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Abstract
We study the structure of maps that Lorentz boosts induce on the spin degree of freedom of a

system consisting of two massive spin-1/2 particles. We consider the case where the spin state

is described by the Werner state and the momenta are discrete. Transformations on the spins are

systematically investigated in various boost scenarios by calculating the orbit and concurrence of

the bipartite spin state with different kinds of product and entangled momenta. We confirm the

general conclusion that Lorentz boosts cause non-trivial behavior of bipartite spin entanglement.

Visualization of the evolution of the spin state is shown to be valuable in explaining the pattern of

concurrence. The idealized model provides a basis of explanation in terms of which phenomena

in systems involving continuous momenta can be understood.
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I. INTRODUCTION

Entanglement is widely regarded as one of the central features that sets the quantum

and classical worlds apart. Motivated by its fundamental importance as well as promises

of application, the theory of entanglement has made vast progress over the last decades.

Recently there has been growing interest in relativistic quantum information. This takes

seriously the notion that the ultimate description of physical reality is relativistic and

seeks to provide an account of how the quantum information theoretic notions like en-

tanglement behave in the relativistic regime.

Extensive research on both single and two particle systems has uncovered a wealth

of results about how relativity affects entanglement [1–17]. Early work found that spin

entanglement of a bipartite system does not remain invariant under Lorentz boosts [3].

This was confirmed by [2] who reported that spin entropy of a single particle is not a

relativistic scalar. On the other hand, [6] argued that the entanglement fidelity of a Bell

state remains invariant for a Lorentz boosted observer. Further research found that no

sum of entanglements remains invariant under boosts [18].

A key aspect one notices is that many of these sometimes seemingly conflicting results

involve systems containing different momentum states and boost geometries. This con-

firms what has been observed in single particle systems: entanglement under Lorentz

boosts is highly dependent on the boost scenario in question [17]. While the literature

on the Wigner rotation is quite clear about the fact that its nature is highly geometric,

aside from a few cases [19], there is little work in relativistic quantum information that

systematically takes this into account.

This paper draws motivation from both mentioned aspects. In light of the diverse re-

sults it is not immediately clear what one should infer about entanglement in relativity.

For instance, is it the case that it remains invariant or not? What are the conditions un-

der which either occurs? The question arises if there is a systematic way to understand

such behavior. The nature of the Wigner rotation implies that one should ask what is

role of the geometry of the underlying physical situation in determining the behavior of

entanglement.

To address these queries we set out to explore entanglement in a number of boost sce-

narios with different momenta as well as geometries. We focus on massive two particle
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spin-1/2 systems with discrete momenta in product and entangled states. While it is com-

mon to assume that the spin state is given by a maximally entangled Bell state, we extend

the treatment to mixed states by considering spins in the Werner state. This enables us

to study how different classes of entanglement, ranging from maximal to zero, behave

in relativity. We also discuss how one can visualize the orbit of the spin state in a 3D

manner in order to gain deeper insight into how entanglement changes under Lorentz

boosts. The aim is to provide a simple discrete framework which can be used to explain

the results involving both discrete as well as narrow continuous momenta. Surveying

a range of different momenta and geometries will also contribute to an overview of the

kinds of systems that could be of interest for relativistic quantum information.

The paper is organized as follows. We begin by setting the stage in section II, followed

by a characterization of the Thomas–Wigner rotation. The next three sections describe the

discrete model used throughout the paper, focussing on the momentum and spin states

in sections V and VI, respectively. Thereafter we turn to studying the behavior of mixed

spin states in boost scenarios which contain different kinds of product and entangled

momenta. We conclude with a discussion of the results obtained.

II. THE GENERAL SETTING

We will focus on a system consisting of two massive spin-1/2 particles with spin and

momentum, and ask how the spin state changes when viewed from a different inertial

frame. This question has a trivial answer in non-relativistic quantum theory: the state

will remain unchanged. But the relativistic world is different. A Lorentz boosted ob-

server will see in general a transformed spin state and the reason is the so-called Wigner

rotation, or Thomas–Wigner rotation (TWR), where the latter form is commonly used in

honor of Thomas’ contribution by discovering the Thomas precession [20–22]. By way of

illustration, consider a simple, one particle system which forms the smallest entity—the

‘qubit’—of relativistic quantum information in inertial frames. Suppose the particle is

moving relative to observer O who describes its state by

|Ψ〉 =
∑
p,λ

ψλ(p) |p, λ〉, (1)

3



where |p, λ〉 ≡ |p〉 |λ〉 ≡ |p〉⊗ |λ〉 is a basis vector with p labeling the momentum and λ

the spin of the particle, see Appendix A for details of the constructions used in the paper.

For the sake of illustration, let us restrict our attention to discrete momentum states for

now. ObserverOΛ who is Lorentz boosted by Λ relative toO assigns in general a different

state
∣∣ΨΛ

〉
= U(Λ) |Ψ〉 to the same system, where U(Λ) is the unitary representation of Λ.

In order to calculate
∣∣ΨΛ

〉
, we need the action of U(Λ) on a basis vector [23, 24],

U(Λ) |p, λ〉 =
∑
κ

Dκλ[W (Λ,p)] |Λp, κ〉, (2)

where D[W (Λ,p)] is the representation of the TWR. This means that to observer OΛ the

spin appears rotated by D[W (Λ,p)]. The rotation depends on the geometry, i.e. the angle

between the two boosts, and the momenta of both the system and the observer. The state

(1) then transforms as follows,∣∣ΨΛ
〉

=
∑
p,λ,σ

Dσλ

[
W (Λ,Λ−1p)

]
ψλ(Λ

−1p) |p, σ〉 . (3)

An interesting implication is that states whose spin and momentum are separable for the

rest observer O may display spin–momentum entanglement to the moving observer OΛ,

see [2, 17, 25] for details.

The curious dependency of spin on momentum can be conceptualized using an anal-

ogy from quantum information theory [2, 3]. Consider a quantum gate with two input

qubits, the control qubit and the target qubit. Suppose the action of the gate is to change

the target qubit depending on the value of the control qubit. If the target qubit is trans-

formed by a unitary transformation U , then such a gate is called a controlled-U gate. If

we think of momenta as control qubits, the Lorentz boost in (2) can be conceived of as

a controlled unitary: when the boost angle and rapidity are fixed, then the transform on

the spin state depends solely on the momentum state [26]. Although we will not make

explicit use of this idea, the notion that Lorentz boosts are controlled unitaries where

momentum qubits govern the behavior of spin qubits is central to our thinking of the

relativistic spin–momentum systems studied in this paper.

Let us next consider two particles, the system we are primarily interested in, and as-

sume that observer O describes it by the pure state

|Ψ〉 =
∑

p,q,λ,κ

ψλκ(p,q) |p, λ〉 |q, κ〉 (4)
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where the first label of either momentum or spin refers to the first particle and the second

to the second particle. The boosted observer OΛ sees the state transformed by the tensor

product of single particle unitaries,
∣∣ΨΛ

〉
= U(Λ)⊗ U(Λ) |Ψ〉,

∣∣ΨΛ
〉

=
∑
p,q

∑
λ,κ,ξ,ν

Dξλ

[
W (Λ,Λ−1p)

]
⊗Dνκ

[
W (Λ,Λ−1q)

]
ψλκ(Λ

−1p,Λ−1q) |p, λ〉 |q, κ〉 (5)

with each spin undergoing a momentum dependent rotation and for a generic state this

induces a non-trivial transformation on the spin degree of freedom. Our focus will now

shift importantly. Whereas in the case of the single particle we were interested in how

boosts entangle spin and momentum, in the case of two particle systems we are con-

cerned with how boosts change the entanglement between the spins of the particles. It is

in this sense that single particle systems provide a foundation: the physical mechanism

which leads to nontrivial transformations of two spins is precisely the one that causes

entanglement between the momentum and spin of a single particle.

Although the characterization of composite spin behavior is considerably less straight-

forward because the structure of the two particle state space is more complicated, it will

be our aim to determine this behavior by surveying the landscape of maps that momenta

induce on the spin degree of freedom. The motivation to do so comes from the single par-

ticle. In [17] we learned that single particle entanglement is highly sensitive to the boost

geometry in question. This naturally leads to the question of how different momentum

states and boost geometries affect the entanglement of a bipartite spin state under Lorentz

boosts. We will analyze the situation by studying different kinds of product and entan-

gled momenta, and by exploring the geometry of the TWR. Conceiving of momenta in a

discrete manner as qubits provides a simple yet powerful model to probe the structure of

maps that boosts induce on spins. In analogy to quantum information theory, we view

momentum qubits (either product or entangled) as a relativistic resource that enables the

manipulation of the spin qubits.

III. THOMAS–WIGNER ROTATION

TWR arises from the fact that the subset of Lorentz boosts does not form a subgroup of

the Lorentz group. Consider three inertial observers O, O′ and O′′ where O′ has velocity

v1 relative to O and O′′ has v2 relative to O′. Then the combination of two canonical
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boosts Λ(v1) and Λ(v2) that relates O to O′′ is in general a boost and a rotation,

Λ(v2)Λ(v1) = R(ω)Λ(v3), (6)

where R(ω) is the TWR with angle ω. To an observer O, the frame of O′′ appears to be

rotated by ω. We will immediately specialize to massive systems, then R(ω) ∈ SO(3) and

ω is given by [23, 27],

tan
ω

2
=

sin θ

cos θ +D
, (7)

where θ is the angle between two boosts or, equivalently, v1 and v2, and

D =

√(
γ1 + 1

γ1 − 1

)(
γ2 + 1

γ2 − 1

)
, (8)

with γ1,2 = (1− v2
1,2)−1/2 and v1,2 = |v1,2|. We assume natural units throughout, ~ = c = 1.

The axis of rotation specified by n = v2×v1/|v2×v1| is orthogonal to the plane defined by

v1 and v2. The dependence of TWR on the angle between two boosts is shown in Fig. 1.
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Figure 1. Dependence of TWR on the angle θ between two boosts.

Several interesting characteristics are immediately noticeable. First, for any two boosts

with velocities v1,v2 at an angle θ, the TWR increases with both v1, v2, approaching the

maximum value 180◦ as v1, v2 approach the speed of light. Second, the maximum value

of ω is bounded by the smaller boost. If v1 = 0.5, then even if v2 becomes arbitrarily close

to the speed of light, ω will be considerably lower than in the case when both boosts ap-

proach the speed of light. Third, the angle θ at which the maximum TWR occurs depends

on the magnitudes of both v1 and v2. It is worth noting that ω approaches the maximum
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value 180◦ when both boosts are almost opposite and both v1, v2 → 1. At lower velocities,

maximum rotation occurs earlier.

In the subsequent discussion, we will often make use of the fact that TWR ranges

from 0 to π, assuming that the rotation by a given angle ω is realized by some boost

configuration. The latter can be specified in terms of velocities and boost angle, (v1,v2, θ),

which need not be unique as the foregoing discussion shows because a given rotation can

be realized by several different configurations. However, below we will follow common

practice in quantum theory and write the TWR operators using a parameterization in

terms of momentum p = v1E(p) and boost Λ ≡ Λ(ξ, e), where ξ = arctanh v2 is rapidity

of the boost in the direction of e = v2/|v2|.

IV. THE DISCRETE MODEL

In this section we will describe the model of the two particle system to be studied

throughout the paper. The next two sections elaborate on the momentum and the spin

subsystems respectively.

To ease the investigation, we begin by assuming that momenta can be treated as dis-

crete variables [18]. This is justified when they are given by narrow distributions centered

around different momentum values such that we can represent them by orthogonal state

vectors which formally satisfy the relationship 〈p|p′〉 = δpp′ . For each |p〉we use a single

TWR, D[W (Λ,p)] ≡ D(Λ,p). Although narrow momenta are an idealization, they con-

stitute a system worth studying. Discrete momenta are computationally easier to deal

with than continuous ones but display qualitative features that carry over to systems

with continuous momenta. Examples can be found in [28] where we are concerned with

continuous systems.

Throughout we will assume that spin and momentum are initially, i.e. in the rest frame,

in a product state, so the total state of the system is given by

ρ = ρM ⊗ ρS, (9)

where ρS is the spin state of the two particle system, and ρM = |M〉〈M | is a projector on
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the pure momentum

|M〉 =
∑
p,q

ψM(p,q) |p,q〉 . (10)

To the boosted observerOΛ, the state of the composite system is transformed by the tensor

product of single particle transforms U(Λ)⊗ U(Λ),

ρ 7−→ ρΛ = U(Λ)⊗ U(Λ) ρU †(Λ)⊗ U †(Λ). (11)

By combining (9), (10) and (11) we write the boosted state as

ρΛ =
∑

p,q,p′,q′

ψM(Λ−1p,Λ−1q)ψ∗M(Λ−1p′,Λ−1q′)

× |p,q〉〈p′,q′| ⊗D
(
Λ,Λ−1p,Λ−1q

)
ρS D

†(Λ,Λ−1p′,Λ−1q′
)
, (12)

where D(Λ,p,q) stands for the product of single particle unitaries,

D(Λ,p,q) ≡ D(Λ,p)⊗D(Λ,q) . (13)

Note that whereas the rest frame state (9) factorizes between spin and momentum,

the boosted state (12) does not. This means that the assumption made at the beginning,

namely that spin and momentum factorize, is less restricting than it seems at first sight.

By studying how spin–momentum product states are transformed to entangled states,

we are also investigating the dual situation where entangled states are mapped to prod-

uct states. This is simply because we can regard either frame as a rest frame and the

other a moving frame since all inertial frames are on equal footing. Neither can be sin-

gled out as the rest frame or the moving frame. Also, we are always guaranteed to have

inverses of maps since Lorentz boosts form a group. In this paper, however, we will be

concerned mostly with the analysis of spin–momentum product states, proper analysis

of spin–momentum entanglement is beyond the scope of this paper and will be left for

another occasion.

Since we are interested in how the spin state changes under boosts, we trace out mo-

menta in Eq. (12), obtaining the spin state ρΛ
S = Trp,q

(
ρΛ
)
,

ρΛ
S =

∑
p,q

|ψM(Λ−1p,Λ−1q)|2D
(
Λ,Λ−1p,Λ−1q

)
ρS D

†(Λ,Λ−1p,Λ−1q
)
. (14)
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This might raise concerns because one might argue that in the relativistic regime it is gen-

erally incorrect to obtain the spin state by tracing out the momentum degrees of freedom.

The reason is that by doing so one tacitly invokes non-relativistic assumptions about the

spin observable. However, one can imagine that the particles are boosted to the rest frame

of the observer OΛ, and only then the momenta are traced out. Boosting to the rest frame

does not change the direction of the spin for OΛ since boosts along the geodesics through

the origin of the momentum space, i.e. the rest momentum at p0 = (m,0), do not induce

Wigner rotations and hence they leave the spin entanglement intact. There is a small

qualification: in order to preserve the entanglement between the spin and momentum

degrees of freedom, we imagine that the particles are boosted close to the rest frame of OΛ

so that the resulting momenta are non-zero and non-relativistic. One is then justified in

using the usual non-relativistic notion of the tracing out momenta to obtain the spin state

ρΛ
S .

Because the spins will be generally in a mixed state, we will use concurrence to quan-

tify the degree of entanglement. Concurrence C of a bipartite state ρ of two qubits is

defined as

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (15)

where the λi are square roots of eigenvalues of a non-Hermitian matrix ρρ̃ in decreasing

order and

ρ̃ = (σy ⊗ σy) ρ∗ (σy ⊗ σy) , (16)

with σy a Pauli matrix, is the spin-flipped state with the complex conjugate ∗ taken in the

standard basis [29].

V. MOMENTA AND SPIN ROTATIONS

Since the behavior of spin entanglement depends on the map generated by the mo-

menta, it will be of interest to study momentum states of various forms. We will explore

both product and entangled momenta, and begin with the simplest case of the former,

|MEPRB〉 = |p,q〉 . (17)

9



States of this form represent an oft discussed scenario in the literature [1, 6, 30–32]. Set-

ting q = −p corresponds to the familiar EPR–Bohm setup where the spins are in a Bell

state, and the first particle moves in the p-direction while the other particle moves in the

opposite direction [33, 34].

In the case of single particle in [25] the momentum state was of the form of symmetri-

cally displaced terms (|p〉+ |−p〉) /
√

2, and we saw that such a state generated maximal

entanglement between spin and momentum. This suggests that similar behavior for two

particles might be observed when momenta contain analogous terms for both particles,

|MΣ〉 =
1

2
(|p〉+ |−p〉) (|q〉+ |−q〉) (18)

where Σ signifies the fact momenta take symmetric values.

Generalizing further, we get a momentum state where both particles are in a super-

position of momenta along a given direction ±p and a direction perpendicular to this,

±p⊥,

|M×〉 =
1

4
(|p〉+ |−p〉+ |p⊥〉+ |−p⊥〉) (|q〉+ |−q〉+ |q⊥〉+ |−q⊥〉) . (19)

We will see below that momenta of such a form provide a good approximation to the two

particle model considered in the seminal paper [3].

We would also like to study entangled momenta since they give rise to interesting

behavior in the quantum domain. We assume the generic form of such momenta is given

by

|M±〉 =
1√
2

(|p1,q1〉± |p2,q2〉) . (20)

Since we are surveying the logical structure of spin rotations and would like to study the

maximal changes that momenta might generate, we will choose momenta to be maxi-

mally entangled. For instance, by setting p1 = q1 = −p2 = −q2 = p, we get

|MΦ±〉 =
1√
2

(|p,p〉± |−p,−p〉) , (21)

which correspond to the Bell states |Φ±〉 . Likewise, by choosing p1 = −q1 = −p2 = q2 =

p, we obtain counterparts of the Bell states |Ψ±〉,

|MΨ±〉 =
1√
2

(|p,−p〉± |−p,p〉) . (22)
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This state has been studied to some extent in [15, 18].

In general momenta may lie along different axes. For example, if we specify that the

momenta of the first particle are given by p1 = −p2 = p, whereas the second particle has

q1 = −q2 = p⊥, then we get states that resemble |Φ+〉. We signify

∣∣M[Φ±]

〉
=

1√
2

(|p,p⊥〉± |−p,−p⊥〉) . (23)

For |Ψ+〉we obtain a similar state when we choose p1 = −p2 = p and q1 = −q2 = −p⊥,

∣∣M[Ψ±]

〉
=

1√
2

(|p,−p⊥〉± |−p,p⊥〉) . (24)

Note that as long as we are interested in the behavior of spins, the relative phases of

momenta do not matter. This is because the expression for the boosted spin state, Eq. (14),

contains only the squared modulus of the momentum wave function, entailing that two

momenta ψ(p) and ψ′(p) that are related by a local gauge transformation

ψ(p) 7→ ψ′(p) = eφ(p)ψ(p) (25)

induce the same spin orbits [18]. Thus it suffices to consider only |MΦ+〉, |MΨ+〉,
∣∣M[Φ+]

〉
and

∣∣M[Ψ+]

〉
the other Bell states will produce exactly the same spin behavior.

Eq. (14) also leads to another simplification. As long as we are only interested in the

boosted spin state, we can also take momenta to be the mixed states that consist of the

diagonal elements of the projector on the corresponding pure momenta,

ρMd = diag |M〉〈M | . (26)

This is because if one assumes that the initial momenta are given by a mixed state that

consists of the diagonal elements of the corresponding pure momenta,

ρ =
∑
p,q

|ψM(p,q)|2|p,q〉〈p,q| ⊗ ρS, (27)

then a Lorentz boost Λ transforms this to

ρΛ =
∑
p,q

|ψM(Λ−1p,Λ−1q)|2|p,q〉〈p,q|

⊗D
(
Λ,Λ−1p,Λ−1q

)
ρS D

†(Λ,Λ−1p,Λ−1q
)
. (28)
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By tracing out momenta we obtain the spin state

ρΛ
S =

∑
p,q

|ψM(Λ−1p,Λ−1q)|2D
(
Λ,Λ−1p,Λ−1q

)
ρS D

†(Λ,Λ−1p,Λ−1q
)
, (29)

which is identical to the expression (14) that describes the boosted spin generated by pure

momentum states [18]. In other words, only the diagonal elements of the momentum

matrix contribute to the final spin state. In the following calculations we will use the

simpler form given by the mixed momenta (26) since we will be only interested in the

spin state [35].

In order to keep our treatment as general as possible we consider distinguishable par-

ticles (e.g. different types of particles). For indistinguishable particles our results will be

restricted to the subset of antisymmetrized states.

A. From momenta to rotations

Although we have specified the general forms that momenta will take, the geometry

they might realize is still undetermined. We will now turn to the discussion of how the

generic states are implemented by particular momenta and relate them to different types

of rotations generated on spins.

Momenta of both particles may be aligned along the same axes, for instance two par-

ticles can be in a superposition of momenta along the x-axis, yielding the state,

∣∣MXX
Σ

〉
=

1

2
(|px〉+ |−px〉) (|qx〉+ |−qx〉) . (30)

Or momenta of both particles may be aligned along different axes, for instance the first

particle might be in a superposition of momenta along the x-axis and the second particle

in a superposition along the y-axis,

∣∣MXY
Σ

〉
=

1

2
(|px〉+ |−px〉) (|qy〉+ |−qy〉) . (31)

Assuming for simplicity that initially the system is in a pure state

|Ψ〉 = |M〉⊗ |S〉, (32)
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and substituting momentum
∣∣MXX

Σ

〉
into (5) we obtain the boosted state∣∣ΨΛ

〉
=

1

2

{
|px,qx〉 D

(
Λz,Λ

−1
z px

)
⊗D

(
Λz,Λ

−1
z qx

)
+ |px,−qx〉 D

(
Λz,Λ

−1
z px

)
⊗D

(
Λz,−Λ−1

z qx
)

+ |−px,qx〉 D
(
Λz,−Λ−1

z px
)
⊗D

(
Λz,Λ

−1
z qx

)
+ |−px,−qx〉 D

(
Λz,−Λ−1

z px
)

⊗D
(
Λz,−Λ−1

z qx
)}
|S〉, (33)

where we have taken the boost in the z-direction. Now the operators D(Λ,p) for the

representation of the TWR in this expression are given in terms of momenta, the direction

of boost and rapidity, that is, variables which specify the configuration of the boost in the

physical three space. Formally they are SU(2) operators parameterized by the latter three

quantities. However, as long as our main interest lies in how boosts affect spins, we can

simplify the calculations by hiding away the concrete physical situation and using a well

known parameterization of SU(2) in terms of the angle of rotation ω,

D(ω) = exp
(
−i
ω

2
σn
)
, (34)

where n = (nx, ny, nz) is the axis of rotation given by a real unit vector in three dimensions

and σ = (σx, σy, σz) denotes the three component vector of Pauli matrices.

Indeed, this is how we will proceed. In the following calculations we will represent

TWR by operators of the form (34) where ω is a rotation angle that ranges from 0 to

π. Accordingly, we will write D(ω) instead of D(Λ,p) for single particle rotations, and

D(ω, χ) instead of D(Λ,p,q) for two particles. The abstraction is legitimate since, as we

saw in section III, any Wigner angle between 0 and π can be realized by some actual

boost configuration comprising momenta, direction of boost and rapidity. In particular,

although we have been speaking as if momenta in Eqs. (30) and (31) lie along some axis,

it need not be and typically it is not the case in a general boost configuration. To gen-

erate maximal spin rotations large boost angles are needed, which are implemented by

momentum vectors typically not aligned with an axis. For instance, if the boost is in the

positive z-direction, then momenta centered at px = (±px0, 0,−pz0) realize a state not ly-

ing along the x-axis and making an angle to the boost direction which increases as the

z-component decreases, see Fig. 2. However, it is the x-component that determines the
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Figure 2. Schematic illustration of a boost configuration at a large angle θ. Momenta (green circles) are

located at (±px0, 0,−pz0). The z-projection of the spin field is indicated by an arrow at the momentum.

Boost Λ is in the positive z-direction.

boost plane (when the boost is assumed to be in the z-direction), and hence the direction

of the TWR occurring on the spin. We will therefore adopt the convention that we denote

by |pi〉, i ∈ {x, y, z} any state that lies in the boost plane, that is, the plane defined by

the i-axis and the unit vector e in the direction of the boost, but where the boost angle

is chosen so as to realize any TWR ω ∈ [0, π). For instance, for large rotations when ω

approaches π, the boost angle θ approaches π as well.

Using parameterization with angles, Eq. (33) can be written as∣∣ΨΛ
〉

=
1

2

[
|px,qx〉 DY (ω)⊗DY (χ)

+ |px,−qx〉 DY (ω)⊗DY (−χ)

+ |−px,qx〉 DY (−ω)⊗DY (χ)

+ |−px,−qx〉 DY (−ω)⊗DY (−χ)
]
|S〉, (35)

where DY (ω) signifies a rotation around the y-axis given by (34). Thus we see that the

momenta
∣∣MXX

Σ

〉
generate rotation terms of the form

DY (±ω)⊗DY (±χ), DY (±ω)⊗DY (∓χ) (36)

on the spin state. In the same vein, if the momenta are given by
∣∣MXY

Σ

〉
the z-boosted

state will have terms that generate rotations

DY (±ω)⊗DX(±χ), DY (±ω)⊗DX(∓χ) (37)
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(a) (b) (c)

Figure 3. Schematic illustration. Examples of geometric configurations of momenta (green circles) for

realizations of different types of rotations on spins, with (a) Di ⊗ 1, (b) Di ⊗Di, (c) Di ⊗Dj , i 6= j. The

z-projection of the spin field is indicated by an arrow at the momentum.

on the spin state. Following considerations along these lines we see that by taking mo-

menta along different combinations of axes for both product and entangled momenta,

one obtains three different types of rotations that can occur on the spin state,

(i) Di ⊗ 1,

(ii) Di ⊗Di, (38)

(iii) Di ⊗Dj, i 6= j,

where i, j ∈ {X, Y, Z} and each type of rotation can be realized by some set of suitably

chosen momenta, see Fig. 3. For instance, we saw that Di⊗Di is instantiated by DY ⊗DY

when momenta are given by the product state
∣∣MXX

Σ

〉
and the boost is in the z-direction.

Another implementation of the same type is DX ⊗DX when momenta are again product

but located along the y-axis,
∣∣MY Y

Σ

〉
, and the boost is in the z-direction.

We will next give a few examples of momenta and boost geometries that implement

the different types of rotations listed in (38).

a. Type Di ⊗ 1. In this scenario, only the first particle undergoes rotation. The mo-

mentum of the second particle is chosen so that it leaves the spin alone. Denoting such a

momentum by |0〉, the following pairs of boosts and momenta listed on the left hand side
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generate rotations given on the right hand side,

Λz , |py, 0〉 7−→ DX ⊗ 1,

Λz , |px, 0〉 7−→ DY ⊗ 1, (39)

Λy , |px, 0〉 7−→ DZ ⊗ 1.

b. Type Di ⊗Di. For scenarios in which both particles are rotated around the same

axis but not necessarily in the same direction, we obtain the following boosts and mo-

menta,

Λz , |py,qy〉 7−→ DX ⊗DX ,

Λz , |px,qx〉 7−→ DY ⊗DY , (40)

Λy , |px,qx〉 7−→ DZ ⊗DZ .

c. Type Di⊗Dj , i 6= j. Scenarios where particles undergo rotations around different

axes can be realized by

Λy , |pz,qx〉 7−→ DX ⊗DZ ,

Λz , |py,qx〉 7−→ DX ⊗DY , (41)

Λx , |pz,qy〉 7−→ DY ⊗DZ .

These scenarios admit an obvious generalization. By choosing momenta and boosts

appropriately, one can consider single particle rotations around an arbitrary axis n =

(nx, ny, nz). This leads to combinations of generic rotations Dn1 ⊗ Dn2 for two particle

systems, opening up a wide avenue of research. However, when surveying the situation

for the first time, we would like to keep the situation tractable by confining attention to

the cases listed above and leave the more general approach for another occasion.

VI. SPIN STATE AND ITS VISUALIZATION

We will next characterize the spin state of the system. Most of previous work has

focussed on the Bell states,

|Φ±〉 =
1√
2

(|00〉± |11〉) , |Ψ±〉 =
1√
2

(|01〉± |10〉) , (42)
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the maximally entangled bipartite states of two level systems. Understanding their be-

havior in relativity is very important for quantum information. However, pure states

are an idealization and in practical situations one would like to know how mixed states

behave as well. From the theoretical perspective we are likewise interested in exploring

how boosts affect the properties of states with less than maximal entanglement. We will

therefore extend the treatment to include the mixed states.

To find the possibly widest range of behavior we would like to study mixed states

whose entanglement ranges from maximal to no entanglement at all. These consider-

ations naturally lead to the so-called Werner states. The family of generalized Werner

states are the states that interpolate between the maximally mixed and maximally entan-

gled state P+ = |Φ+〉〈Φ+|,

ρW (λ) = λ|Φ+〉〈Φ+|+ (1− λ)
1

N
1 with λ ∈ [0, 1], (43)

where in the present case N = 4 for the bipartite two level systems. For λ = 1 we recover

the Bell state |Φ+〉 and for λ = 0 we obtain the maximally mixed state 1
4
1. Values between

these two extreme cases correspond to mixed states which range from entangled to sepa-

rable systems with interesting properties: the states with λ > 1/3 are entangled, but they

do not violate the Bell inequality until λ becomes larger than 1/
√

2, see [36, 37]. These

features of Werner states make them particularly suitable for the purpose of probing the

behavior of a wide range of mixed states with different degrees of entanglement.

As regards the geometric configuration, we will assume throughout that the spins are

aligned with the z-axis irrespective of the direction of the boost. We adopt the convention

that |0〉 signifies that ‘up’ spin and |1〉 the ‘down’ spin.

A. Visualization

In order to gain a better understanding of the state change of a single qubit, one com-

monly uses visualization on the Bloch sphere. Visualization of two qubits, however, is in

general impossible since one needs 15 real parameters to characterize the density matrix.

However, some cases still allow for a representation in three space, for instance when the

state is restricted to evolve in a subspace of few dimensions. Fortunately this turns out to

be the case for our system.
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To characterize mixed states, it is useful to work in the Hilbert-Schmidt space of

operators B(H), defined on the Hilbert space H with dim = N [38]. B(H) becomes a

Hilbert space of N2 complex dimensions when equipped with a scalar product defined

as 〈A|B〉 = Tr(A†B), with A,B ∈ B(H), where the squared norm is ‖A‖2 = Tr(A†A).

The vector space of Hermitian operators is an N2 real-dimensional subspace of Hilbert-

Schmidt space and can be coordinatized using a basis that consists of the identity op-

erator and the generators of SU(N). For a qubit N = 2 and we obtain the familiar

Bloch ball. For a bipartite qubit system N = 4, B(H) = B(HA) ⊗ B(HB) where Hi is

the single particle space, and we can use a basis whose elements are tensor products

{1 ⊗ 1,1 ⊗ σ,σ ⊗ 1,σ ⊗ σ}, where σ = (σx, σy, σz) is the vector of Pauli operators. The

density operator for a 2× 2 dimensional system can be written in the general form,

ρ =
1

4

(
1⊗ 1 + rσ ⊗ 1 + 1⊗ sσ +

∑
i,j

tijσi ⊗ σj
)
, (44)

where the coefficients r = (rx, ry, rz), s = (sx, sy, sz) and tij , i, j ∈ {x, y, z} are the expecta-

tion values of the operators rσ ⊗ 1, 1⊗ sσ and σi ⊗ σj .
For the projectors on the Bell states si = ri = 0 and the matrix tij is diagonal. This

implies we only need to consider the values of diagonal components tii which constitute

a vector in 3-dimensional space, allowing us to represent the states in Euclidean three

space [39]. The Bell states correspond to vectors,

tΦ+ = (1,−1, 1) , tΦ− = (−1, 1, 1) ,

tΨ+ = (1, 1,−1) , tΨ− = (−1,−1,−1) , (45)

which, in turn, correspond to the vertices of a tetrahedron T in Fig. 4. By taking convex

combinations of these, one obtains further diagonal states; the set of all such states is

called Bell-diagonal and is represented by the (yellow) tetrahedron T in Fig. 4. The set of

separable states forms a double pyramid, an octahedron, in the tetrahedron. The octa-

hedron is given by the intersection of T with its reflection through the origin, −T . The

maximally mixed state 1
4
14 has coordinates (0, 0, 0) and it lies at the origin. The entangled

states are located outside the octahedron in the cones of the tetrahedron, see Fig. 4.

The Werner states lie on the line connecting the origin to the vertex (1,−1, 1) that rep-

resents the Bell state |Φ+〉, see Fig. 4. As the mixture moves from the origin, which rep-

resents the maximally mixed state, towards the vertex corresponding to the Bell state, it

18



-1.0
-0.5 0.0 0.5 1.0

tXX

-1.0
-0.5

0.0
0.5

1.0

tYY

-1.0

-0.5

0.0

0.5

1.0

tZZ

Figure 4. The geometry of Bell diagonal states. The vertices of the tetrahedron T (yellow) correspond to

the four Bell states |Φ+〉, |Φ−〉, |Ψ+〉, and |Ψ−〉. Convex combinations of projectors on the Bell states, the

Bell diagonal states, lie on or in the tetrahedron. A Bell diagonal state is separable iff it lies in the double

pyramid formed by the intersection of the tetrahedron T and its reflection through the origin −T . Werner

states ρW (λ) (shown green) lie on the line connecting the origin and the vertex at (1,−1, 1).

becomes entangled when crossing the face of the octahedron. This corresponds to the

distance 1/
√

3 from the origin, or, as mentioned above, to λsep = 1/3. The mixed state

violates the Bell inequality only when the distance from the origin is greater than
√

3/
√

2,

corresponding to λ = 1/
√

2, see [37].

We can now visualize the behavior of spin by calculating the coefficients tii under a

given rotation as a function of the Wigner angle ω and the parameter λ,

t(ω, λ) = (txx, tyy, tzz) , (46)

where

tii = Tr
[
ρΛ
S(ω, λ)σi ⊗ σi

]
, i ∈ {x, y, z}. (47)

More precisely, we will choose an initial state ρW (λ1) by fixing a particular λ1 and then

let ω vary between 0 and π. The resulting set of three vectors

Γ
[
ρΛ
W (ω, λ1)

]
= {t(ω, λ1) | ω ∈ [0, π]} (48)

we call an orbit of a given initial state. It can be represented as a curve in three space in

the manner described above.
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We will use a single parameter ω to characterize rotations on both particles, making

the assumption that momenta of both particles are of equal magnitude, |p| = |q|, and

both are transformed by boosts with the same rapidity ξ. In a more general setting these

assumptions may be relaxed, meaning that particles could be subject to different boost

geometries, which in turn implies that spins may undergo different rotations. When

surveying the topic for the first time, however, we would like to keep the model simple

enough in order to gain some insight into how various kinds of momenta affect spin

entanglement. In principle, these results can be then later refined by allowing a distinct

boost scenario for each particle.

VII. PRODUCT MOMENTA

A. Product momenta ρEPRB

We begin by discussing the simplest product state

ρEPRB = |p,q〉〈p,q| . (49)

Since we have only one momentum term, ρEPRB generates a map on the spin state given

by a local unitary of the form U1 ⊗ U2,

U1 ⊗ U2 : ρW 7−→ ρΛ
W = λ

∣∣ΦΛ
+

〉〈
ΦΛ

+

∣∣+ (1− λ)
1

4
14, (50)

where
∣∣ΦΛ

+

〉
= U1 ⊗ U2 |Φ+〉 is the boosted Bell state. This is a maximally entangled

state because local unitaries do not change the the degree of entanglement of a Bell state.

The final spin state ρΛ
W again displays the form of a mixture of a maximally entangled

and maximally mixed state parameterized by λ, thus containing the same amount of

entanglement as the initial ρW . In summary, the degree of entanglement of spin Werner

states remains invariant under maps generated by simple product momenta ρEPRB. The

conclusion holds for all three types of rotations Di⊗ 1, Di⊗Di and Di⊗Dj because they

are all special cases of the form U1 ⊗ U2.

The result concerning the Bell states was first noted in [6], where the authors carry out

a thorough study of both massive spin-1/2 particles and massless photons.

We will see shortly that momenta of such a form represent a special case. In general,

the entanglement will not remain invariant in boost scenarios where the momentum part
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of the state contains more terms since the spins will undergo more complicated transfor-

mations.

B. Product momenta ρΣ

In the following sections VII B 1–VII B 3 we will focus on mixed momenta of the form

ρΣ =
1

4
(|p〉〈p|+ |−p〉〈−p|) (|q〉〈q|+ |−q〉〈−q|) , (51)

which are the counterpart of the pure product momenta |MΣ〉.

1. Case Di ⊗ 1

Rotations of the type Di ⊗ 1, which act only on one particle, can be realized by the

various geometries listed in (39). For instance, if we choose the boost to be in the z-

direction, the rotation DX ⊗1 occurs in a scenario where the momenta of the first particle

lie in the y − z-plane while the second particle’s momentum |p0〉 is located at the origin.

The total momentum state is then of the form

1

2
(|py〉〈py|+ |−py〉〈−py|) |p0〉〈p0| . (52)

Boosting in the z-direction translates |p0〉 along the z-axis, yielding no rotation on the

second particle.

Using Eqs. (46) and (47) we calculate that the vector corresponding to the boosted spin

state ρΛ
S is given by

tX⊗1(ω, λ) = λ (1,− cosω, cosω) . (53)

The concurrence is given by

C(ω, λ) =

 1
2

(−1 + λ+ 2λ|cosω|) if λ ∈ (λsep, 1]

0 if λ ∈ [0, λsep]
(54)

where λsep corresponds to the point on the face of the octahedron where the initial state

crosses the boundary of entangled and separable states.
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Figure 5. Spin orbit and concurrence under Di ⊗ 1 with ω ∈ [0, π] generated by ρΣ. (a) Initial state |Φ+〉

corresponds to vertex (1,−1, 1), orbit for DX ⊗ 1 is shown red, DY ⊗ 1 green and DZ ⊗ 1 blue. (b)

Concurrence has the same shape for all Di ⊗ 1.

Direct calculation shows that other rotations induce similar orbits. For DY ⊗ 1 and

DZ ⊗ 1 we obtain

tY⊗1(ω, λ) = λ (cosω,−1, cosω) ,

tZ⊗1(ω, λ) = λ (cosω,− cosω, 1) , (55)

with the concurrence given by Eq. (54).

We start our discussion by considering the Bell states. The state |Φ+〉 is recovered by

setting λ = 1. Fig. 5 shows plots of the orbits and the concurrence. It becomes clear

now that visualization of the orbit provides valuable insight into the behavior of entan-

glement. For the sake of concreteness, let us focus on tX⊗1. Initially the state is at rest,

represented by the vertex at (1,−1, 1). As boosts increase, the state moves along the line

towards the center of the face (shown red in Fig. 5a), reaching a separable state repre-

sented by (1, 0, 0) at ω = π/2. The latter vector can be written as a convex combination of

vectors corresponding to states |Φ+〉 and |Ψ+〉,

(1, 0, 0) =
1

2

(
tΦ+ + tΨ+

)
. (56)

As boosts increase further, the state again becomes entangled. Finally, when the Wigner

angle is almost π, the system reaches the vertex (1, 1,−1), that is the boosted observer

sees the state |Ψ+〉 instead of |Φ+〉.
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The behavior of concurrence mimics this pattern. Initially, when the state is maximally

entangled the concurrence takes the value one. As the boosts start to increase, this de-

creases monotonically and reaches zero when ω = π/2. When the boosts become larger,

it increases monotonically, approaching one as the rotation becomes close to π or equiva-

lently, when boosts approach the speed of light.

The other rotations DY ⊗ 1 and DZ ⊗ 1 induce similar orbits with vectors given in (55)

and shown as green and blue, respectively, in Fig. 5a. All three orbits have similar shape,

they are related to each other by three-rotations R(2πn/3), n = 1, 2, where the axis of

rotation is the line through the origin (0, 0, 0) and the vertex (1,−1, 1) representing |Φ+〉.
Furthermore, direct calculation shows that the other Bell states exhibit the same be-

havior under the rotations Di ⊗ 1, i ∈ {X, Y, Z}. For a given state, the rotations generate

orbits that are related by three-rotations R(2πn/3), n = 1, 2 around the axis through the

origin and the vertex representing the respective state.

The latter two results hold for all nontrivial orbits below; we will therefore refrain

from repeating them in the following.

Let us next turn to a discussion of the case 0 ≤ λ < 1 where the initial state is mixed.

Fig. 6 shows plots of the orbits and concurrences. We illustrate spin behavior by plotting

three orbits in Fig. 6a for three different values of λ, Fig. 6b includes the correspond-

ing graphs of the concurrence. Again we see that visualization of the orbits provides

valuable insight into the behavior of the state, as well as explaining the characteristics of

entanglement.

The initial states with λ < 1 are mixed and they lie on the (green) line between the ver-

tex (1,−1, 1) and the origin. The initial state with λ = 3/5 lies just outside the octahedron,

still containing some entanglement at C = 2/5. When the state is boosted, it moves along

the orbit (shown blue) which is parallel to the orbit of the Bell state, becoming separable

as it enters the octahedron. To find the value of ω at this point, we set the concurrence to

zero in the first line of Eq. (54), obtaining

ω± = arccos

(
±1− λ

2λ

)
. (57)

For λ = 3/5 this evaluates to ω+ = 1.23 and ω− = 1.91. Thus in the range ω ∈ [1.23, 1.91]

the spins appear fully separable to the boosted observer. However, as the boosts increase

even further, entanglement becomes non-zero again when ω is larger than 1.91. The orbit
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Figure 6. Typical spin orbit and concurrence under Di ⊗ 1 with ω ∈ [0, π] generated by mixed momenta

ρΣ. (a) Initial states ρW (λ) lie on the line connecting the origin to the vertex (1,−1, 1) and correspond to

values λ = 1, 3/5, 1/3 with the respective colors red, blue and orange. Note that the figure has been

rotated relative to the previous ones. (b) Concurrence is shown for λ = 1, 4/5, 3/5, 2/5, 1/3 with the

respective colors red, green, blue, magenta, orange.

leaves the octahedron and enters the region of entangled states. As boosts near the speed

of light, the Wigner angle approaches π and the state is mapped to the point which is a

mirror image of the initial state with respect to the plane P that intersects the origin and

the vertices (1,−1,−1) and (1, 1, 1). This is a generalization of the phenomenon we saw

in the Bell states where boosts at the speed of light mapped |Φ+〉 to |Ψ+〉. In the present

case, maximal boosts map the Werner state ρW (λ) to a another Werner state, which is

written as a mixture of |Ψ+〉〈Ψ+| and the maximally mixed state,

ρWΨ+(λ) = λ|Ψ+〉〈Ψ+|+ (1− λ)
1

4
14 with λ ∈ [0, 1]. (58)

When ω = π, the concurrence is 2/5, the same value it has in the rest frame.

States that lie initially in the octahedron, for instance when λ = 1/3, are separable.

Boosts map such a state to an orbit which is again parallel to that of the Bell state, with

the total orbit being of symmetric shape with respect to the plane P . However, because

the whole orbit remains inside the octahedron of separable states, concurrence is zero at

all boost values.
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2. Case Di ⊗Di

Rotations of the form Di ⊗ Di can be again implemented by various geometries. For

example, when the boost is in the z-direction, then DX ⊗DX is realized by the state

1

4
(|py〉〈py|+ |−py〉〈−py|) (|qy〉〈qy|+ |−qy〉〈−qy|) (59)

where momenta of both particles lie in the y− z-plane. From Eqs. (46) and (47) we calcu-

late the vector representing the spin under DX ⊗DX ,

tX⊗X(ω, λ) = λ
(
1,− cos2 ω, cos2 ω

)
, (60)

which yields for the concurrence

C(ω, λ) =

 −1
2

+ λ+ 1
2
λ cos 2ω if λ ∈ (λsep, 1]

0 if λ ∈ [0, λsep]
(61)

where as above λsep is the value where the rest frame state becomes separable.

The other realizations DY ⊗DY and DZ ⊗DZ produce similar vectors,

tY⊗Y (ω, λ) = λ
(
cos2 ω,−1, cos2 ω

)
,

tZ⊗Z(ω, λ) = λ
(
cos2 ω,− cos2 ω, 1

)
. (62)

We begin the discussion by focussing on the Bell state |Φ+〉, which is the case with

λ = 1. Plots of the orbits and concurrence are shown in Fig. 7. Let us consider tX⊗X . At

the beginning, the effect of boosts is qualitatively similar to the previous pure state case.

At rotations smaller than π/2, the state |Φ+〉 is again mapped into a mixture of itself and

|Ψ+〉, moving along the orbit that connects the two states. When ω = π/2, the moving

observer sees a separable state. However, at boosts that generate rotations larger than

π/2, the orbit differs from the previous case as the boosted state moves back along the

same path towards the rest frame state. At ω = π, we obtain the original rest frame state

|Φ+〉.
The concurrence is rather similar to the previous case in that it decreases monotoni-

cally from 1 to 0 between [0, π/2] and then increases monotonically from 0 to 1 between

[π/2, π], while the precise expression differs slightly from the previous case.

Now let us turn to the case of mixed initial states, i.e. 0 ≤ λ < 1. Plots of the spin

orbits and concurrence are shown in Fig. 8. For illustration, the orbits are again shown
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Figure 7. Spin orbit and concurrence under Di ⊗Di with ω ∈ [0, π] generated by momenta ρΣ. (a) Initial

state |Φ+〉 corresponds to the vertex at (1,−1, 1), DX ⊗DX is shown red, DY ⊗DY green and DZ ⊗DZ

blue. (b) Concurrence has the same shape for all Di ⊗Di.

-1.0

-0.5

0.0

0.5

1.0

tXX

-1.0

-0.5

0.0
0.5

1.0

tYY

-1.0

-0.5

0.0
0.5

1.0

tZZ

(a)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

C
on

cu
rr
en
ce
C

TWR ω (rad)

(b)

Figure 8. Typical spin orbit and concurrence under Di ⊗Di with ω ∈ [0, π] generated by mixed momenta

ρΣ. (a) Initial states ρW (λ) lie on the line connecting the origin to the vertex (1,−1, 1) and correspond to

values λ = 1, 3/5, 1/3 with the respective colors red, blue and orange. (b) Concurrence is shown for

λ = 1, 4/5, 3/5, 2/5, 1/3 with the respective colors red, green, blue, magenta, orange.

for three different values of λ in Fig. 8a. In Fig. 8b we plot the corresponding graphs of

concurrence.

Many characteristics are similar to the previous case. Orbits of initial states with less

than maximal entanglement are parallel to the orbit of the Bell state |Φ+〉. As boost in-
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creases, a state that is initially entangled moves towards the octahedron and becomes

separable when entering the octahedron. To find the corresponding values of ω, we set

the concurrence to zero in Eq. (61) and solve for ω,

ωk,± =
1

2

(
2kπ ± arccos

(
1− 2λ

λ

))
, k ∈ N. (63)

The solutions relevant in the present case are ω0,+ and ω1,−. This means ρΛ
S is separable

if ω ∈ [ω0,+, ω1,−]. For instance, a state for which λ = 3/5, whose orbit is shown blue in

Fig. 8a, has vanishing concurrence if ω ∈ [0.96, 2.19]. This corresponds to the part of the

orbit which resides in the octahedron. In a similar vein, initial states that lie inside the

octahedron and are separable follow an orbit for which entanglement remains zero for

all boosts. There is a difference from the previous case: when boosts approach the speed

of light, the state is mapped back to the original state.

3. Case Di ⊗Dj

Rotations around different axis, Di ⊗Dj , can be implemented by momenta that lie in

different boost planes. For instance, when boost is in the z-direction and momenta are of

the form

1

4
(|py〉〈py|+ |−py〉〈−py|) (|qx〉〈qx|+ |−qx〉〈−qx|) (64)

then spins are rotated by DX ⊗ DY . We calculate that the three vector corresponding to

the state is

tX⊗Z(ω, λ) = λ
(
cosω,− cos2 ω, cosω

)
, (65)

and the concurrence is given by

C(ω, λ) =



1
8

(∣∣ |2 + λ+ 4λ cosω + λ cos 2ω|
− |2 + λ− 4λ cosω + λ cos 2ω|

∣∣)
+2 (−2 + λ+ λ cos 2ω)

if λ ∈ (λsep, 1]

0 if λ ∈ [0, λsep]

(66)
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Figure 9. Spin orbit and concurrence under Di ⊗Dj , i 6= j and ω ∈ [0, π] generated by momenta ρΣ. (a)

Initial state |Φ+〉 corresponds to the vertex at (1,−1, 1), DX ⊗DY is shown red, DX ⊗DZ green and

DY ⊗DZ blue. (b) Concurrence has the same shape for all Di ⊗Dj .

where at λsep the state becomes separable. The other rotations generate similar vectors

tX⊗Y (ω, λ) = λ(cosω,− cosω, cos2 ω),

tY⊗Z(ω, λ) = λ(cos2 ω,− cosω, cosω). (67)

We begin by considering the Bell state |Φ+〉, the case with λ = 1. Plots of the spin or-

bits and concurrences for all the different rotations are shown in Figure 9. The behavior of

spin under mixed rotations is quite different from the two previous cases. Let us consider

tX⊗Z as an illustration. Fig. 9a shows that the orbit has the shape of a curve that starts

at the vertex (1,−1, 1) which represents the rest state |Φ+〉. It then evolves towards the

origin, reaching it at ω = π/2. The second half of the orbit for values ω ∈ [π/2, π] is sym-

metric to the first half. The state evolves towards the vertex (−1, 1, 1) which represents

the Bell state |Φ−〉, reaching it when the boosts approach the speed of light. The orbit lies

in the plane that intersects the initial state |Φ+〉, the origin and the final state |Φ−〉.
It is interesting that the spins become separable when the Wigner angle lies between

[1.14, 2.00], see Fig. 9b. While this might look puzzling if we only knew the behavior of

the concurrence, the plot of the orbit clearly shows what is happening. The spin state

evolves in the plane that intersects the octahedron of separable states, hitting the face of

the octahedron when ω = ω−, and then following a path towards the maximally mixed
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Figure 10. Typical spin orbit and concurrence under Di ⊗Dj , i 6= j with ω ∈ [0, π] generated by mixed

momenta ρΣ. (a) Initial states ρW (λ) lie on the line connecting the origin to the vertex (1,−1, 1) and

correspond to values λ = 1, 3/5, 1/3 with the respective colors red, blue and orange. (b) Concurrence is

shown for λ = 1, 4/5, 3/5, 2/5, 1/3 with the respective colors red, green, blue, magenta, orange.

state 1
4
14 represented by (0, 0, 0). When ω = π/2, the moving observer sees the maximally

mixed state. The concurrence of the boosted state becomes non-zero again as ω becomes

greater than ω+, this corresponds to the point where the spin state leaves the octahedron.

Let us next consider the mixed states, 0 ≤ λ < 1. In Fig. 10, we have plotted the

orbits and concurrences, where the orbits are again shown for three different values of

λ. We recognize a pattern of behavior that is similar to the previous cases, albeit with

a few differences. As before, the states follow an orbit that resides in the octahedron

for a range of values around π/2. However, the region where the concurrence vanishes is

considerably larger than in the previous cases. Also, while we saw above that the orbits of

mixed states were parallel to the orbit of the Bell state, here all the orbits pass through the

maximally mixed state 1
4
14. To find the values of ω for which the concurrence vanishes,

we set the concurrence to zero in the first line of Eq. (66) and solve for ω,

ωk,± = kπ ± arccos

(
λ−
√
λ+ λ2

λ

)
, k = 0, 1, (68)

which entails that the state is separable if ω ∈ [ω1,−, ω0,+]. For example, when λ = 3/5,

entanglement vanishes in the interval ω ∈ [0.89, 2.25].
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C. Product momenta ρ×

In the following sections VII C 1–VII C 2 we will analyze mixed momenta of the form

ρ× =
1

8
(|p〉〈p|+ |−p〉〈−p|+ |p⊥〉〈p⊥|+ |−p⊥〉〈−p⊥|)

⊗ (|q〉〈q|+ |−q〉〈−q|+ |q⊥〉〈q⊥|+ |−q⊥〉〈−q⊥|) , (69)

which are the counterpart of the pure product momenta |M×〉. We will have to analyze

only two types of rotation, the Di ⊗ 1 and the combination of Di ⊗ Di with Di ⊗Dj .

The latter two are not two distinct cases because a generic expression of ρ× involves

momentum terms that generate both types of rotation. For instance, if the boost is in the

z-direction and the momenta are constrained to lie in the x − z- and y − z-planes, we

get terms that correspond to the pure momenta |±px,±px〉, |±py,±py〉, |±px,±py〉 and

|±py,±px〉, which generate the respective rotations DX ⊗ DX , DY ⊗ DY , DY ⊗ DX and

DX ⊗DY . We will also see that the state vectors of both types can be obtained as convex

combinations of the vectors we have already calculated above.

1. Case Di ⊗ 1

We begin by considering the case where only the first particle undergoes rotation while

the second particle is left alone. If we assume that the boost is in the z-direction, then such

a scenario is realized when the momentum of the first particle is a mixture of projectors

on |±py〉 and |±px〉, and momentum |p0〉 of the second particle lies at the origin. The

resulting state vector is a convex sum of vectors for single particle rotations tX⊗1 and

tY⊗1 generated by ρΣ in section VII B 1,

tXY⊗1(ω, λ) =
1

2
[tX⊗1(ω, λ) + tY⊗1(ω, λ)] ,

= λ
(

cos2 ω

2
,− cos2 ω

2
, cosω

)
. (70)

The vectors generated by the other rotations can be obtained in the same fashion,

tXZ⊗1(ω, λ) = λ
(

cos2 ω

2
,− cosω, cos2 ω

2

)
,

tY Z⊗1(ω, λ) = λ
(

cosω,− cos2 ω

2
, cos2 ω

2

)
. (71)
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Figure 11. Spin orbit and concurrence under Di ⊗ 1 generated by momenta ρ× with ω ∈ [0, π]. (a) Initial

state |Φ+〉 corresponds to the vertex at (1,−1, 1), the orbit tXY⊗1 is shown red, tXZ⊗1 green and tY Z⊗1

blue. (b) Spin concurrence has the same shape for all orbits.

The corresponding concurrence is

C(ω, λ) =

 1
2

(−1 + λ+ 2λ cosω) if λ ∈ (λsep, 1]

0 if λ ∈ [0, λsep]
(72)

where λsep is the value at which the initial spin state becomes separable.

We start by considering the Bell states, i.e. the case λ = 1. We plot the spin orbits and

concurrence for |Φ+〉 in Fig. 11. Since the orbit of tXY⊗1 is a convex sum of vectors for

single particle rotations tX⊗1 and tY⊗1, it is represented by a line that connects the initial

vector (1,−1, 1) for |Φ+〉 and the point (0, 0,−1) that corresponds to the equal mixture of

projectors onto |Ψ+〉 and |Ψ−〉. Accordingly, the concurrence displays the same behavior

as that of tX⊗1 or tY⊗1 until ω = π/2. However, in contrast to the latter, it vanishes for

all values of ω greater than π/2. This is because when boosts induce rotations larger than

π/2, the state follows a path in the set of separable states on the face of the octahedron

until ω = π.

For mixed states, 0 ≤ λ < 1, we plot the orbits for three different values of λ in Fig. 12a.

The concurrence is shown in Fig. 12b. We note that as λ decreases, the states start to

disentangle at lower values of ω. This is because the orbits remain parallel to the orbit of

the Bell state and thus enter the octahedron sooner. Since they are also parallel to the face

of the bottom pyramid, the state never escapes the region of separability.
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Figure 12. Typical spin orbit and concurrence under Di ⊗ 1 generated by momenta ρ× with ω ∈ [0, π]. (a)

Initial states ρW (λ) lie on the line connecting the origin to the vertex (1,−1, 1) and correspond to values

λ = 1, 3/5, 1/3 with the respective colors red, blue and orange. (b) Concurrence is shown for

λ = 1, 4/5, 3/5, 2/5, 1/3 with the respective colors red, green, blue, magenta, orange.

2. Case Di ⊗Di and Di ⊗Dj

For rotations that act on both particles let us consider the scenario where the boost is

in the z-direction and momenta are constrained to lie in the x− z- and y − z-planes. The

state then consists of terms that correspond to the pure momenta |±px,±px〉, |±py,±py〉,
|±px,±py〉 and |±py,±px〉, which generate the rotation termsDY⊗DY ,DX⊗DX ,DX⊗DY

and DY ⊗DX . The spin orbit can be calculated by combining the respective vectors,

t×X⊗Y (ω, λ) =
1

4

(
tΣX⊗X + tΣX⊗Y + tΣY⊗X + tΣY⊗Y

)
= λ

(
cos4 ω

2
,− cos4 ω

2
, cos2 ω

)
, (73)

where we have used superscripts to distinguish between the vectors generated by ρΣ and

ρ×. The other vectors can be obtained in a similar fashion,

tX⊗Z(ω, λ) = λ
(

cos4 ω

2
,− cos2 ω, cos4 ω

2

)
,

tY⊗Z(ω, λ) = λ
(

cos2 ω,− cos4 ω

2
, cos4 ω

2

)
, (74)
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Figure 13. Spin orbit and concurrence under Di ⊗Di and Di ⊗Dj generated by momenta ρ× with

ω ∈ [0, π]. (a) Initial state |Φ+〉 corresponds to the vertex at (1,−1, 1), the orbit tX⊗Y is shown red, tX⊗Z

green and tY⊗Z blue. (b) Spin concurrence has the same shape for all orbits.

where we have omitted superscripts for brevity. The concurrence is given by

C(ω, λ) =



1
16

(− |4λ cosω − λ cos 2ω + λ− 4|
+ 4λ cosω + 7λ cos 2ω + 9λ− 4)

if λ ∈ (λsep, 1],

0 if λ ∈ [0, λsep].

(75)

Considering first the Bell state |Φ+〉, the case with λ = 1, we plot the spin orbits and

concurrence in Fig. 13. The orbit exhibits interesting behavior, starting out in a manner

similar to tX⊗Y generated by the symmetric momentum ρΣ. However, after entering the

octahedron, it changes course and evolves towards the tip of the upper pyramid. When

ω = π it reaches the state which corresponds to the equal mixture of projectors onto |Φ+〉
and |Φ−〉. This explains why concurrence vanishes in Fig. 13b at all boosts that induce

rotations larger than 1.23 rad.

It is also instructive to compare the current case with theDi⊗1 in the previous section.

While on the face of it the shape of both concurrences is quite similar, the corresponding

orbits follow rather different paths. In analogy to the previous case, the orbit here ini-

tially moves downward, while the state disentangles slightly earlier. Soon after entering

the octahedron, however, the orbit turns upward and ends at a point which is almost

opposite to the one of the final state under RXY ⊗ 1 in the previous section. This is an-
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Figure 14. Typical spin orbit and concurrence Di ⊗Di and Di ⊗Dj generated by momenta ρ× with

ω ∈ [0, π]. (a) Initial states ρW (λ) lie on the line connecting the origin to the vertex (1,−1, 1) and

correspond to values λ = 1, 3/5, 1/3 with the respective colors red, blue and orange. (b) Concurrence is

shown for λ = 1, 4/5, 3/5, 2/5, 1/3 with the respective colors red, green, blue, magenta, orange.

other example of how visualization of state change explains differences in the behavior

of concurrence which would remain hidden otherwise. It would also explain what hap-

pens to entanglement if one changed the parameters that characterize the boost scenario

in question.

We now turn to the case of mixed states, 0 ≤ λ < 1. Plots of the spin orbit and concur-

rence are shown in Fig. 14. We see that in analogy to the single particle rotations in the

previous section, the state begins to disentangle at lower values of ω as λ decreases. Al-

though here the orbits are not strictly parallel to the one of the Bell state, the phenomenon

is quite similar. Smaller values of λ mean the initial state is closer to the set of separable

states and needs less rotation to enter the pyramid and become disentangled. Since all

orbits approach the same final state, the entanglement never revives.

It is interesting to note that this momentum state can be employed to model quite ac-

curately the continuous momenta discussed in the seminal paper [3], see [28] for details.
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VIII. ENTANGLED MOMENTA

A. ‘Entangled’ momenta

In the following sections we will assume that momenta are entangled and take the

form of Bell states |MΦ+〉 or |MΨ+〉 or Bell-like states
∣∣M[Φ+]

〉
,
∣∣M[Ψ+]

〉
. The former are

instantiated by rotations of type Di ⊗ Di whereas the latter occur when rotations are

around different axes, Di ⊗ Dj , i 6= j. As mentioned above, there is no need to consider

momenta with other relative phases since they induce the same orbits for the spin state.

Also, the type Di ⊗ 1 will be omitted since it is equivalent to the Di ⊗ 1 generated by

product momenta ρΣ. This is because if the first particle is rotated while the second is

left alone, the product momenta ρΣ and any of the entangled momenta are given by the

same state. We will also leave out the implementations of concrete rotations since they

are analogous to those of product momenta.

As before, for the reason of computational convenience we will use the mixed mo-

menta that correspond to the pure entangled states,

ρΦ+ = diag |MΦ+〉〈MΦ+| ,

ρΨ+ = diag |MΨ+〉〈MΨ+| ,

ρ[Φ+] = diag
∣∣M[Φ+]

〉〈
M[Φ+]

∣∣ , (76)

ρ[Ψ+] = diag
∣∣M[Ψ+]

〉〈
M[Ψ+]

∣∣ .
They are clearly not entangled since they contain only the diagonal elements of the projec-

tors on entangled states. We will, however, categorize the resulting spin states as if they

had been generated by entangled momenta for the reason highlighted above, namely,

that entangled momenta would lead to the same spin states.

1. Di ⊗Di

The case of two-rotations Di ⊗Di for entangled momenta is quite dissimilar from the

behavior generated by the product momenta. We begin by calculating the spin orbits

generated by ρΦ+. The three realizations fall into two cases. The DX ⊗DX and DZ ⊗DZ
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rotations yield the vectors

tX⊗X(ω, λ) = λ (1,− cos 2ω, cos 2ω) ,

tZ⊗Z(ω, λ) = λ (cos 2ω,− cos 2ω, 1) , (77)

whereas DY ⊗DY leaves the state invariant,

tY⊗Y (ω, λ) = λ(1,−1, 1). (78)

This asymmetry arises from the fact that the momentum state ρΦ+ consists of terms which

induce rotations in the positive direction, Di(ω) ⊗ Di(ω), and in the negative direction,

Di(−ω)⊗Di(−ω). The spin state ρW is an eigenstate of such rotations around the y-axis,

DY (±ω) ⊗ DY (±ω), but not around the other axes, DX(±ω) ⊗ DX(±ω) and DZ(±ω) ⊗
DZ(±ω).

The trivial orbit tY⊗Y has the concurrence

C(λ) = (−1 + 3λ)/2 (79)

whereas the nontrivial orbits tX⊗X and tZ⊗Z have

C(ω, λ) =

 1
2

(−1 + λ+ 2λ|cos 2ω|) if λ ∈ (λsep, 1]

0 if λ ∈ [0, λsep].
(80)

Let us consider first the Bell states, λ = 1. The non-trivial orbits and corresponding

concurrences are shown in Fig. 15. It is interesting to compare the orbit in Fig. 15a with

the one obtained earlier in section VII B 1 for the single particle rotation Di ⊗ 1 generated

by the product momenta ρΣ. While they look similar, the one here traverses the same

path twice as fast as ω ranges from 0 to π. In analogy to the single particle rotation, the

state is sent to |Ψ+〉, but in contrast to the single particle rotation, this happens now al-

ready at ω = π/2. When the rotation achieves the maximal value π, the boosted observer

sees again the original state |Φ+〉. Accordingly, the concurrence in Fig. 15b shows a graph

which oscillates twice as fast between its maximal value and zero in the same range of ro-

tation. The other Bell states display similar systematic behavior. Depending on whether

or not they are eigenstates of the particular rotation in question, they do or do not show

non-trivial orbits and concurrence.

We note that the expression for spin concurrence in Eq. (80) for the case of pure states,

λ = 1, was first reported in [18]. The authors considered a geometry where the momenta

36



-1.0

-0.5

0.0

0.5

1.0

tXX

-1.0
-0.5

0.0
0.5

1.0

tYY

-1.0

-0.5

0.0

0.5

1.0

tZZ

(a)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

C
on

cu
rr
en
ce
C

TWR ω (rad)

abs(cos(2*x))

(b)

Figure 15. Spin orbit and concurrence of |Φ+〉 under Di ⊗Di with i ∈ {X,Z} and ω ∈ [0, π]. Entangled

momenta are given by ρΦ+. (a) Initial state |Φ+〉 corresponds to vertex (1,−1, 1), orbit for DX ⊗DX is

shown red and DZ ⊗DZ is blue. (b) Concurrence has the same shape for both orbits.

of both particles make an angle π/2 to the direction of boost, obtaining a change of entan-

glement shown between [0, π/2] in Fig. 15b.

For the general case that includes mixed states, 0 ≤ λ ≤ 1, we plot the orbits and con-

currence in Fig. 16. The orbits of mixed spins are parallel to those of pure spins and share

the characteristics described above. The Werner state ρW is sent to a counterpart Werner

state ρWΨ+ given in Eq. (58). There are two intervals in Fig. 16b where the concurrence

vanishes since the state moves forward and backward through the octahedron of separa-

ble states. The lower the initial degree of entanglement, the larger the part of the orbit in

the octahedron, and thus the larger the region of vanishing concurrence.

2. Di ⊗Dj

Mixed rotations Di ⊗Dj , i 6= j present the case where the spin states generated by the

momenta are not Bell diagonal. For instance, the coefficient matrices ti⊗j , i, j ∈ {X, Y, Z},
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Figure 16. Typical spin orbit and concurrence under Di ⊗Di with ω ∈ [0, π] generated by momenta ρΦ+.

(a) Initial states ρW (λ) lie on the line connecting the origin to the vertex (1,−1, 1) and correspond to

values λ = 1, 3/5, 1/3 with the respective colors red, blue and orange. (b) Concurrence is shown for

λ = 1, 4/5, 3/5, 2/5, 1/3 with the respective colors red, green, blue, magenta, orange.

generated by the momentum state ρ[Φ+] for the rest frame spin ρW are as follows,

tX⊗Y (ω, λ) = λ


cosω 0 0

− sin2 ω − cosω 0

0 0 cos2 ω

 ,

tX⊗Z(ω, λ) = λ


cosω 0 0

0 − cos2 ω 0

sin2 ω 0 cosω

 , (81)

tY⊗Z(ω, λ) = λ


cos2 ω 0 0

0 − cosω 0

0 − sin2 ω cosω

 .

The concurrence is the same for all three states,

C(ω, λ) =

 −1
2

+ λ+ 1
2
λ cos 2ω if λ ∈ (λsep, 1]

0 if λ ∈ [0, λsep].
(82)
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Figure 17. Spin concurrence under Di ⊗Dj , i 6= j with ω ∈ [0, π] generated by momenta ρ[Φ+] and ρ[Ψ+].

Concurrence is shown for λ = 1, 4/5, 3/5, 2/5, 1/3 with the respective colors red, green, blue, magenta,

orange.

Plots of concurrence for different values of λ are shown in Fig. 17. Although the states are

not diagonal when ω 6= 0, π, the structure of ti⊗j suggests that the orbits are isomorphic

to each other. All three matrices contain the same diagonal terms as the vector of Di⊗Dj

induced by product momenta. In addition, all matrices contain an off-diagonal term

± sin2 ω, whose location varies systematically. This allows us to represent the matrices

ti⊗j by a four vector consisting of the diagonal and off-diagonal terms, (tkk,± sin2 ω). The

three states can be thus seen to be related by a one-one map. They seem to share similar

geometric structure as well. The first three components of the four vector represent the

vector of Di⊗Dj , the fourth component varies in the same way (modulo sign) albeit in a

different subspace for different rotations.

Now the expression for concurrence (82) is identical to (61), i.e. the case of Di ⊗ Di

generated by product momenta. Could this give us clues about the shape of the orbit?

Although we cannot say what is the shape of the orbit in the current case, it is definitely

different from the one of Di ⊗ Di. Taking the case of pure states as an example, this is

because while the orbit of the product rotation is cyclic in the sense that it returns to

the initial state at ω = π, the orbit here starts at |Φ+〉 when ω = 0 and ends at |Φ−〉
with ω = π. We conclude that more investigation is needed to determine the geometric

structure of the orbit but we will not pursue the issue further here since it is not crucial

for our purposes.
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IX. SUMMARY AND DISCUSSION

In this paper we studied spin entanglement of a two particle system in relativity. We

systematically investigated various boost scenarios involving both product and entan-

gled momenta with the aim of surveying the structure of maps that momenta induce on

spins. Momenta were assumed to be discrete and spins in the Werner state. The latter

subsume the Bell states when λ = 1. The analytic expressions describing the orbits and

entanglement under boosts are summarized in Tables I and II.

Table I: Spin orbit and concurrence for ρW (λ) generated by product momenta ρEPRB, ρΣ and ρ×. The

second column shows a typical orbit.

Momenta Orbit Concurrence

ρEPRB trivial or not diagonal invariant

ρΣ λ(1,− cosω, cosω) max
{

0, 1
2 (−1 + λ+ 2λ|cosω|)

}
λ(1,− cos2 ω, cos2 ω) max

{
0, −1

2 + λ+ 1
2λ cos 2ω

}

λ(cosω,− cos2 ω, cosω)

max
{

0, 1
8

(∣∣ |2 + λ+ 4λ cosω

+λ cos 2ω| − |2 + λ

−4λ cosω + λ cos 2ω|
∣∣

+2 (−2 + λ+ λ cos 2ω))}

ρ× λ(cos2 ω
2 ,− cos2 ω

2 , cosω) max
{

0, 1
2 (−1 + λ+ 2λ cosω)

}

λ(cos4 ω
2 ,− cos4 ω

2 , cos2 ω)

max
{

0, 1
16 (− |4λ cosω − λ cos 2ω

+λ− 4|+ 4λ cosω + 7λ cos 2ω

+9λ− 4)}

We confirm the overall lesson that Lorentz boosts generally cause non-trivial behavior
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Table II: Spin orbit and concurrence for ρW (λ) generated by momenta ρΦ+, ρΨ+, ρ[Φ+] and ρ[Ψ+]. The

second column shows a typical orbit.

Rotation Orbit Concurrence

Di ⊗Di λ(cos 2ω,−1, cos 2ω) max
{

0, 1
2 (−1 + λ+ 2λ|cos 2ω|)

}
trivial invariant

Di ⊗Dj not diagonal max
{

0, −1
2 + λ+ 1

2λ cos 2ω
}

of the spin degree of freedom of a two particle system. However, whether or not, and to

what extent, the state and entanglement of spins changes depends substantially on the

spin and momentum states involved, as well as on the geometry of the boost scenario.

Whereas some states and geometries leave entanglement invariant, others give rise to

rapid changes of concurrence. Examples of the former comprise Bell states with product

momenta of the form ρEPRB, and also the case of entangled momenta under rotation of

type Di ⊗Di where the spin is an eigenstate of rotation. All other types of rotations and

momenta were found to bring about entanglement change that ranges from maximal to

zero, with the type Di ⊗Di, where momenta are entangled and spin is not an eigenstate

of rotation, causing the fastest decay and rebirth of entanglement.

The most valuable lessons can be drawn from the insights based on a simple frame-

work that consists of spins at discrete momenta, where the latter are regarded as qubits

and boosting means that each spin undergoes a rotation which depends on the boost sce-

nario. The picture can be applied, to some extent, to continuous momenta as well [28].

More importantly, it can be used explain the various results reported in the literature, i.e.

whether or not spin entanglement changes in a particular boost scenario. For example,

while [6] found that Lorentz boosts do not change the degree of entanglement of a max-

imally entangled Bell state, [3] show that the boosted observer generally sees a decrease

of entanglement. Yet these results are consistent since they employ different momentum

states. The system considered in [6] contains product momenta ρEPRB, which induce maps

that leave the Bell states invariant as discussed in section VII A. The authors of [3], how-
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ever, assume that momenta are given by origin centered Gaussians. The latter can be

modeled accurately by states of the form ρ×, as discussed in VII C 2, and they lead to a

deterioration of the spin entanglement. A similar analysis could be carried out for many

two level systems that contain either discrete or continuous momenta.

While the literature on relativistic entanglement commonly analyzes pure entangled

states, it is important to consider mixed states as well in order to gain a full understand-

ing. The present work makes a step in this direction by surveying the behavior of the

Werner states, whose entanglement ranges between maximal and no entanglement at all.

Compared to the pure states, they display less change because their maximal degree of

entanglement is bounded by the parameter λ.

We would like to emphasize the usefulness of visualization of spin orbits, a tool bor-

rowed from quantum information theory, which gave further insight into the behavior

of entanglement. While on the common approach only plots of concurrence are shown,

adding plots of orbits reveals deeper differences between the scenarios by providing a ge-

ometric explanation of how boosts affect the state; showing how it follows a path through

regions of different classes of entanglement in the state space. This also means it opens

up the possibility of manipulating states to achieve an engineering goal—something that

merely plotting the concurrence does not yield.

We also observe that entanglement non-increase under boosts, which was proved for

pure states in [3], holds for the mixed states as well. It should be stressed that this is

valid only for systems whose spin–momentum initially factorize. If spin and momentum

degrees are initially entangled, the boosted state can be more entangled than the initial

one. Although proper study of this interesting case is left for another occasion, as noted

in section IV, it has been implicit to some extent in the scenarios we examined. The

reason is that since Lorentz boosts form a group, we can read all plots in the reverse

direction. For instance, the boosted state 1
4
1, which is represented by (0, 0, 0) in Fig. 9a,

can be transformed to the initial maximally entangled Bell state |Φ+〉 by applying the

inverse boost.

Regarding the scope of this work, we used the simple model consisting of discrete

momenta and showed that they provide a good approximation for narrow Gaussian mo-

menta. However, it should be noted that a more general setting of realistic Gaussian

wave packets remains to be addressed in future work. We hope that current work has
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paved some way towards understanding that situation.

Finally, in the context of possible implementations of quantum computation or quan-

tum communication protocols in the relativistic setting, the import of our results is

twofold. On the one hand, relativity may appear as a foe to the quantum information

theorist by, for instance, causing unwanted disturbances in an implementation of quan-

tum communication protocol. Then the results obtained in this paper could be used to

engineer states such that the negative effects are diminished. On the other hand, relativ-

ity can be a friend when, in analogy to entanglement, it is regarded as a resource which

can be used to generate entangled states or realize, or enhance quantum communica-

tion or computation, see e.g. [40, 41]. The results here could be helpful in finding states

and scenarios that help achieve the desired goal. As part of the future work, we envisage

working out the implications of foregoing results to quantum information theory in more

detail.
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Appendix A

In this section, we summarize the background for the relativistic quantum mechanical

constructions used in the paper. We follow the standard treatment found in e.g. [42,

43]. The single particle states are given by a unitary irreducible representation of the

Poincaré group where a representation is labelled by mass m and the intrinsic spin s. In

order to define basis vectors, we start by specifying the rest frame states in terms of four

momentum P µ, square of total angular momentum J2 and the z-component of angular
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momentum Jz,

P µ |0, λ〉 = pµ0 |0, λ〉

J2 |0, λ〉 = s(s+ 1) |0, λ〉 (A1)

Jz |0, λ〉 = λ |0, λ〉,

where 0 denotes p = 0 and pµ0 = (m,0). Because the particle is at rest, s and λ refer to

the spin and the z-component of the particle. We next generate a complete basis, which

consists of the general eigenvectors of P µ, by acting on the rest frame state with a pure,

rotation free Lorentz boost,

|p, λ〉 = U [L(p)] |0, λ〉 (A2)

where U [L(p)] is a unitary representation of boost L(p) that takes the rest momentum

(m,0) = p0 to an arbitrary momentum,

L(p) (m,0) = (E(p),p), (A3)

whereE(p) =
√
p2 +m2. The basis vectors |p, λ〉 ≡ |p〉⊗ |λ〉 span the single particle state

spaceH1 = L2(R3, dµ(p))⊗C2s+1 for spin-s fields. In this paper, we specialize on massive

spin-1/2 fields. Using the basis, one can write a generic state as

|Ψ〉 =
∑
σ

∫
dµ(p)ψσ(p) |p, σ〉, (A4)

where

dµ(p) =
d3p

2E(p)
(A5)

is the Lorentz invariant measure. The basis states are normalized as follows,

〈p′, σ′|p, σ〉 = 2E(p)δ3(p− p′)δσσ′ . (A6)

The action of a generic Lorentz transformation Λ on an element of basis is given by

U(Λ) |p, σ〉 =
∑
λ

|Λp, λ〉Dλσ[W (Λ,p)], (A7)

where W (Λ,p) is the Wigner rotation,

W (Λ,p) ≡ L−1(Λp)ΛL(p) (A8)
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that leaves p0 invariant, p0 = Wp0. For massive particles, W ∈ SO(3) is a rotation and

D[W (Λ,p)] is its representation. For spin-1/2 particles, the latter is an element of SU(2),

which can be written as D(ω) = exp (−iωσn/2), where ω is the rotation angle and n is the

rotation axis of W (Λ,p).

One can now calculate the transformation on the wave function. In the Lorentz

boosted frame, the state is
∣∣ΨΛ

〉
= U(Λ) |Ψ〉, so we have

∣∣ΨΛ
〉

=
∑
σ

∫
dµ(p)ψσ(p)

∑
λ

|Λp, λ〉Dλσ[W (Λ,p)]

=
∑
λ

∫
dµ(p′)

∑
σ

Dλσ[W (Λ,Λ−1p′)]ψσ(Λ−1p′) |p′, λ〉

=
∑
σ

∫
dµ(p)ψΛ

λ (p) |p, λ〉, (A9)

where p′ = Λp and we used the fact that the integration measure is Lorentz covariant,

dµ(p) = dµ(Λp), with a relabelling of dummy variables in the last line, p′ → p. Hence we

have,

ψΛ
λ (p) =

∑
σ

Dλσ[W (Λ,Λ−1p)]ψσ(Λ−1p). (A10)

The state of a two particle system belongs to H2 = H1 ⊗H1 where H1 is the one par-

ticle Hilbert space described above. A Lorentz boost Λ acts on the two particle state by

U(Λ)⊗U(Λ) and in analogy to the single particle case we calculate that the corresponding

transformation of the wave function is given by

ψΛ
λκ(p,q) =

∑
σ,ξ

Dλσ

[
W (Λ,Λ−1p)

]
Dκξ

[
W (Λ,Λ−1q)

]
× ψσξ(Λ−1p,Λ−1q). (A11)
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