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In this paper we describe numerical simulations of the response of atoms confined in an optical lattice in the
region of a quantum phase transition. We use the increase in the number variance of atoms as the diagnostic of
excitations produced by tilting the lattice. We show that this locally determined quantity is a good indicator of
the resulting coherence changes as observed in recent experiments. This is found to hold for commensurate and
noncommensurate filling of the lattice, implying that our results should hold for a wide range of conditions. In
accordance with this view, we find that the qualitative features of our results are in good agreement with recent
experiments. We do, however, find extra features in the excitation spectra that may well be of use in future
experimental studies. We also show that the variation of the spectra with the duration of the perturbation is a
useful diagnostic of the atom dynamics that take place during the tilt.
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I. INTRODUCTION

Interest in the properties of atomic Bose-Einstein conden-
sates(BECs) in optical lattices, both theoretical[1–3] and
experimental[4–7], has been growing rapidly. Part of this
interest comes from the possibility of studying the physics of
a strongly correlated atomic system for a wide range of the
relevant parameters. In particular, the observation of the su-
perfluid (SF) to Mott insulator(MI ) transition has caused a
great deal of excitement. Atomic arrays in optical lattices
also promise a potentially significant route to the physical
implementation of quantum information processing[8].

The experimental feasibility of adding a linearly varying
component to the lattice potential has opened up a new way
to study the SF to MI phase transition. In this paper we
present numerical simulations of this technique that enable
us to compare the effect of such tilting on states with various
degrees of reduced number fluctuations. Our focus is on the
region of the phase transition where the repulsion between
atoms is larger than the hopping amplitude and strong num-
ber squeezing results.

We shall first give a brief description of the Bose-Hubbard
model and the numerical method we use to simulate the be-
havior of the atoms in the presence of a tilt. We then present
the results from the numerical evolution for a range of initial
states. These include simulations for different numbers of
sites as well as numbers of atoms per site. We shall argue
that the change in the number variance for atoms on a typical
site is a robust indicator of the lattice response for a wide
range of systems. This change in number variance is, of
course, closely related to the change in phase coherence be-
tween sites on the lattice observed in recent experiments. We
are thus able to see that the response of our model lattices is
in good agreement with the observations reported in those
experiments.

II. BOSE-HUBBARD MODEL AND THE ENERGY GAP

The system we simulate in this paper consists of a BEC
transferred to a one-dimensional lattice. The behavior of this

system is described by the Bose-Hubbard model[9,10], i.e.,
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Here, âj, âj
† stand for the bosonic annihilation and creation

operators,k j ,kl denotes summation over nearest neighbors,
n̂j = âj

†âj is the bosonic number operator, andEj is the energy
for site j . J is the hopping constant andU is the on-site
repulsive interaction constant. For numerical simplicity, we
consider modestly sized lattices with between four and eight
sites and average occupation numbersnav.occ.of up to three
atoms per site. Experiments that demonstrate the SF to MI
transition typically involve many more lattice sites than
this f4–7g. By considering the evolution of what we expect
to be locally determined quantities such as number vari-
ance, we should, however, be able to minimize the effects
of finite size on our results. This, in turn, should allow us
to gain some insight into the behavior of larger lattices
than we are able to treat numerically. When comparing
results for different numbers of lattice sites, we find that
they show remarkably similar behavior, encouraging us in
our use of the number variance as an indicator of lattice
response. While we focus on a one-dimensional system,
we believe that our results have implications for three
dimensions as the phenomena we see are of a generic
nature.

We study our system by solving the coupled equations of
motion for the components of the wave functions in the num-
ber state basis using an embedded fifth order Runge-Kutta
approximation[11]. The initial states for the simulations are
the eigenstates of the Hamiltonian given in Eq.(1) for dif-
ferent values ofU /J. These number squeezed states are then
probed by tilting the lattice in our simulations. This tilting is
implemented by adding a linearly varying componentEtilt to
the on-site energyEj. Our measure of change is the number
varianceV, defined as

V = ksn̂id2l − kn̂il2, s2d

wheren̂i is the number operator for sitei andk l denotes the
expectation value. We compute this number varianceV after*Electronic address: k.braun-munzinger1@physics.ox.ac.uk
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the potential gradient has been applied for a timetperturb.
Excitations in the MI phase were measured experimen-

tally (e.g., in [4]) via changes in the interference patterns
observed in the distribution of atoms released from the lat-
tice. These excitations, caused by tilting the lattice, show up
in the increased width of the main interference peaks found
when the system is taken back into the SF phase[4]. In other
words, excitations were observed through changes induced
in the phase coherence across the lattice. Deep in the insula-
tor state there is no phase coherence and correspondingly
zero number variance. Excitations give rise to an increase in
number variance and that is what we see in our simulations.
For further discussion of the use of number variance in the
theory of BEC and the relationship between phase coherence
and number variance see[10,12,13]. We should note that the
number variance may also be measured experimentally by
studying the collapse and revival times of the relative quan-
tum phase between sites[14–16].

In our simulations we wished to examine the change in
the response to the tilt in the region of the quantum phase
transition. One of the main indicators of the onset of the MI
state is, of course, the appearance of an energy gap. When
present, it implies that atoms can only move between sites if
they are given sufficient energy. Tilting a lattice changes the
relative potential energy of the sites and hence the energy
available for a hop. Accordingly, if the energy difference
between sites is made comparable to the energy gap, atomic
hopping should occur. When the energy difference between
sites produced by the tilt matches the energy gap, the hop-
ping will be resonant. Such resonant production of a particle-
hole excitation is observed both in experiments[5,7] and in
the simulations we present. In the SF phase, there is no gap
in the excitation spectrum and a flow of atoms will result for
all values of the tilt.

For an infinite one-dimensional lattice, mean field and
quantum Monte Carlo calculations indicate that the phase
transition is located atU /J<5.8 [2,17,18]. In a lattice of
finite size, the phase transition is not sharp, which translates
into a gradual onset of the energy gap. In Fig. 1, we plot
energy eigenvalues for the values ofU /J studied in our
simulations: close to the phase transitionsU /J=6d, we see
indeed that no gap is observable. As expected, states further
into the Mott insulator regime(U /J=20 andU /J=50) show
a definite gap, even though bands are still broadened. Con-
sequently, the simple Mott insulator picture with an energy
gap of approximatelyU cannot explain all excitations pos-
sible for these ranges of eigenstates. In support of this, we
observe a broad smooth curve superimposed on Mott insula-
tor peaks that goes away with increasingU /J (see, for ex-
ample, Fig. 2). Recent experimental results for lattices with
about 100 sites show a similar broad background[7].

In the next section, we will present and discuss the results
of our numerical simulations.

III. RESULTS OF THE NUMERICAL SIMULATIONS

As explained above, we use states with a range of differ-
ent degrees of number squeezing as the initial states in our
simulations and apply a tilt for a timetperturb. We then deter-

mine the number varianceV for the resulting wave function
of atoms in the lattice.

The results of the simulations for various initial states and
durations of tilt are shown in Figs. 2–5. What features do we
expect to observe? For a perfectly squeezed state in an infi-
nite lattice, we would expect to find resonances at integer
multiples of the interaction energyU, i.e., for Un1. We sup-
pose that such resonances correspond ton1 particle-hole
pairs being created in adjacent sites. In addition, we also
expect to see resonances for fractions of the interaction en-
ergy, i.e.,U /n2, wheren2 is an integer. This effect should
correspond to the creation of a particle-hole excitation in two
sitesn2 sites apart(i.e., in sitei and sitei +n2).

We find that even for rather small lattices the location of
peaks is in good agreement with these arguments for an in-

FIG. 1. The first 200 eigenstates forU=6,20,and 50(bottom to
top) andJ=1, six lattice sites, andnav.occ.=1.

FIG. 2. Dependence of the excitations on the degree of number
squeezing of the initial state. With increased squeezing[plots are
for U=6,10,20,and 50(top to bottom), J=1 (constant), four lattice
sites,nav.occ.=1, andtperturb=5/J], resonance effects become notice-
ably narrower and the background decreases. The mean variance(y
axis) is dimensionless.
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finite lattice as can be seen, for example, in Fig. 3, which
shows excitations for filling factors of one, two, and three for
four lattice sites. All these plots show one-particle-hole ex-
citations atEtilt <1 U and Etilt <0.5U. For nav.occ.ù2, two-,
three-, and even four-particle-hole excitations appear.

There is a slight shift of the maximum of the resonance at
Etilt <1 U for excitations near the phase transition(see, for
example, Fig. 2). We found this shift for all numbers of lat-
tice sites we considered. This is most likely due to the com-
bination of a broad continuous spectrum with the discrete
peaks we discussed above. We note that the experimental
spectrum has an appearance consistent with this interpreta-
tion [7].

When studying the time dependence of our simulations
(plotted in Fig. 6), we find that the time taken to establish the

resonance for lower order processes is of the order of 1/J,
i.e., the tunneling time. The response from higher-order pro-
cesses continues to increase in magnitude for longer times:
for the second-order process at 2U, the resonance is estab-
lished from times of the order of 2/J. For higher-order pro-
cesses, the response takes significantly longer to develop
fully.

It is important to note that the qualitative features are still
present for noncommensurate filling. As shown in Fig. 4,
noncommensurate filling results in a more prominent con-
tinuous spectrum, as might be expected in a system with
defects. However, we still see distinct Mott insulator peaks,
albeit with somewhat greater widths.

We now turn to the dependence of excitations on the num-
ber of lattice sites for a range of four to eight lattice sites. For
more than five lattice sites andU /Jù20, the changes in the
results as a function of lattice size become modest(see Fig.

FIG. 3. Excitation pattern fortperturb=2/J, U=20, J=1, four
lattice sites, andnav.occ.=1,2,and 3(bottom to top). The mean vari-
ance(y axis) is dimensionless.

FIG. 4. The thick black lines are for commensurate filling(up-
per nav.occ.=2, lower nav.occ.=1), while the thin broken line shows
results fornav.occ.=1.8. There are five lattice sites,tperturb=5/J and
U=20, J=1. The mean variance(y axis) is dimensionless.

FIG. 5. Results forU=20,J=1 andtperturb=1/J for four to eight
lattice sites andnav.occ.=1. (Dots) four sites; (dashes) five sites;
(solid line) six sites;(dash-dot) seven sites;(stars) eight sites. The
mean variance(y axis) is dimensionless.

FIG. 6. Plot of the number variance as a function of perturbation
time for the five most important peaks(0.5U, 1 U, 2 U, 3 U, and
4 U) for four lattice sites,U=20, J=1, andnav.occ.=3. The left plot
shows the maximum value of the number variance, the right plot
shows the number variance averaged over time. The maximum and
mean variance(y axis) are dimensionless.
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5). Even for the smaller configurations, i.e., four and five
sites, the important features look qualitatively the same. This
leads us to be reasonably confident of the relevance of the
principal features of our calculations for the larger systems
studied in laboratories.

IV. CONCLUSION

We have presented a range of simulations of atoms in an
optical lattice in the region of a quantum phase transition. We
have shown that the change in atom number variance is a
good indicator of excitations produced by tilting the lattice
potential. Moreover, we have seen that the main features of
the excitation spectrum are weakly dependent on the size of
the lattice and confirm the origin of resonances seen in recent
experiments[4,7]. In addition, we observe higher-order ef-
fects in the response that fit very well into the picture of

excitations at multiples of the energy gapU in an infinite
lattice. We find that the time dependence of the response
varies with the complexity of the underlying process: while
the simplest nearest-neighbor hopping sets in at about a tun-
neling time, the higher-order processes take much longer.
Our results also indicate that noncommensurate filling does
not obscure the Mott insulator peaks in the response of the
lattice. This implies that the change in atom number variance
could be a useful probe even in nonideal systems, such as
lattices with defects.
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