′′M )23 =
cos2 ω

4
. (6.12)

To find concurrence, we calculate that the eigenvalues of ρρ̃ are all
(
sin4 ω

)
/16

which implies that the concurrence C(ρ′′M ) = 0.

6.2.2 Entangled momenta

For entangled momenta, it suffices that we study either
∣∣MΦ+

〉
or
∣∣MΨ+

〉
, which

can be written generally |M〉 =
∑2

i=1 ψ(pi,qi) |pi,qi〉, so the rest frame state is

|ψ〉 =

(
2∑
i=1

ψ(pi,qi) |pi,qi〉
)
⊗ |Ψ〉 . (6.13)

We note that this is identical to the product momentum (6.1) if we set i = j. We then

immediately obtain the boosted momentum density matrix from Equation (6.4) by

setting i = j and k = m,

ρ′′M =
2∑

i,k=1

ψ(pi,qi)ψ
∗(pk,qk) |Λpi,Λqi〉 〈Λpk,Λqk|

× 〈Ψ|R†(pk,qk)R(pi,qi) |Ψ〉 . (6.14)

This implies the density matrix contains only one independent off-diagonal ele-

ment,

|Λp1,Λq1〉 〈Λp2,Λq2| 〈Ψ|R†(p2,q2)R(p1,q1) |Ψ〉 , (6.15)

and we will again assume with no restriction of generality that the spin state is

given by |Φ+〉 in all three scenarios Ri ⊗ 1, Ri ⊗Ri, Ri ⊗Rj .

6.2.2.1 Case Ri ⊗Ri

We saw above in section 4.5.4.1 that this case splits into two, the trivial and the

non-trivial one. Only the latter is interesting for present purposes, so we assume
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that the momenta lie symmetrically along the x-axis, p1 = −q1 = −p2 = q2 = px,

∣∣MΨ+
〉

=
1√
2

(|px,−px〉+ |−px,px〉) , (6.16)

and the Lorentz boost is in the z-direction. The spins will be rotated in the x − z-

plane by RY (±ω) ≡ R(±px). For the only off-diagonal term we calculate the prod-

uct of rotation operators,

R†Y (−ω, ω)RY (ω,−ω) = RY (2ω)⊗RY (−2ω) , (6.17)

and for |Φ+〉 the off-diagonal element evaluates to

(ρ′′M )23 =
〈
Φ+
∣∣RY (2ω)⊗RY (−2ω)

∣∣Φ+
〉

=
cos 2ω

2
. (6.18)

For concurrence we find the square roots of eigenvalues of ρρ̃,

1

8
(3 + 4| cos 2ω|+ cos 4ω) ,

1

8
(3− 4| cos 2ω|+ cos 4ω) , 0 , 0 .

which implies that the concurrence for ρ′′M is

C(ρ′′M ) = |cos 2ω| . (6.19)

This is plotted in Figure 6.1. We see that entanglement in the momentum degree of

freedom behaves exactly in the same way as spin entanglement, see section 4.5.4.1.

It decoheres under Lorentz boosts.

We note that this result was first found by [92]. They choose a boost scenario

with a boost angle θ = π/2 and obtain the same analytic formula for both the spin

and momentum concurrence. Our slightly different analytic calculation confirms

their result.

6.2.2.2 Case Ri ⊗Rj

In order to implement mixed rotations, we choose the momentum state as follows,

∣∣MΨ+
〉

=
1√
2

(|py,−px〉+ |−py,px〉) , (6.20)

so the particle undergoes RX ⊗RY rotations. We calculate the off-diagonal term,

(ρ′′M )23 =
〈
Φ+
∣∣RX(2ω)⊗RY (−2ω)

∣∣Φ+
〉

=
cos2 ω

2
. (6.21)
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Figure 6.1. Momentum concurrence for spin rotations of type Ri ⊗ Ri generated by entangled mo-
menta

∣∣MΨ+
〉
.

To find concurrence, we calculate the eigenvalues of ρρ̃,

1

16
(3 + cos 2ω)2 ,

1

4
sin4 ω, 0 , 0 ,

so the expression for concurrence is

C(ρ′′M ) = cos2 ω . (6.22)

This is plotted in Figure 6.2. In analogy to the previous case, we observe that

momentum entanglement mirrors the behaviour of spin entanglement, see section

4.5.4.2.

6.3 Particle partitions

Our investigations so far have not confirmed the hypothesis that spin entanglement

is transferred to the momentum degrees of freedom. In case of the single particle

we observed that entanglement between the spin and the momentum degree of

freedom changed as a result of boost. Might it be that entanglement is redistributed

within a single particle? To see whether or not this is true, we will calculate the

concurrence of a particle in different boost scenarios.
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Figure 6.2. Momentum concurrence for spin rotations of type Ri ⊗ Rj generated by entangled mo-
menta

∣∣MΨ+
〉
.

6.3.1 Product momenta

We begin by considering product momenta
∣∣MΣ

〉
= 1

2

∑2
i,j=1 |pi,qj〉. The initial

state of the two particle system is given by

|ψ〉 =

1

2

2∑
i,j=1

|pi,qj〉

⊗ ∣∣Φ+
〉
. (6.23)

A Lorentz boost Λ transforms the state to

∣∣ψ′′〉 =
1

2

2∑
i,j=1

|Λpi,Λqj〉 ⊗R(pi,qj)
∣∣Φ+

〉
, (6.24)

and the density matrix ρ′′ = |ψ′′〉 〈ψ′′| is given by

ρ′′ =
1

4

 2∑
i,j,k,m=1

|Λpi,Λqj〉 〈Λpk,Λqm| ⊗R(pi,qj)
∣∣Φ+

〉 〈
Φ+
∣∣R†(pk,qm)

 .

(6.25)

To obtain the state of the second particle, we trace out the first particle ρ′′2 = Tr1 (ρ′′),

ρ′′2 =
1

4

 2∑
i,j,k,m=1

〈Λpi|Λpk〉 |Λqj〉 〈Λqm|
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⊗

1

2

1∑
s,t=0

Tr
(
R(pi) |s〉 〈t|R†(pk)

)
R(qj) |s〉 〈t|R†(qm)

 ,

(6.26)

where we have used the expansion |Φ+〉 〈Φ+| = 1
2

∑1
s,t=0 |ss〉 〈tt| for the density

matrix of the Bell state. We take into account that the boosted momenta satisfy the

orthogonality condition, 〈Λpi|Λpk〉 = δik, and that the trace of the spin state gives

Tr
(
R(pi) |s〉 〈t|R†(pi)

)
= 〈t|R†(pi)R(pi) |s〉 = δii〈s|t〉

= δiiδst . (6.27)

Substituting this into (6.26) and taking sum over i, we get

ρ′′2 =
1

4

 2∑
j,m=1

|Λqj〉 〈Λqm| ⊗
(

1∑
s=0

R(qj) |s〉 〈s|R†(qm)

)
=

1

4

2∑
j,m=1

|Λqj〉 〈Λqm| ⊗R(qj)R
†(qm) , (6.28)

where in the last line we have used that the spins satisfy the resolution of identity,∑1
s=0 |s〉 〈s| = 12. We can rewrite this in a form,

ρ′′2 =
1

4

12 ⊗ 12 +
2∑

j,m=1
j 6=m

|Λqj〉 〈Λqm| ⊗R(qj)R
†(qm)

 , (6.29)

where the diagonal and off-diagonal terms are clearly separated.

For all three types of rotations Ri ⊗ 1, Ri ⊗ Ri, Ri ⊗ Rj , i 6= j, the off-diagonal

term takes the form |Λq1〉 〈Λq2| ⊗R(2ω), implying that the concurrence C(ρ′′2) = 0.

6.3.2 Entangled momenta

For an entangled momentum
∣∣MΦ+

〉
= 1√

2

∑1
i=0 |pi,qi〉, the boosted state can be

obtained immediately from the expression (6.28) by noting that j = m, hence

ρ′′2 =
1

4
12 ⊗ 12 . (6.30)

The result holds for all entangled momentum states where the |p1〉 and |p2〉 are

orthogonal. Since this is true for all three types of rotations Ri⊗1, Ri⊗Ri, Ri⊗Rj ,
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i 6= j, the concurrence C(ρ′′2) = 0 in all three scenarios. We note that [92] find the

same result for the scenario Ri ⊗Ri.

6.4 Summary and discussion

The conclusion that the decrease of pairwise entanglement in the spin-spin degrees

of freedom is not compensated by an increase of pairwise entanglement between

momenta was first established in [92] where the authors study entangled momenta

of the form
∣∣MΨ−〉. We confirm this finding by extending the analysis to a wider

class of momentum states. If momentum qubits are initially in a separable state,

the momentum state which is obtained by tracing out the spin degree of freedom,

never becomes entangled for any value of spin rotation in any of the scenarios.

Initially entangled momenta behave somewhat differently—the change of concur-

rence mimics that of spin entanglement for both the Ri⊗Ri and Ri⊗Rj scenarios.

Drawing on the single particle, i.e. the fact that Lorentz boosts entangle the spin

and momentum of a single particle, one might argue that spin-spin entanglement

is rather shuffled around in the particle-partition of the system, that is, between

the spin and the momentum qubit of a single particle. While in section 6.3 we

found that the concurrence of a single particle vanishes for both the product and

entangled momenta, the treatment we adopted only establishes that there is no bi-

partite entanglement present between the degrees of freedom of a single particle.

Multipartite entanglement between three or four of the spin and momentum de-

grees of freedom can still be present. This is because determining multiparticle

entanglement requires a more elaborate approach than the one used above. To de-

tect whether the entanglement, which initially resides in the spin-spin degree of

freedom, has been shuffled into the particle-partitions, one can find out how the

entanglement between the whole particle-partitions changes as a result of boosts.

That is, one finds the state of the first particle by tracing out the second particle and

then calculates the entropy of the first particle. Comparison of the entropy of the

initial and the final states of the particle then shows whether or not the spin-spin

entropy has been transferred into the particle-partition of the total system.1

In summary, the issue of entanglement transfer under Lorentz boosts remains

open. The results obtained in this chapter do not yield a full account of how en-

tanglement is redistributed between different subsystems of two particles when

the system is viewed from different relativistic frames. A more thorough analysis

1 See e.g. [99, 100] and references therein for multiparticle entanglement. I would like to thank Pieter
Kok and Viv Kendon for drawing my attention to this, as well as for a useful discussion.
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is needed where we conceive of the system in terms of four qubits, accompanied

with a comprehensive analysis of multiparticle entanglement. We envisage this as

part of future research.



Chapter7
Conclusion

We will now summarise the findings of the thesis and provide some possible av-

enues for future research. We began our investigation in chapter 3 by focussing

on the simplest nontrivial system of interest: a single massive spin-1/2 particle

with momentum, which constitutes the qubit in the context of relativistic quantum

information. We confirmed the general observation that entanglement is observer

dependent. Lorentz boosts change the entanglement between the spin and momen-

tum degrees of freedom. While previous works in the literature focussed on sys-

tems involving various idealisations, we generalised the treatment in three ways,

which to the best of our knowledge had not been done before. First, we extended

the discussion to realistic systems described by Gaussian wavepackets with finite

width. We secondly generalised the analysis to geometries involving a large vari-

ety of boost angles and established that the behaviour of entanglement is sensitive

to the boost geometry. Maximal entanglement between spin and momentum com-

ponents of a single particle can be achieved with sub-luminal boosts. However, if

achieving a particular level of entanglement is significant in the given context, then

the boost parameters must be chosen carefully since due to rich geometric setting

too large or too small boosts do not yield the desired result and may instead lead

to deterioration of entanglement. We also confirm that the effect persists for wave

packets. Lastly, we introduced another sense in which geometry plays a crucial

role: as a form of explanation. It turns out that all the diverse qualitative features

of entanglement behaviour of systems with discrete and continuous momenta can

be understood in a simple geometric manner.

In chapter 4 we turned to examine entanglement in the spin degree of freedom

of a two particle system. By systematically studying different kinds of product and

entangled momenta in various boost scenarios, the aim was to survey and classify
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the structure of maps that momenta induce on spins under Lorentz boosts. We

assumed that momenta are discrete and spins are in the Werner state. The latter

subsume the Bell states. The results are summarised in Tables 4.3 and 4.4. The

overall conclusion is that Lorentz boosts generally cause non-trivial behaviour of

entanglement in the spin degree of freedom of two particle systems. In analogy to

the single particle system, the spin-spin entanglement of two particles is observer

dependent. However, whether or not, and to what extent, the state and entangle-

ment of spins changes depends substantially on the spin and momentum states

involved, as well as on the geometry of the boost scenario. Whereas some states

and geometries leave entanglement invariant, others give rise to rapid changes of

concurrence. Examples of the former comprise Bell states with product momenta of

the form |p,q〉, as well as the interesting special case of type Ri ⊗ Ri for entangled

momenta where spin is an eigenstate of rotation, represented by the equivalence

class [RY ⊗RY , ρMΦ+
d , ρW ]. All other types of rotations and momenta were found

to bring about entanglement change in Bell states that ranges from maximal to zero,

with the class [RX ⊗RX ,MΦ+,Φ+] for the entangled momenta causing the fastest

decay and rebirth of entanglement.

While the literature on relativistic entanglement commonly analyses pure en-

tangled states, it is important to consider mixed states as well in order to gain

full understanding. The present work makes a step in this direction by classify-

ing the behaviour of the Werner states, whose entanglement ranges between maxi-

mal and no entanglement at all. Compared to pure states, they display less change

as the maximal degree of entanglement is bounded by the parameter λ. The lat-

ter highlights an important conclusion, which applies to both pure and entangled

spin states: spin entanglement cannot be increased under Lorentz boosts if there

is no spin-momentum entanglement present in the first place. This result was first

proved for pure states in [15], our investigation confirms that it holds true for mixed

spin states as well if spin and momentum initially factorise. It should be stressed

though that the result is valid only for initial states whose spin-momentum fac-

torise [15]. If spin and momentum degrees are initially entangled, the boosted state

might be more entangled than the initial one. Although proper study of this very

interesting case is beyond the scope of the current thesis, as noted in section 4.2, it

has been implicit to some extent in the scenarios we examined.

We also gained valuable qualitative insights. The geometric framework intro-

duced in the chapter on single particle systems remained in place. Using this we

could understand the various results reported in the literature, i.e. that spin entan-
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glement did or did not change in a particular boost scenario, by explaining them in

a convenient, simplified framework which involves discrete momenta and spins.

As an example, we saw that the seemingly contradictory results reported in [17]

and [15] could be explained away by observing that the authors used different mo-

mentum states. The continuous states involved in the example can modelled in

many situations quite accurately in terms of the state |M×〉, as discussed in detail

in chapter 5, where we turned to two particles with continuous momenta.

The treatment of continuous systems was parallel to those of discrete momenta

in that we systematically surveyed a number of boost scenarios with momenta both

in product and entangled states. Attention was confined to pure spins only, which

were assumed to be in the Bell state |Φ+〉. We observed relatively good agreement

between discrete systems and Gaussians of narrower widths with σ/m = 1. Wave

packets of larger widths led to deviation from the idealised discrete models. In

analogy to the the single particle system, the analysis was numerical throughout as

the two particle system is too complex to be tackled by analytic methods. However,

the lack of analytic models was to some extent compensated by the discrete model,

according to which systems involving three dimensional Gaussians can be thought

of as fields comprising spins at a large number of discrete momenta. Boosting

means that each spin undergoes a different, momentum dependent rotation for

a given value of rapidity. It was remarkable that such a complex behaviour can be

reduced to simple models. We highlight two cases which further justify its use. In

section 5.3.2 we were able to understand the somewhat counterintuitive behaviour

of z-axis centred Gaussians in terms of a simple discrete 2D model involving two

spins. And in section 5.3.3 we employed the |M×〉 and f× states to obtain another

simple model involving four narrow Gaussians whose behaviour agreed, in many

cases, with that of the z-centred Gaussian momenta to a surprisingly high degree

of accuracy. In analogy to discrete systems, further insight into the workings of

continuous systems was provided by visualisation of their orbits. We gained a

more detailed understanding of how varying the initial states, their widths and

momenta, changes the entanglement of spins.

In chapter 6 we discussed the notion of entanglement transfer. We confirmed

the conclusion that the decrease of pairwise entanglement in the spin-spin degree

of freedom is not compensated by an increase of pairwise entanglement between

momenta, a result that was first established for entangled momenta in [92]. We ex-

tended the analysis to a wider class of momentum states. If momentum qubits are

initially in a separable state, the momentum state, which is obtained by tracing out
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the spin degree of freedom, never becomes entangled for any value of spin rota-

tion in any of the scenarios. Entangled momenta behave somewhat differently—

the change of concurrence mimics that of spin entanglement for both the Ri ⊗ Ri
and Ri ⊗ Rj scenarios. Interestingly, momentum entanglement decoheres in ex-

actly the same way as spin entanglement. We also considered another hypothesis,

namely, that spin-spin entanglement is shuffled around in the particle-partitions of

the system, that is, between the spin and the momentum qubit of a single particle.

However, although we found that the concurrence of a single particle vanishes for

both the product and entangled momenta, the treatment we adopted does not es-

tablish conclusively that there was no entanglement present between the degrees

of freedom of a single particle. This is because determining multiparticle entangle-

ment requires a more elaborate approach than the one used above. We conclude

that more work is needed to obtain a full account of how entanglement is redis-

tributed between different subsystems of two particles when the system is viewed

from different relativistic frames. We envisage this as part of future research.

7.1 Outlook

Relativistic quantum information lies at the intersection of quantum theory, rela-

tivity and information theory. It remains a field of active research with a number

of interesting topics. In this thesis, we have attempted to make progress in under-

standing the key question—the behaviour of entanglement—by emphasising the

role of geometry. To close off, we would like to outline a possible avenue of re-

search which offers an interesting extension of the ideas pursued above.

The common understanding of the Thomas-Wigner rotation is in the context of

group theory. Yet the geometric perspective offers a fruitful, complementary ap-

proach. This picture emphasises the fact that the relativistic velocity space is a Rie-

mannian manifold with hyperbolic geometry [67]. Each point can be transformed

into any other, meaning that it is a homogeneous space of the Lorentz group.

Lorentz boosting corresponds to parallel transporting in this space. Since the man-

ifold has a constant curvature, parallel transporting a vector around a closed loop

results in a non-trivial transformation. In the context of differential geometry, this

phenomenon is known as holonomy [101, 102]. This allows to conceptualise Thomas-

Wigner rotation as a holonomy of the relativistic velocity space [103], implying that

Thomas-Wigner rotation belongs to the kind of phenomena of which Berry’s phase

is an another example [104, 105].



116 Chapter 7. Conclusion

In this framework, the physical situation we have been concerned with through-

out the thesis now appears as a particular case, which we can call a two-boost sce-

nario. In general, however, we can consider an arbitrary loop in the velocity space,

leading to a wide variety of multi-boost scenarios. Physically, the two-boost sce-

nario corresponds to a passive boost situation involving two observers in different

frames. A multi-boost scenario can be interpreted in an active manner, with the

system undergoing change of movement. The importance of this is that while the

magnitude of Thomas-Wigner rotation in the two-boost situation ranges between

0 and π, in general in the multi-boost scenario any angle between 0 and 2π can be

achieved. This implies we can in principle manipulate a qubit by letting it traverse

a particular trajectory in the velocity space. Especially interesting examples in-

volve schemes which generate maximally entangled states with speeds well below

the speed of light. Another is a possible experimental verification of the Thomas-

Wigner rotation with non-relativistic speeds. If possible, the third is perhaps most

intriguing: implement an arbitrary single qubit gate by devising a suitable path in

the velocity space. It would be interesting to see if these intuitive arguments can be

realised in a rigorous setting.



AppendixA
Example of source code: single

particle

This appendix describes the code that was used to carry through the numerical

calculations for single particle systems with continuous momenta. It is written in

the Java programming language and needs the package Jampack to run. The latter

can be downloaded at NIST [106]. The variables mass and sigma specify the mass

and width of the particle. The variables px0, py0 and pz0 define the centers of

the Gaussian wave packets. The rapidity is defined using the variable rapidity.

All these variables need to be set using the method setParams before the method

calculateIntegral is called.

1 import java.io.FileInputStream;
2 import java.io.FileOutputStream;
3 import java.io.IOException;
4 import java.io.*;
5
6 import java.util.*;
7 import java.lang.Number.*;
8 import java.nio.*;
9

10 import graphutil.*;
11 import org.matrixutil.*;
12
13 public class TwoGaussVer4 implements paramsTwoGaussVer4
14 {
15 //constants
16 private double sigma = 0.08, sigma2 = 0;
17 private double mass = 0.01, mass2 = 0;
18 private double rapidity = 0;
19 private double coshRapidity = 0, sinhRapidity = 0, coshRapidityHalf = 0,

sinhRapidityHalf = 0;
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20
21 //energy and boosted energy
22 private double Energy = 0;
23
24 //integration dummies
25 private double px = 0, py = 0, pz = 0; //dummy Cart3D variables
26 private double px2 = 0, py2 = 0, pz2 = 0; //squared dummies to increase

speed
27 private double invariantInfElement = 0;
28 private double invariantIntegrationMeasureCart = 0;
29 private double dpx = 0, dpy = 0, dpz = 0; //increment
30
31 private double[][] doubleFourMomentum = new double[4][1];
32
33 private double px0 = 0, py0 = 0, pz0 = 0; //displacement for Gaussian
34
35 //integration limits
36 private double pxmin = 0, pxmax = 0, pymin = 0, pymax = 0, pzmin = 0,

pzmax = 0; //domain min, max
37
38 private double offSetX = 0;
39 private double offSetY = 0;
40 private double offSetZ = 0;
41
42 //Integration area limits
43 private double pxmin0 = 0;
44 private double pxmax0 = 0;
45 private double pymin0 = 0;
46 private double pymax0 = 0;
47 private double pzmin0 = 0;
48 private double pzmax0 = 0;
49 private double pxmax02 = 0; //squared dummies
50 private double pymax02 = 0;
51 private double pzmax02 = 0;
52 private double EnergyPxmax0 = 0;
53 private double EnergyPymax0 = 0;
54 private double EnergyPzmax0 = 0;
55 private double pzmax2 = 0, pzmin2 = 0, EnergyPzmax = 0, EnergyPzmin = 0;
56 private double pzMaxBoosted = 0, pzMinBoosted = 0;
57
58 //XYZ-Grid
59 private double noOfXPoints = GridXSize; //X resolution
60 private double noOfYPoints = GridYSize; //Y resolution
61 private double noOfZPoints = GridZSize; //Z resolution
62
63 //Gaussian
64 private double f1 = 0, f1a = 0, f1aInf = 0; //UNBoosted Gaussian
65 private double f1pos = 0, f1neg = 0; //UNBoosted shifted Gaussian
66
67 private double f2a = 0; //Boosted Gaussian
68 private double f2pos = 0, f2neg = 0; //Boosted shifted Gaussian
69 private double f2sum = 0; //boosted sum
70 private double f2aSquaredSum = 0;
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71 private double f2aSquared = 0;
72
73 private double norm = 1; //by default norm = 1
74
75 //progress count
76 private double tenPercentCount = 0, initialPercent = 0;
77
78 //matrix size
79 int matrixSize = 2;
80
81 //timestring
82 private String currentTimeString = "";
83
84 //we store all the data computed
85 private double[][][] graphData = new double[GridXSize + 1][GridZSize +

2][6];
86
87 //Bloch vector compos
88 private double rxBloch = 0, ryBloch = 0, rzBloch = 0;
89 private int kHalfWay = 0;
90 private double pzBoostedDistanceMax = 0, pzBoostedDistanceMin = 0;
91
92 //Z = -1
93 Jampack.Z minusONE = new Jampack.Z(-1, 0);
94
95 //spin z-up
96 static final double[][] SPIN_Z_UP = {
97 {1},
98 {0}
99 };

100 Jampack.Zmat initialSpin = new Jampack.Zmat(SPIN_Z_UP);
101 Jampack.Zmat initialSpinWithGauss = new Jampack.Zmat(2, 1);
102
103 //lorentz boost unit
104 Jampack.Zmat lorentzBoostDirection = new Jampack.Zmat(

LORENTZ_BOOST_DIRECTION);
105
106 LorentzBoost lorentzBoost = new LorentzBoost();
107 Jampack.Zmat lorentzBoostMatrix;
108 WignerRotation wignerRotation = new WignerRotation();
109 Jampack.Zmat wignerRotationMatrix;
110
111 Jampack.Zmat rotatedSpinVector = new Jampack.Zmat(2, 1);
112 Jampack.Zmat rotatedSpinMatrix = new Jampack.Zmat(2, 2);
113 Jampack.Zmat rotatedSpinMatrixInf = new Jampack.Zmat(2, 2);
114 Jampack.Zmat spinMatrixNormed = new Jampack.Zmat(2, 2);
115 Jampack.Zmat totalRotatedSpinMatrix = new Jampack.Zmat(2, 2); //2x2

matrix initialize to zero
116 Jampack.Zmat fourMomentum = new Jampack.Zmat(4, 1);
117 Jampack.Zmat boostedFourMomentum = new Jampack.Zmat(4, 1);
118 Jampack.Zmat boostedThreeMomentum = new Jampack.Zmat(3, 1);
119
120 //bloch vector
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121 private double[][] blochVector = new double[3][1];
122
123 //matrix operations
124 private MatrixUtil matrixOp = new org.matrixutil.MatrixUtil();
125
126 //utility objects
127 Jampack.Times dummyTimes = new Jampack.Times();
128 Jampack.Plus dummyPlus = new Jampack.Plus();
129 Jampack.Print dummyPrint = new Jampack.Print();
130
131 //METHODS START
132 public static void TwoGaussVer4() {}
133
134 public void setParams(double tempSigma, double tempMass, double

tempRapidity, double tempPx0, double tempPy0, double tempPz0) {
135 sigma = tempSigma;
136 mass = tempMass;
137 rapidity = tempRapidity;
138 px0 = tempPx0;
139 py0 = tempPy0;
140 pz0 = tempPz0;
141 }
142
143 public void setZResolution(int tempZResolution) {
144 noOfZPoints = tempZResolution;
145 }
146
147 public double getTrace()
148 {
149 //trace
150 Jampack.Z trace = new Jampack.Z(0);
151
152 for (int i = 0; i < matrixSize; i++) {
153 trace.Plus(trace, this.spinMatrixNormed.get(i + 1, i + 1));
154 }
155
156 if (trace.im != 0) {
157 System.out.format("\nACHTUNG: trace is complex! trace = ");
158 new Jampack.Print().o(trace);
159 }
160
161 return(trace.re);
162 }
163
164 //call this to set norm
165 public double calculateNorm(double tempSigma, double tempMass, double

tempRapidity, double tempPx0, double tempPy0, double tempPz0) {
166
167 this.setParams(tempSigma, tempMass, 0, tempPx0, tempPy0, tempPz0);
168 this.setIntegrationArea();
169
170 norm = Math.sqrt(this.calculateIntegral());
171



121

172 System.out.format("Calculated norm = %12.8f\n\n", norm); //DEBUG
173
174 return(norm);
175 }
176
177 public void setNorm(double normValue)
178 {
179 //wavefunction norm
180 if (normValue > 0) {
181 this.norm = normValue;
182 }
183 else {
184 System.out.format("\nTwoGaussVer4.setNorm(): ERROR: norm = %8.5f is

not positive definite.\n", normValue);
185 }
186 }
187
188 public void setSpinMatrixNormed()
189 {
190 //throws an error if norm = 0
191 Jampack.Z tempZ = new Jampack.Z((1 / Math.pow(this.norm, 2)), 0.0);
192
193 this.spinMatrixNormed = dummyTimes.o(tempZ, this.totalRotatedSpinMatrix)

;
194 }
195
196 public Jampack.Zmat getSpinMatrixNormed()
197 {
198 return(this.spinMatrixNormed);
199 }
200
201 public double[][][] getGaussianGraphData() {
202 return graphData;
203 }
204
205 public void setIntegrationArea() {
206
207 //calculate these constants to increase speed
208 coshRapidity = Math.cosh(rapidity);
209 sinhRapidity = Math.sinh(rapidity);
210 mass2 = Math.pow(mass, 2);
211
212 pxmin = -px0 - (3 * Math.sqrt(2) * sigma);
213 pxmax = px0 + (3 * Math.sqrt(2) * sigma);
214 pymin = py0 - (3 * Math.sqrt(2) * sigma);
215 pymax = py0 + (3 * Math.sqrt(2) * sigma);
216
217 pzmin = pz0 - (5 * Math.sqrt(2) * sigma);
218 pzmax = pz0 + (5 * Math.sqrt(2) * sigma); //just a hunch
219
220 EnergyPzmax = Math.sqrt(Math.pow(pzmax, 2) + Math.pow(pymax, 2) + Math.

pow(pxmax, 2) + mass2);
221 EnergyPzmin = Math.sqrt(Math.pow(pzmin, 2) + mass2);
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222
223 pzMaxBoosted = EnergyPzmax * sinhRapidity + pzmax * coshRapidity;
224 pzMinBoosted = EnergyPzmin * sinhRapidity + pzmin * coshRapidity;
225
226 pzmax = pzMaxBoosted;
227 pzmin = pzMinBoosted;
228
229 System.out.format("calculated unboosted pzmin = %10.5f pzmax = %10.5f\n"

, pzmin, pzmax); //DEBUG
230 }
231
232 public double calculateIntegral() {
233
234 Jampack.Z dummyZ = new Jampack.Z();
235
236 //calculate these constants to increase speed
237 coshRapidity = Math.cosh(rapidity);
238 sinhRapidity = Math.sinh(rapidity);
239 coshRapidityHalf = Math.cosh(rapidity / 2);
240 sinhRapidityHalf = Math.sinh(rapidity / 2);
241 sigma2 = Math.pow(sigma, 2);
242 mass2 = Math.pow(mass, 2);
243
244 //L^{-1}(xi) = L(-xi)
245 lorentzBoost.setParams(-rapidity, lorentzBoostDirection);
246 lorentzBoostMatrix = lorentzBoost.getLorentzBoost();
247
248 //DEBUG
249 System.out.format("Lorentz boost matrix for all gaussians = ");
250 dummyPrint.o(lorentzBoostMatrix);
251
252 //DEBUG
253 System.out.format("Energypzmax = %10.5f sinhrap = %10.5f coshrap = %10.5

f\n", EnergyPzmax, sinhRapidity, coshRapidity); //DEBUG
254 System.out.format("Energypzmin = %10.5f\n", EnergyPzmin);
255
256 //increment
257 dpx = Math.abs((pxmax - pxmin)) / noOfXPoints;
258 dpy = Math.abs((pymax - pymin)) / noOfYPoints;
259 dpz = Math.abs((pzmax - pzmin)) / noOfZPoints;
260
261 //initialize dummy integration variables
262 px = pxmin;
263 py = pymin;
264 pz = pzmin;
265
266 //set initial values to 0 for things we sum over before calculation
267 f2sum = 0;
268
269 //percent counter
270 tenPercentCount = noOfXPoints / 10;
271 initialPercent = tenPercentCount;
272
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273 //k half way
274 kHalfWay = (int) noOfYPoints / 2;
275
276 //START
277
278 //print time
279 currentTimeString = graphUtil.getCurrentTimeHours();
280
281 //DEBUG
282 System.out.format("Initial totalRotatedSpinMatrix = ");
283 dummyPrint.o(totalRotatedSpinMatrix);
284 System.out.format("Initial spin = ");
285 dummyPrint.o(initialSpin);
286
287 //DEBUG
288 System.out.format("initial f2sum = %20.10f \n", f2sum);
289 System.out.format("kHalfWay = %d \n", kHalfWay);
290
291 System.out.println(currentTimeString + " BEGIN calculateGaussianCart3D()

\n");
292 System.out.format("mass = %10.6f sigma = %10.6f rapidity = %4.2f\n",

mass, sigma, rapidity);
293 System.out.format("px0 = %10.6f py0 = %10.6f pz0 = %10.6f\n", px0, py0,

pz0);
294 System.out.format("dpx = %10.6f dpy = %10.6f dpz = %10.6f\n", dpx, dpy,

dpz);
295 System.out.format("XGrid = [%6.2f, %6.2f, %8.0f]%n", pxmin, pxmax,

noOfXPoints);
296 System.out.format("YGrid = [%6.2f, %6.2f, %8.0f]%n", pymin, pymax,

noOfYPoints);
297 System.out.format("ZGrid = [%6.2f, %6.2f, %8.0f]%n%n", pzmin, pzmax,

noOfZPoints);
298 System.out.print("Progress: 0% | ");
299
300 //integrate
301 for(int i = 0; i < noOfXPoints + 1; i++){ //x - coordinate
302
303 px = pxmin + i * dpx;
304 //store data
305 graphData[i][0][0] = px;
306
307 //percent count
308 if (i > initialPercent) {
309 //timestamp
310 currentTimeString = graphUtil.getCurrentTimeHours();
311 System.out.print(currentTimeString + " ");
312 //percent stamp
313 System.out.format("%2.0f%% px = %10.6f | ", (initialPercent /

tenPercentCount) * 10, px);
314 initialPercent = initialPercent + tenPercentCount;
315 }
316
317 for (int k = 0; k < noOfYPoints + 1; k++) { //y - coordinate
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318
319 py = pymin + k * dpy;
320
321 for (int m = 0; m < noOfZPoints + 1; m++) { //z - coordinate
322
323 try {
324 pz = pzmin + m * dpz;
325
326 px2 = Math.pow(px, 2);
327 py2 = Math.pow(py, 2);
328 pz2 = Math.pow(pz, 2);
329 Energy = Math.sqrt(px2 + py2 + pz2 + mass2);
330
331 //4-momentum vector
332 dummyZ.im = 0;
333 dummyZ.re = Energy;
334 fourMomentum.put(1, 1, dummyZ);
335 dummyZ.re = px;
336 fourMomentum.put(2, 1, dummyZ);
337 dummyZ.re = py;
338 fourMomentum.put(3, 1, dummyZ);
339 dummyZ.re = pz;
340 fourMomentum.put(4, 1, dummyZ);
341
342 boostedFourMomentum = dummyTimes.o(lorentzBoostMatrix,

fourMomentum);
343 boostedThreeMomentum = boostedFourMomentum.get(2, 4, 1, 1);
344
345 invariantIntegrationMeasureCart = 1 / (2 * Energy);
346 invariantInfElement = dpx * dpy * dpz *

invariantIntegrationMeasureCart;
347
348 //f1 is UNboosted
349 f1pos = Math.exp(-(Math.pow((px - px0), 2) + Math.pow((py - py0)

, 2) + Math.pow((pz - pz0), 2)) / (2 * sigma2));
350 f1neg = Math.exp(-(Math.pow((px + px0), 2) + Math.pow((py - py0)

, 2) + Math.pow((pz - pz0), 2)) / (2 * sigma2));
351 //covariant measure
352 f1a = f1pos + f1neg;
353 //norm
354 f1aInf = f1a * invariantInfElement;
355
356 //f2 is Boosted
357 f2pos = Math.exp(-0.5 * Math.pow((boostedThreeMomentum.get(3, 1)

.re - pz0), 2) / sigma2) * Math.exp((-0.5 * (Math.pow((px +
px0), 2) + Math.pow((py - py0), 2))) / sigma2);

358 f2neg = Math.exp(-0.5 * Math.pow((boostedThreeMomentum.get(3, 1)
.re - pz0), 2) / sigma2) * Math.exp((-0.5 * (Math.pow((px -
px0), 2) + Math.pow((py - py0), 2))) / sigma2);

359
360 //sum
361 f2a = f2pos + f2neg;
362 f2sum = f2sum + ((f2a * f2a) * invariantInfElement);
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363
364 //Wigner rotation
365 wignerRotation.setParams(mass, rapidity, lorentzBoostDirection,

boostedThreeMomentum);
366 wignerRotationMatrix = wignerRotation.getWignerMatrix();
367
368 dummyZ.re = f2a;
369 dummyZ.im = 0;
370
371 initialSpinWithGauss = dummyTimes.o(dummyZ, initialSpin);
372
373 //spin vector
374 rotatedSpinVector = dummyTimes.o(wignerRotationMatrix,

initialSpinWithGauss);
375
376 //spin matrix
377 rotatedSpinMatrix = matrixOp.outerProduct(rotatedSpinVector,

matrixOp.vectorToCCVector(rotatedSpinVector));
378
379 //matrix * d
380 dummyZ.re = invariantInfElement;
381 rotatedSpinMatrixInf = dummyTimes.o(dummyZ, rotatedSpinMatrix);
382
383 totalRotatedSpinMatrix = dummyPlus.o(totalRotatedSpinMatrix,

rotatedSpinMatrixInf);
384
385 //store the Gaussian
386 if (k == kHalfWay) { //we harvest values on the y-plane
387
388 graphData[i][m + 1][0] = pz;
389 graphData[i][m + 1][1] = f2a;
390
391 //init bloch vector
392 BlochVector blochVectorObject = new BlochVector();
393 blochVectorObject.setParams(rotatedSpinMatrix);
394 blochVector = blochVectorObject.getBlochVector();
395
396 //Bloch vector compos
397 rxBloch = blochVector[0][0];
398 ryBloch = blochVector[1][0];
399 rzBloch = blochVector[2][0];
400
401 graphData[i][m + 1][2] = rxBloch;
402 graphData[i][m + 1][3] = rzBloch;
403 //plot these using gnuplot
404 graphData[i][m + 1][4] = rxBloch * f2a;
405 graphData[i][m + 1][5] = rzBloch * f2a;
406 }
407 }
408 catch (Jampack.JampackException e) {
409 System.err.println("TwoGaussVer4(): Caught JampackException: "
410 + e.getMessage());
411 }
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412 }
413 }
414 }
415
416 //set normed matrix
417 setSpinMatrixNormed();
418
419 //print time and results
420 currentTimeString = graphUtil.getCurrentTimeHours();
421 System.out.println();
422 System.out.println(currentTimeString + " FINISH\n");
423
424 System.out.format("fUNBoostSum/Norm = %12.6f fBoostSum = %12.6f

fBoostSum.normed = %12.6f\n", norm, f2sum, f2sum / Math.pow(norm, 2)
);

425 System.out.format("\nfUNBoostSum/Norm = %12.6E fBoostSum = %12.6E
fBoostSum.normed = %12.6E\n", norm, f2sum, f2sum / Math.pow(norm, 2)
);

426
427 //print spin matrix
428 System.out.format("\nSpinMatrix =");
429 dummyPrint.o(getSpinMatrixNormed());
430
431 //print trace
432 System.out.format("Trace = %8.6f\n\n", getTrace());
433
434 //return: if rapidity = 0, then this is norm
435 return(f2sum);
436
437 } //finish calculateIntegral()
438
439 } //END



AppendixB
Example of source code: two

particles

In this appendix we describe the code that was used to perform the numerical

calculations for two particle systems with continuous momenta. It is written in

the Java programming language and needs the package Jampack to run. Jampack

can be downloaded at NIST [106]. The variables mass and sigma specify the mass

and width of both particles. The variables px0, py0 and pz0 define the centers of

the Gaussian wave packets. The rapidity is defined using the variable rapidityZ.

All these variables need to be set using the method setParams before the method

calculateIntegral is called.

1 import java.io.FileInputStream;
2 import java.io.FileOutputStream;
3 import java.io.IOException;
4 import java.io.*;
5
6 import java.util.*;
7 import java.lang.Number.*;
8 import java.nio.*;
9

10 import graphutil.*;
11 import org.matrixutil.*;
12
13 public class BellGaussVer4 implements paramsBellGaussVer4
14 {
15 //constants
16 private double sigma = 0.08, sigma2 = 0;
17 private double mass = 0.01, mass2 = 0;
18 private double rapidityZ = 0;
19 private double coshRapidityZ = 0, sinhRapidityZ = 0, coshRapidityZHalf =

0, sinhRapidityZHalf = 0;
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20
21 //energy and boosted energy
22 private double Energy = 0;
23
24 //integration dummies
25 private double px = 0, py = 0, pz = 0; //dummy Cart3D variables
26 private double px2 = 0, py2 = 0, pz2 = 0; //squared dummies to increase

speed
27
28 private double px0 = 0, py0 = 0, pz0 = 0; //displacement for Gaussian
29
30 //integration dummies
31 private double invariantInfElement = 0;
32 private double invariantIntegrationMeasureCart = 0;
33 private double dpx = 0, dpy = 0, dpz = 0; //integration increment
34
35 //integration limits
36 private double pxmin = 0, pxmax = 0; //x domain min, max
37 private double pymin = 0, pymax = 0; //y
38 private double pzmin = 0, pzmax = 0; //z
39 private double EnergyPzmax = 0;
40 private double EnergyPzmin = 0;
41 private double pzMaxBoosted = 0;
42 private double pzMinBoosted = 0;
43
44 private double offSetX = 0;
45 private double offSetY = 0;
46 private double offSetZ = 0;
47
48 //XYZ-Grid
49 private int noOfXPoints = GRID_X_SIZE; //X resolution
50 private int noOfYPoints = GRID_Y_SIZE; //Y resolution
51 private int noOfZPoints = GRID_Z_SIZE; //Z resolution
52
53 //dynamical counters
54 private int graphDataIncX = 0;
55 private int graphDataincZ = 0;
56 private int graphDataXFixedPercentCount = 0;
57 private int graphDataZFixedPercentCount = 0;
58 private int graphDataXPercentCount = 0;
59 private int graphDataZPercentCount = 0;
60
61 //Gaussian
62 //unboosted gaussians
63 private double fPGaussian = 0;
64 private double fQGaussian = 0;
65
66 //unboosted gaussian sums
67 private double fPGaussianSum = 0;
68 private double fQGaussianSum = 0;
69
70 //boosted gaussians
71 private double fPGaussianBoosted = 0;
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72 private double fQGaussianBoosted = 0;
73
74 //gaussian sums
75 private double fPGaussianBoostedSum = 0;
76 private double fQGaussianBoostedSum = 0;
77
78 //total boosted sum = this is norm
79 private double boostedSum = 0;
80
81 //default norm = 1
82 private double norm = 1;
83
84 //progress count
85 private double tenPercentCount = 0, initialPercent = 0;
86 //counting halfway for storage
87 private int kHalfWay = 0;
88
89 //DATA STORAGE
90 //array where we store all the computed data
91 private double[][][] graphData = new double[GRID_X_SIZE + 1][GRID_Z_SIZE

+ 2][6];
92
93 //sizes
94 private final int SPINVECTOR_SIZE = 2; //size of spin vector is 2x1
95 private final int SPIN_DENSITY_MATRIX_SIZE = 4; //size of the density

matrix is 4x4
96
97 //timestring
98 private String currentTimeString = "";
99

100 //lorentz boost unit
101 private Jampack.Zmat lorentzBoostZDirection = new Jampack.Zmat(

LORENTZ_BOOST_Z_DIRECTION);
102
103 private LorentzBoost lorentzBoostZ = new LorentzBoost();
104 private Jampack.Zmat lorentzBoostZMatrix;
105 private LorentzBoost lorentzBoostZInv = new LorentzBoost();
106 private Jampack.Zmat lorentzBoostZInvMatrix;
107
108 private WignerRotation wignerRotationZ = new WignerRotation();
109 private Jampack.Zmat wignerRotationZMatrix;
110
111 //momenta
112 Jampack.Zmat fourMomentum = new Jampack.Zmat(4, 1);
113 Jampack.Zmat boostedFourMomentum = new Jampack.Zmat(4, 1);
114 Jampack.Zmat boostedThreeMomentum = new Jampack.Zmat(3, 1);
115
116 //SPIN VECTORS
117 //spin z-up
118 static final double[][] SPIN_Z_UP = {
119 {1},
120 {0}
121 };
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122 Jampack.Zmat initialSpin0 = new Jampack.Zmat(SPIN_Z_UP);
123
124 //spin z-down
125 static final double[][] SPIN_Z_DOWN = {
126 {0},
127 {1}
128 };
129 Jampack.Zmat initialSpin1 = new Jampack.Zmat(SPIN_Z_DOWN);
130
131 //with Gaussian
132 //P
133 private Jampack.Zmat initialSpin0WithGaussP = new Jampack.Zmat(

SPINVECTOR_SIZE, 1);
134 private Jampack.Zmat initialSpin1WithGaussP = new Jampack.Zmat(

SPINVECTOR_SIZE, 1);
135 //
136 private Jampack.Zmat rotatedSpin0WithGaussP = new Jampack.Zmat(

SPINVECTOR_SIZE, 1);
137 private Jampack.Zmat rotatedSpin1WithGaussP = new Jampack.Zmat(

SPINVECTOR_SIZE, 1);
138
139 //Q
140 private Jampack.Zmat initialSpin0WithGaussQ = new Jampack.Zmat(

SPINVECTOR_SIZE, 1);
141 private Jampack.Zmat initialSpin1WithGaussQ = new Jampack.Zmat(

SPINVECTOR_SIZE, 1);
142 //
143 private Jampack.Zmat rotatedSpin0WithGaussQ = new Jampack.Zmat(

SPINVECTOR_SIZE, 1);
144 private Jampack.Zmat rotatedSpin1WithGaussQ = new Jampack.Zmat(

SPINVECTOR_SIZE, 1);
145
146 //SPIN MATRICES
147 //|0><0|
148 private Jampack.Zmat rotatedSpin00MatrixWithGaussP = new Jampack.Zmat(

SPINVECTOR_SIZE, SPINVECTOR_SIZE);
149 private Jampack.Zmat rotatedSpin00MatrixWithGaussQ = new Jampack.Zmat(

SPINVECTOR_SIZE, SPINVECTOR_SIZE);
150
151 //|0><1|
152 private Jampack.Zmat rotatedSpin01MatrixWithGaussP = new Jampack.Zmat(

SPINVECTOR_SIZE, SPINVECTOR_SIZE);
153 private Jampack.Zmat rotatedSpin01MatrixWithGaussQ = new Jampack.Zmat(

SPINVECTOR_SIZE, SPINVECTOR_SIZE);
154
155 //|1><0|
156 private Jampack.Zmat rotatedSpin10MatrixWithGaussP = new Jampack.Zmat(

SPINVECTOR_SIZE, SPINVECTOR_SIZE);
157 private Jampack.Zmat rotatedSpin10MatrixWithGaussQ = new Jampack.Zmat(

SPINVECTOR_SIZE, SPINVECTOR_SIZE);
158
159 //|1><1|
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160 private Jampack.Zmat rotatedSpin11MatrixWithGaussP = new Jampack.Zmat(
SPINVECTOR_SIZE, SPINVECTOR_SIZE);

161 private Jampack.Zmat rotatedSpin11MatrixWithGaussQ = new Jampack.Zmat(
SPINVECTOR_SIZE, SPINVECTOR_SIZE);

162
163 //spin matrices summed
164 //[0, 0]
165 private Jampack.Zmat rotatedSpin00MatrixPSum = new Jampack.Zmat(

SPINVECTOR_SIZE, SPINVECTOR_SIZE);
166 private Jampack.Zmat rotatedSpin00MatrixQSum = new Jampack.Zmat(

SPINVECTOR_SIZE, SPINVECTOR_SIZE);
167
168 //[0, 1]
169 private Jampack.Zmat rotatedSpin01MatrixPSum = new Jampack.Zmat(

SPINVECTOR_SIZE, SPINVECTOR_SIZE);
170 private Jampack.Zmat rotatedSpin01MatrixQSum = new Jampack.Zmat(

SPINVECTOR_SIZE, SPINVECTOR_SIZE);
171
172 //[1, 0]
173 private Jampack.Zmat rotatedSpin10MatrixPSum = new Jampack.Zmat(

SPINVECTOR_SIZE, SPINVECTOR_SIZE);
174 private Jampack.Zmat rotatedSpin10MatrixQSum = new Jampack.Zmat(

SPINVECTOR_SIZE, SPINVECTOR_SIZE);
175
176 //[1, 1]
177 private Jampack.Zmat rotatedSpin11MatrixPSum = new Jampack.Zmat(

SPINVECTOR_SIZE, SPINVECTOR_SIZE);
178 private Jampack.Zmat rotatedSpin11MatrixQSum = new Jampack.Zmat(

SPINVECTOR_SIZE, SPINVECTOR_SIZE);
179
180 //final 4x4 spin matrices
181 //[0, 0]
182 private Jampack.Zmat totalSpinMatrix00 = new Jampack.Zmat(

SPIN_DENSITY_MATRIX_SIZE, SPIN_DENSITY_MATRIX_SIZE);
183 //[0, 1]
184 private Jampack.Zmat totalSpinMatrix01 = new Jampack.Zmat(

SPIN_DENSITY_MATRIX_SIZE, SPIN_DENSITY_MATRIX_SIZE);
185 //[1, 0]
186 private Jampack.Zmat totalSpinMatrix10 = new Jampack.Zmat(

SPIN_DENSITY_MATRIX_SIZE, SPIN_DENSITY_MATRIX_SIZE);
187 //[1, 1]
188 private Jampack.Zmat totalSpinMatrix11 = new Jampack.Zmat(

SPIN_DENSITY_MATRIX_SIZE, SPIN_DENSITY_MATRIX_SIZE);
189 //total
190 private Jampack.Zmat totalSpinMatrix = new Jampack.Zmat(

SPIN_DENSITY_MATRIX_SIZE, SPIN_DENSITY_MATRIX_SIZE);
191 //total spin matrix Normed
192 private Jampack.Zmat totalSpinMatrixNormed = new Jampack.Zmat(

SPIN_DENSITY_MATRIX_SIZE, SPIN_DENSITY_MATRIX_SIZE);
193
194 //Bloch vector
195 private BlochVector blochVectorObjectP;
196 private double[][] blochVectorP = new double[3][1];
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197 private double rxBlochP = 0, ryBlochP = 0, rzBlochP = 0;
198
199 //utility objects
200 private Jampack.Times dummyTimes = new Jampack.Times();
201 private Jampack.Plus dummyPlus = new Jampack.Plus();
202 private Jampack.Print dummyPrint = new Jampack.Print();
203 private MatrixUtil dummyMatrixOp = new org.matrixutil.MatrixUtil();
204
205 //START methods
206 public static void BellGaussVer4() {}
207
208 public void setParams(double tempSigma, double tempMass, double

tempRapidityZ, double tempPx0, double tempPy0, double tempPz0) {
209 sigma = tempSigma;
210 mass = tempMass;
211 rapidityZ = tempRapidityZ;
212 px0 = tempPx0;
213 py0 = tempPy0;
214 pz0 = tempPz0;
215 }
216
217 public void setZResolution(int tempZResolution)
218 {
219 noOfZPoints = tempZResolution;
220 }
221
222 public double getTrace()
223 {
224 //trace
225 Jampack.Z trace = new Jampack.Z(0);
226
227 for (int i = 0; i < SPIN_DENSITY_MATRIX_SIZE; i++) {
228 trace.Plus(trace, this.totalSpinMatrixNormed.get(i + 1, i + 1));
229 }
230
231 //we want trace to be real and warn if this is not true
232 if (trace.im != 0) {
233 System.out.format("\nBellGaussVer4.getTrace(): ACHTUNG: TRACE IS

COMPLEX! trace = ");
234 new Jampack.Print().o(trace);
235 }
236
237 //return ONLY the real part
238 return(trace.re);
239 }
240
241 //set norm
242 public double calculateNorm(double tempSigma, double tempMass, double

tempRapidityZ, double tempPx0, double tempPy0, double tempPz0)
243 {
244 this.setParams(tempSigma, tempMass, 0, tempPx0, tempPy0, tempPz0);
245 this.setIntegrationArea();
246



133

247 norm = this.calculateIntegral();
248
249 //DEBUG
250 System.out.format("Calculated norm = %12.8f\n\n", norm);
251
252 return(norm);
253 }
254
255 public void setNorm(double normValue)
256 {
257 //wavefunction norm
258 if (normValue > 0) {
259 this.norm = normValue;
260 }
261 else {
262 System.out.format("\nBellGaussVer4.setNorm(): ERROR: norm = %8.5f is

not positive definite.\n", normValue);
263 }
264 }
265
266 public void setSpinMatrixNormed()
267 {
268 //throws an error if norm = 0
269 Jampack.Z tempZ = new Jampack.Z((1 / Math.pow(this.norm, 2)), 0.0);
270
271 this.totalSpinMatrixNormed = dummyTimes.o(tempZ, this.totalSpinMatrix);
272 }
273
274 public Jampack.Zmat getSpinMatrixNormed()
275 {
276 return(this.totalSpinMatrixNormed);
277 }
278
279 public double[][][] getGaussianGraphData() {
280 return graphData;
281 }
282
283 public void setIntegrationArea() {
284
285 //calculate these constants to increase speed
286 coshRapidityZ = Math.cosh(rapidityZ);
287 sinhRapidityZ = Math.sinh(rapidityZ);
288 mass2 = Math.pow(mass, 2);
289
290 pxmin = -px0 - (3 * Math.sqrt(2) * sigma);
291 pxmax = px0 + (3 * Math.sqrt(2) * sigma);
292 pymin = py0 - (3 * Math.sqrt(2) * sigma);
293 pymax = py0 + (3 * Math.sqrt(2) * sigma);
294
295 pzmin = pz0 - (5 * Math.sqrt(2) * sigma);
296 pzmax = pz0 + (5 * Math.sqrt(2) * sigma);
297
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298 EnergyPzmax = Math.sqrt(Math.pow(pzmax, 2) + Math.pow(pymax, 2) + Math.
pow(pxmax, 2) + mass2);

299 EnergyPzmin = Math.sqrt(Math.pow(pzmin, 2) + mass2);
300
301 pzMaxBoosted = EnergyPzmax * sinhRapidityZ + pzmax * coshRapidityZ;
302 pzMinBoosted = EnergyPzmin * sinhRapidityZ + pzmin * coshRapidityZ;
303
304 pzmax = pzMaxBoosted;
305 pzmin = pzMinBoosted;
306
307 //DEBUG
308 System.out.format("setIntegrationArea(): calculated pzmin = %10.5f pzmax

= %10.5f\n", pzmin, pzmax);
309 }
310
311 public double calculateIntegral() {
312
313 Jampack.Z dummyZ = new Jampack.Z();
314 Jampack.Z dummyZP = new Jampack.Z();
315 Jampack.Z dummyZQ = new Jampack.Z();
316 Jampack.Z dummyZInf = new Jampack.Z();
317
318 //initialize total gaussian sum
319 fPGaussianBoostedSum = 0;
320 fQGaussianBoostedSum = 0;
321
322 //rapidityZ
323 coshRapidityZ = Math.cosh(rapidityZ);
324 sinhRapidityZ = Math.sinh(rapidityZ);
325 coshRapidityZHalf = Math.cosh(rapidityZ / 2);
326 sinhRapidityZHalf = Math.sinh(rapidityZ / 2);
327 sigma2 = Math.pow(sigma, 2);
328 mass2 = Math.pow(mass, 2);
329
330 //Lorentz boost matrices
331 lorentzBoostZ.setParams(rapidityZ, lorentzBoostZDirection);
332 lorentzBoostZMatrix = lorentzBoostZ.getLorentzBoost();
333
334 lorentzBoostZInv.setParams(-rapidityZ, lorentzBoostZDirection);
335 lorentzBoostZInvMatrix = lorentzBoostZInv.getLorentzBoost();
336
337 //DEBUG
338 System.out.format("Lorentz boost L_z, L_z^{-1} matrix = ");
339 dummyPrint.o(lorentzBoostZMatrix);
340 dummyPrint.o(lorentzBoostZInvMatrix);
341
342 //increment
343 dpx = Math.abs((pxmax - pxmin)) / noOfXPoints;
344 dpy = Math.abs((pymax - pymin)) / noOfYPoints;
345 dpz = Math.abs((pzmax - pzmin)) / noOfZPoints;
346
347 //ensure that dpx does not become greater than DPX_THRESHOLD
348 if (dpx > DPX_THRESHOLD) {
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349
350 dpx = DPX_THRESHOLD;
351 noOfXPoints = (int) Math.abs((pxmax - pxmin) / DPX_THRESHOLD);
352
353 //DEBUG
354 System.out.format("DEBUG: calculateIntegral(): increase noOfXPoints to

%d\n", noOfXPoints);
355
356 }
357
358 //ensure that dpx does not become greater than DPZ_THRESHOLD
359 if (dpz > DPZ_THRESHOLD) {
360
361 dpz = DPZ_THRESHOLD;
362 noOfZPoints = (int) Math.abs((pzmax - pzmin) / DPZ_THRESHOLD);
363
364 //DEBUG
365 System.out.format("DEBUG: calculateIntegral(): increase noOfZPoints to

%d\n", noOfZPoints);
366
367 }
368
369 //dpy
370 if (dpy > DPY_THRESHOLD) {
371
372 dpy = DPY_THRESHOLD;
373 noOfYPoints = (int) Math.abs((pymax - pymin) / DPY_THRESHOLD);
374
375 //DEBUG
376 System.out.format("DEBUG: calculateIntegral(): increase noOfYPoints to

%d\n", noOfYPoints);
377
378 }
379
380 //determine graphData size
381 graphData = new double[noOfXPoints + 1][noOfZPoints + 2][6];
382
383 //graphdata size
384 graphDataIncX = (int) (noOfXPoints - 1) / GRAPHDATA_SIZE_X;
385 graphDataincZ = (int) (noOfZPoints - 1) / GRAPHDATA_SIZE_Z;
386 graphDataXFixedPercentCount = (int) (GRAPHDATA_SIZE_X - 1) / 10; //10

means 10%
387 graphDataZFixedPercentCount = (int) (GRAPHDATA_SIZE_Z - 1) / 10; //10

means 10%
388 graphDataXPercentCount = 0; //graphDataXTenPercentCount;
389 graphDataZPercentCount = 0; //graphDataZTenPercentCount;
390
391 //DEBUG
392 System.out.format("\nDEBUG: calculateIntegral(): graphData size = [%d][%

d][%d]\n", graphData.length, graphData[0].length, graphData[0][0].
length);

393
394 //initialize dummy integration variables
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395 px = pxmin;
396 py = pymin;
397 pz = pzmin;
398
399 //percent counter
400 tenPercentCount = noOfXPoints / 10;
401 initialPercent = tenPercentCount;
402
403 //k half way
404 kHalfWay = (int) noOfYPoints / 2;
405
406 //print time
407 currentTimeString = graphUtil.getCurrentTimeHours();
408
409 //DEBUG
410 System.out.format("Initial totalSpinMatrix = ");
411 dummyPrint.o(totalSpinMatrix);
412 System.out.format("Initial fPGaussianBoostedSum = %20.10f \n",

fPGaussianBoostedSum); //DEBUG
413 System.out.format("kHalfWay = %d \n", kHalfWay); //DEBUG
414
415 System.out.println(currentTimeString + " BEGIN: BellGaussVer4()\n");
416 System.out.format("mass = %10.6f | sigma = %10.6f | rapidityZ = %4.2f\n"

, mass, sigma, rapidityZ);
417 System.out.format("dpx = %10.6f dpy = %10.6f dpz = %10.6f\n", dpx, dpy,

dpz);
418 System.out.format("XGrid = [%6.2f, %6.2f, %d]\n", pxmin, pxmax,

noOfXPoints);
419 System.out.format("YGrid = [%6.2f, %6.2f, %d]\n", pymin, pymax,

noOfYPoints);
420 System.out.format("ZGrid = [%6.2f, %6.2f, %d]\n\n", pzmin, pzmax,

noOfZPoints);
421 currentTimeString = graphUtil.getCurrentTimeHours();
422 System.out.print("Progress: " + currentTimeString + " 0% ");
423 System.out.format("px = %10.6f | ", pxmin);
424
425 //start integration
426 for(int i = 0; i < noOfXPoints + 1; i++){ //x - coordinate
427
428 px = pxmin + i * dpx;
429 graphData[i][0][0] = px;
430
431 //percent count if needed
432 if (i > initialPercent) {
433 //timestamp
434 currentTimeString = graphUtil.getCurrentTimeHours();
435 System.out.print(currentTimeString + " ");
436 //percent stamp
437 System.out.format("%2.0f%% px = %10.6f | ", (initialPercent /

tenPercentCount) * 10, px);
438 initialPercent = initialPercent + tenPercentCount;
439 }
440
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441 for (int k = 0; k < noOfYPoints + 1; k++) { //y - coordinate
442
443 py = pymin + k * dpy;
444
445 for (int m = 0; m < noOfZPoints + 1; m++) { //z - coordinate
446
447 try {
448 pz = pzmin + m * dpz;
449
450 //squared dummies
451 px2 = Math.pow(px, 2);
452 py2 = Math.pow(py, 2);
453 pz2 = Math.pow(pz, 2);
454 Energy = Math.sqrt(px2 + py2 + pz2 + mass2);
455
456 //4-momentum vector
457 dummyZ.im = 0;
458 dummyZ.re = Energy;
459 fourMomentum.put(1, 1, dummyZ);
460 dummyZ.re = px;
461 fourMomentum.put(2, 1, dummyZ);
462 dummyZ.re = py;
463 fourMomentum.put(3, 1, dummyZ);
464 dummyZ.re = pz;
465 fourMomentum.put(4, 1, dummyZ);
466
467 //boosted 4-momentum
468 boostedFourMomentum = dummyTimes.o(lorentzBoostZInvMatrix,

fourMomentum);
469 boostedThreeMomentum = boostedFourMomentum.get(2, 4, 1, 1);
470
471 //measure
472 invariantIntegrationMeasureCart = 1 / (2 * Energy);
473 invariantInfElement = dpx * dpy * dpz *

invariantIntegrationMeasureCart;
474 dummyZInf.im = 0;
475 dummyZInf.re = invariantInfElement;
476
477 //unboosted gaussians
478 fPGaussian = Math.sqrt(Math.exp(
479 -(1 / (2 * sigma2)) *
480 (Math.pow((px - px0), 2) +
481 Math.pow((py - py0), 2) +
482 Math.pow((pz - pz0), 2))
483 ));
484 fQGaussian = Math.sqrt(Math.exp(
485 -(1 / (2 * sigma2)) *
486 (Math.pow((px + px0), 2) +
487 Math.pow((py - py0), 2) +
488 Math.pow((pz - pz0), 2))
489 ));
490 //unboosted gaussian sums
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491 fPGaussianSum = fPGaussianSum + ((fPGaussian * fPGaussian) *
invariantInfElement);

492 fQGaussianSum = fQGaussianSum + ((fQGaussian * fQGaussian) *
invariantInfElement);

493
494 //p-gaussian:
495 fPGaussianBoosted = Math.sqrt(
496 Math.exp(
497 -(1 / (2 * sigma2)) *
498 (
499 Math.pow((boostedThreeMomentum.get(1, 1).re - px0), 2) +
500 Math.pow((boostedThreeMomentum.get(2, 1).re - py0), 2) +
501 Math.pow((boostedThreeMomentum.get(3, 1).re - pz0), 2)
502 )
503 )
504 +
505 Math.exp(
506 -(1 / (2 * sigma2)) *
507 (
508 Math.pow((boostedThreeMomentum.get(1, 1).re + px0), 2) +
509 Math.pow((boostedThreeMomentum.get(2, 1).re - py0), 2) +
510 Math.pow((boostedThreeMomentum.get(3, 1).re - pz0), 2)
511 )
512 )
513 );
514 //q-gaussian
515 fQGaussianBoosted = Math.sqrt(
516 Math.exp(
517 -(1 / (2 * sigma2)) *
518 (
519 Math.pow((boostedThreeMomentum.get(1, 1).re + px0), 2) +
520 Math.pow((boostedThreeMomentum.get(2, 1).re - py0), 2) +
521 Math.pow((boostedThreeMomentum.get(3, 1).re - pz0), 2)
522 )
523 )
524 +
525 Math.exp(
526 -(1 / (2 * sigma2)) *
527 (
528 Math.pow((boostedThreeMomentum.get(1, 1).re - px0), 2) +
529 Math.pow((boostedThreeMomentum.get(2, 1).re - py0), 2) +
530 Math.pow((boostedThreeMomentum.get(3, 1).re - pz0), 2)
531 )
532 )
533 );
534
535 //sum for checking purposes
536 fPGaussianBoostedSum = fPGaussianBoostedSum + (fPGaussianBoosted

* fPGaussianBoosted * invariantInfElement);
537 fQGaussianBoostedSum = fQGaussianBoostedSum + (fQGaussianBoosted

* fQGaussianBoosted * invariantInfElement);
538
539 //START if
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540 if ((fPGaussianBoosted > FN_THRESHOLD) || (fQGaussianBoosted >
FN_THRESHOLD)) {

541 //Wigner rotation matrices
542 wignerRotationZ.setParams(mass, rapidityZ,

lorentzBoostZDirection, boostedThreeMomentum);
543 wignerRotationZMatrix = wignerRotationZ.getWignerMatrix();
544
545 //complex gaussian p-space
546 dummyZP.re = fPGaussianBoosted;
547 dummyZP.im = 0;
548
549 //complex gaussian q-space
550 dummyZQ.re = fQGaussianBoosted;
551 dummyZQ.im = 0;
552
553 //spin with p-gaussian
554 initialSpin0WithGaussP = dummyTimes.o(dummyZP, initialSpin0);
555 rotatedSpin0WithGaussP = dummyTimes.o(wignerRotationZMatrix,

initialSpin0WithGaussP);
556
557 initialSpin1WithGaussP = dummyTimes.o(dummyZP, initialSpin1);
558 rotatedSpin1WithGaussP = dummyTimes.o(wignerRotationZMatrix,

initialSpin1WithGaussP);
559
560 //spin with q-gaussian
561 initialSpin0WithGaussQ = dummyTimes.o(dummyZQ, initialSpin0);
562 rotatedSpin0WithGaussQ = dummyTimes.o(wignerRotationZMatrix,

initialSpin0WithGaussQ);
563
564 initialSpin1WithGaussQ = dummyTimes.o(dummyZQ, initialSpin1);
565 rotatedSpin1WithGaussQ = dummyTimes.o(wignerRotationZMatrix,

initialSpin1WithGaussQ);
566
567 //spin matrices
568 //[0, 0]
569 rotatedSpin00MatrixWithGaussP = dummyMatrixOp.outerProduct(

rotatedSpin0WithGaussP, dummyMatrixOp.vectorToCCVector(
rotatedSpin0WithGaussP));

570 rotatedSpin00MatrixWithGaussQ = dummyMatrixOp.outerProduct(
rotatedSpin0WithGaussQ, dummyMatrixOp.vectorToCCVector(
rotatedSpin0WithGaussQ));

571
572 //[0, 1]
573 rotatedSpin01MatrixWithGaussP = dummyMatrixOp.outerProduct(

rotatedSpin0WithGaussP, dummyMatrixOp.vectorToCCVector(
rotatedSpin1WithGaussP));

574 rotatedSpin01MatrixWithGaussQ = dummyMatrixOp.outerProduct(
rotatedSpin0WithGaussQ, dummyMatrixOp.vectorToCCVector(
rotatedSpin1WithGaussQ));

575
576 //[1, 0]
577 rotatedSpin10MatrixWithGaussP = dummyMatrixOp.outerProduct(

rotatedSpin1WithGaussP, dummyMatrixOp.vectorToCCVector(
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rotatedSpin0WithGaussP));
578 rotatedSpin10MatrixWithGaussQ = dummyMatrixOp.outerProduct(

rotatedSpin1WithGaussQ, dummyMatrixOp.vectorToCCVector(
rotatedSpin0WithGaussQ));

579
580 //[1, 1]
581 rotatedSpin11MatrixWithGaussP = dummyMatrixOp.outerProduct(

rotatedSpin1WithGaussP, dummyMatrixOp.vectorToCCVector(
rotatedSpin1WithGaussP));

582 rotatedSpin11MatrixWithGaussQ = dummyMatrixOp.outerProduct(
rotatedSpin1WithGaussQ, dummyMatrixOp.vectorToCCVector(
rotatedSpin1WithGaussQ));

583
584 //spin matrices summed
585
586 //[0, 0]
587 rotatedSpin00MatrixPSum = dummyPlus.o(rotatedSpin00MatrixPSum,

dummyTimes.o(dummyZInf, rotatedSpin00MatrixWithGaussP));
588 rotatedSpin00MatrixQSum = dummyPlus.o(rotatedSpin00MatrixQSum,

dummyTimes.o(dummyZInf, rotatedSpin00MatrixWithGaussQ));
589
590 //[0, 1]
591 rotatedSpin01MatrixPSum = dummyPlus.o(rotatedSpin01MatrixPSum,

dummyTimes.o(dummyZInf, rotatedSpin01MatrixWithGaussP));
592 rotatedSpin01MatrixQSum = dummyPlus.o(rotatedSpin01MatrixQSum,

dummyTimes.o(dummyZInf, rotatedSpin01MatrixWithGaussQ));
593
594 //[1, 0]
595 rotatedSpin10MatrixPSum = dummyPlus.o(rotatedSpin10MatrixPSum,

dummyTimes.o(dummyZInf, rotatedSpin10MatrixWithGaussP));
596 rotatedSpin10MatrixQSum = dummyPlus.o(rotatedSpin10MatrixQSum,

dummyTimes.o(dummyZInf, rotatedSpin10MatrixWithGaussQ));
597
598 //[1, 1]
599 rotatedSpin11MatrixPSum = dummyPlus.o(rotatedSpin11MatrixPSum,

dummyTimes.o(dummyZInf, rotatedSpin11MatrixWithGaussP));
600 rotatedSpin11MatrixQSum = dummyPlus.o(rotatedSpin11MatrixQSum,

dummyTimes.o(dummyZInf, rotatedSpin11MatrixWithGaussQ));
601
602 //store the Gaussian
603 if (k == kHalfWay) {
604
605 //increase counters
606 graphDataXPercentCount = graphDataXPercentCount +

graphDataXFixedPercentCount;
607 graphDataZPercentCount = graphDataZPercentCount +

graphDataZFixedPercentCount;
608
609 graphData[i][m + 1][0] = pz;
610 graphData[i][m + 1][1] = fPGaussianBoosted;
611
612 //get bloch vector
613 BlochVector blochVectorObjectP = new BlochVector();
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614 blochVectorObjectP.setParams(rotatedSpin00MatrixWithGaussP);
615 blochVectorP = blochVectorObjectP.getBlochVector();
616
617 rxBlochP = blochVectorP[0][0];
618 ryBlochP = blochVectorP[1][0];
619 rzBlochP = blochVectorP[2][0];
620
621 //store in graphdata
622 graphData[i][m + 1][2] = rxBlochP;
623 graphData[i][m + 1][3] = rzBlochP;
624 graphData[i][m + 1][4] = rxBlochP;
625 graphData[i][m + 1][5] = rzBlochP;
626
627 }
628 //END if threshold
629 } else if (k == kHalfWay) {
630
631 //increase counters
632 graphDataXPercentCount = graphDataXPercentCount +

graphDataXFixedPercentCount;
633 graphDataZPercentCount = graphDataZPercentCount +

graphDataZFixedPercentCount;
634
635 graphData[i][m + 1][0] = pz;
636 graphData[i][m + 1][1] = fPGaussianBoosted;
637
638 //get bloch vector
639 BlochVector blochVectorObjectP = new BlochVector();
640 blochVectorObjectP.setParams(rotatedSpin00MatrixWithGaussP);
641 blochVectorP = blochVectorObjectP.getBlochVector();
642
643 rxBlochP = blochVectorP[0][0];
644 ryBlochP = blochVectorP[1][0];
645 rzBlochP = blochVectorP[2][0];
646
647 //store in graphdata
648 graphData[i][m + 1][2] = rxBlochP;
649 graphData[i][m + 1][3] = rzBlochP;
650 graphData[i][m + 1][4] = rxBlochP; // * f2a;
651 graphData[i][m + 1][5] = rzBlochP; // * f2a;
652
653 //END else if
654 }
655 //END try
656 } catch (Jampack.JampackException e) {
657 System.err.println("BellGaussVer4(): Caught JampackException: "

+ e.getMessage());
658 }
659 } //END of m
660 } //END of k
661 } //END of i
662
663 //kronecker product
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664 //[0, 0]
665 totalSpinMatrix00 = dummyMatrixOp.kroneckerProduct(

rotatedSpin00MatrixPSum, rotatedSpin00MatrixQSum);
666 //[0, 1]
667 totalSpinMatrix01 = dummyMatrixOp.kroneckerProduct(

rotatedSpin01MatrixPSum, rotatedSpin01MatrixQSum);
668 //[1, 0]
669 totalSpinMatrix10 = dummyMatrixOp.kroneckerProduct(

rotatedSpin10MatrixPSum, rotatedSpin10MatrixQSum);
670 //[1, 1]
671 totalSpinMatrix11 = dummyMatrixOp.kroneckerProduct(

rotatedSpin11MatrixPSum, rotatedSpin11MatrixQSum);
672 //sum up
673 try {
674
675 totalSpinMatrix = dummyPlus.o(totalSpinMatrix00, totalSpinMatrix01);
676 totalSpinMatrix = dummyPlus.o(totalSpinMatrix, totalSpinMatrix10);
677 totalSpinMatrix = dummyPlus.o(totalSpinMatrix, totalSpinMatrix11);
678 } catch (Jampack.JampackException e) {
679 System.err.println("BellGaussVer4(): Caught JampackException: " + e.

getMessage());
680 }
681
682 //norm the matrix
683 setSpinMatrixNormed();
684
685 //correct vector norm
686 boostedSum = Math.sqrt(2 * fPGaussianBoostedSum * fQGaussianBoostedSum);
687
688 //DEBUG
689 System.out.format("\n\ntotalSpinMatrix = ");
690 dummyPrint.o(totalSpinMatrix);
691 System.out.println();
692 System.out.format("totalSpinMatrixNormed = ");
693 dummyPrint.o(totalSpinMatrixNormed);
694
695 System.out.format("norm = %12.6f | fPGaussianBoostedSum = %12.6f |

fQGaussianBoostedSum = %12.6f | \nboostedSum = %12.6f | norm /
boostedSum = %12.6f\n",

696 norm,
697 fPGaussianBoostedSum,
698 fQGaussianBoostedSum,
699 boostedSum,
700 norm / boostedSum);
701
702 //trace
703 System.out.format("\nTrace = %2.6f\n\n", getTrace());
704
705 //print time
706 currentTimeString = graphUtil.getCurrentTimeHours();
707 System.out.format("\n" + currentTimeString + " FINISH\n");
708
709 //return boosted gaussian sums
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710 return(boostedSum);
711
712 } //END of integration
713 }
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