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Using quantum theory to improve measurement precision
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Progress in science is inextricably linked with how well we can observe the world
around us. It is by making increasingly better measurements that scientific theories are
tested and refined. In this article we address the question of what the ultimate limit to
measurement precision is and how it could be achieved in the laboratory. We focus on
how, by making use of quantum theory, it is possible to make better measurements
than anything that can be achieved with classical techniques. This opens the door to
an array of new technologies and could help answer some of science’s most engaging
questions.

1. Introduction

Measurements are an inherent part of our everyday lives.
Every sight, smell, or sound we experience is a measure-
ment of our surroundings. We concern ourselves with such
things as how far our commute to work is, how long it will
take to find a parking space, whether it is warm enough to
take a walk after lunch and, if we do not, how much our
waistline is likely to expand.

Measurements have played a key role in the development
of business and commerce. They allow traders in different
cities to communicate effectively and understand exactly
what it is that they have agreed to buy and sell. Reference
standards enable comparisons to be made and a lot of work
has been done to define units that everyone can agree upon
in terms of measurable physical quantities. These new
definitions not only improve precision but also allow
measuring devices to be calibrated by people the world
over and not just by those lucky enough to have a key to
the ‘world reference vault’.

Measurements are also crucial to science, not just for the
important role science plays in defining standards, but in a
much more fundamental sense. Indeed it could be said that
all of science is just the business of predicting the out-
comes of measurements. Or, to take Karl Popper’s view,
measurements allow us to prove scientific theories wrong

and so tighten the net around viable correct theories.
Science should not be concerned with what cannot be
expressed as a click in a photodetector, the position
of a needle in a voltmeter, or the outcome of any other
measurement.

In the late nineteenth century, confidence in the success
of physics was sky-high and there was a widespread feeling
that there was nothing new to be discovered—all that
remained was more and more precise measurement.
With hindsight it is easy to see that this confidence was
misplaced. In fact, it was to be these very measurements
that were to reveal new and more fundamental theories of
physics. The course of physics is littered with theories
that have failed to stand up to the rigours of precise
measurements: Ptolemy’s geocentric model of the
Universe was challenged by Copernicus’ model which put
the sun at the centre; measurements by Tycho Brahe
confirmed the heliocentric model but highlighted
further anomalies that set the foundations for Kepler’s
improved theories of planetary motion; and the long-
debated concept of an ‘ether’ that supported the pro-
pagation of light was roundly defeated when Michelson
and Morley made precise interferometric measure-
ments. The key to overturning these, and many other,
theories has been the careful gathering of precise measure-
ment data.
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In April 1900, Lord Kelvin gave a lecture to the Royal
Institution of Great Britain in which he said that the ‘beauty
and clearness’ of physical theories were overshadowed by
‘two clouds’. He was talking about the null result of the
Michelson –Morley experiment and the problems of black-
body radiation. In fact, these ‘two clouds’ were to herald the
early twentieth century revolution in theoretical physics
with the emergence of relativity and quantum theory.
Today many open questions remain in physics. The public
imagination has been captivated by fundamental physical
questions such as whether the Higgs Boson exists, how
much dark matter there is in the Universe, and whether
there are gravitational waves. As has happened time and
again through history, there is every reason to believe that
these issues will be resolved just as soon as measurement
technologies catch up.

A large part of physics, therefore, boils down to finding
ways to improve measurements. These allow us to make
theories jump through increasingly smaller hoops until
eventually cracks are revealed that need to be patched up
with new theories. In this paper, I want to turn this tradi-
tional route on its head: instead of using measurements to
find theories, I want to investigate how new theories can be
exploited to improve measurements. Of course, the hope is
that this may, in turn, lead to even newer theories and hence
even newer measurement techniques. In particular, I want
to concentrate on how the advent of quantum theory
has opened the door to a whole new raft of precision
measurements.

2. Limits to measurements

Galileo expressed the aim of experimental science as being
to, ‘Measure what is measurable, and make measurable
what is not so’. While certainly admirable, this sentiment
raises the intriguing question of what would happen if there
existed some fundamental limit to what we could measure.
Such an impasse would threaten to halt the scientific
process since it would limit how deeply we could distinguish
competing theories.

As a simple example, we can imagine looking at a
patterned card through a filter that admits only red light.
Suppose that the pattern we see is a ‘chequer board’ of
alternating red and black squares as shown in figure 1. Now
suppose that we would like to know the ‘true’ underlying
pattern. One possibility is that it is exactly as observed, i.e.
red and black squares. However, there are also other
possibilities that give the same observed pattern—two of
which are shown in figure 1. If we were not able to remove
the filter, these different possibilities would be indistin-
guishable and a level of structure in the pattern would
remain hidden from our view.

Of course, in this example, we can find ways to remove
the filter and ‘make measurable what is not so’. We might

be tempted to say that this is always true: if we are clever
enough, dedicated enough, and spend enough money we
should be able to make measurements to whatever level of
accuracy we want. This certainly was the view at the end of
the nineteenth century when Michelson famously remarked
that the future of physics lay in looking in ‘the sixth place
of decimals’. The quantum revolution, however, sharply
changed all that.

In quantum physics the act of observation changes the
system being studied—a feature well understood by the
social science community. A classic catch-22 prevents us
from knowing what happens in quantum systems when we
are not observing them since the only way to find out would
be to make a measurement, but the measurement inevitably
changes the system. What happens to a photon before it is
measured in Young’s double slit experiment, for example,
is a mystery that remains tantalizingly beyond our grasp.
It is part of the unspeakable in quantum physics.

We also know that in quantum physics it is not possible
to simultaneously measure two conjugate variables (e.g.
position and momentum) with arbitrary accuracy. If we
know the position of a particle precisely, then its momen-
tum will be completely unknown and vice versa. This
concept is expressed in Heisenberg’s famous uncertainty
relationship. But what if we are happy to measure just one
conjugate variable and do not care about the other one?
Surely, then, we can measure this quantity arbitrarily
accurately. Unfortunately, even this is not true. We need to
think about how the measurement is made. One approach
to measuring the position of a particle is to scatter light
from it. This means that the position measurement will be
limited by such things as diffractive optics that depend on

Figure 1. The observed pattern of a card viewed through a
red filter is a ‘chequer board’ of red and black squares. If
the filter is removed, the pattern on the card could be one of
a number of possibilities, three of which are shown here.
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the wavelength of the light used{. Of course we could
improve things by using light of progressively shorter
wavelengths—going from visible light, to ultraviolet, to
X-rays, and beyond. However, to achieve infinite precision,
we would need photons with infinite energy. The progres-
sion in measurement precision would come to a grinding
halt as soon as the photon needed to have more than all the
energy in the Universe.

It turns out that a fundamental limit is reached before
then. At some point, the level of precision will demand
scattered light that is so energetic that it can spontaneously
create a new particle out of the vacuum of the type being
measured. In such a case, the position of the original
particle is ambiguous because now we have two of them.
This problem arises when we try to measure the position of
a particle to within its Compton wavelength. Equating the
Compton wavelength with the Schwarzchild radius of the
created particle gives the so-called Planck length (approxi-
mately 1.66 10735 m). If we try to measure to within a
Planck length, the scattered photon creates a black hole
and is ‘swallowed up’ and we are not able to make any
measurement. Not surprisingly, the Planck length is a scale
beyond which it is widely regarded that traditional notions
of space and time break down and it is not meaningful to
ask physical questions.

This discussion highlights the fact that measurements are
linked with physical theories in an intrinsic way and are not
just bolted-on embellishments that allow us to describe
experiments. Questions regarding what can and cannot be
measured in science have profound significance: they define
what lies inside or outside the realm of scientific enquiry.
Measurement is a physical process and the need for a self-
consistent theory of physics that includes measurement is a
fact well known by quantum theorists.

Putting aside for now the question of the fundamental
limit to measurement, a more practical (and no less
intriguing) question is, ‘How does the precision that can
be achieved scale with the resources used?’. Or, to put it
another way, ‘Given fixed resources (e.g. energy), what is
the best possible measurement that can be made?’. It is this
question that we will turn to now. In particular, we will
consider how quantum theory allows us to do better than
anything that can be achieved by classical physics. A good
place to start this discussion is with atomic fountain
clocks—the basis of present primary time standards.

3. Fountain clocks

The best clocks that are currently available are atomic
fountains [3 – 5] based on Ramsey interferometry with
separated oscillating fields [6]. These enable the second to
be measured with an accuracy better than 1 part in 1015.
They work by comparing the frequency of an oscillator to
the transition frequency between the two hyperfine levels of
the ground state of 133Cs. In 1967, the second was defined
to be the duration of 9192 631 770 such oscillations. The
definition of the second has changed a number of times
through history and it is likely that it will be redefined in the
future as improved techniques are developed. Recent
experiments [7] with single mercury ions, for example, have
achieved an order of magnitude improvement over
atomic fountains and hold great promise for future time
standards.

A fountain clock works by first trapping and cooling a
cloud of caesium atoms to micro Kelvin temperatures by an
arrangement of three pairs of counterpropagating laser
beams in orthogonal directions. By cleverly detuning the
laser beams below an atomic transition frequency, the
atoms are more likely to absorb photons from beams that
oppose their motion since the frequency of these beams are
Doppler shifted into resonance. This means that the atoms
always feel a drag force that opposes their motion—an
effect evocatively termed ‘optical molasses’. The cooled
atoms are then launched upwards and prepared in one of
the hyperfine levels of their electronic ground state. The
atoms pass through a microwave cavity (see figure 2) con-
taining a field tuned near to the transition frequency
between the ground state hyperfine levels for caesium. They
continue moving upwards until the Earth’s gravity causes
them to fall back through the same microwave cavity.
The two exposures to the microwave field cause some
atoms to make the transition between the hyperfine states.
The frequency of the microwave field relative to the
hyperfine frequency can then be inferred by measuring
the fraction of atoms in each state after this second transit
of the cavity. This allows us to compare the microwave
oscillator with the ‘universal time standard’.

A beautiful feature of Ramsey’s work was that he showed
that the uncertainty in the measured frequency scales
inversely with the time of flight of the atoms [6]. This means
that to increase the measurement precision we need only
increase the time of flight by launching the atoms up
through the cavity a little faster. Of course, eventually we
come up against fundamental, not to mention practical,
reasons why this process cannot continue indefinitely.

Two factors which limit the time of flight are the tempera-
ture of the atoms and the effects of gravity. The microwave
cavity typically has a hole no larger than about 1 cm to
ensure it is of high enough quality. The atoms must pass
back through it on their return trip, which means they

{Interestingly, it has been shown that it may be possible (at least in

principle) to perfectly resolve images with light of a given wavelength by

making use of lenses constructed from materials with negative refractive

indices [1,2]. There will, however, still be limits to how accurately the

position of an object can be measured. For example, this approach relies on

having lenses with perfect surfaces, but we know that there will be some

unavoidable ‘jiggle’ of the atoms in the lens due to the uncertainty

principle.

Precision measurements with quantum theory 259
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should not spread more than 1 cm. This restricts the time of
flight for a given temperature. For colder temperatures the
atoms are more sluggish and spread out more slowly. This
allows longer times of flight and therefore better measure-
ment precision (see figure 2). The other limitation is the
effect of gravity and the size that atomic fountains can be
built in the laboratory. For current fountains, which are
about one metre high, the return time is about one second;
for significantly longer times, much taller towers would be
needed, leading to severe problems with, among other
things, magnetic field control and temperature homo-
geneity [8].

It turns out that on Earth, the effect of gravity is the
limiting factor and cooling the atoms using optical molasses
is sufficient. We can see this as follows. For a one second
return time, we require atoms with a spread of speeds less
than 1 cm s71 so that a substantial fraction pass back
through the cavity. The mean speed of atoms at a
temperature, T, is given by !v ¼ ð3kBT=mÞ1=2, where m is
the mass of the atom and kB is Boltzmann’s constant.
Putting in numbers for laser-cooled caesium atoms at a
temperature of 1 mK, gives a mean speed of about 1 cm s71

and so we see there is little advantage to cooling them
further. A clock in space, by contrast, is not constrained by
the effect of gravity and can have a much longer interaction
time than is possible on Earth [9,10]. In this case, the colder
the atoms the better. This is where Bose –Einstein conden-
sates (BECs) might be useful.

A BEC [11] is a new state of matter that was predicted by
Einstein in 1925 [12] and first observed in dilute gases in
1995 [13]. It consists of a large collection of bosons that, if
they are cold enough and dense enough, undergo a phase
transition to all occupy the ground state of the system.
BECs are fascinating because they are an example of a large
scale quantum object. We normally associate quantum
effects only with microscopic objects. However, BECs
exhibit quantum behaviour and yet consist of a large
number of particles (up to billions) and have a large spatial
extent of typically 100 mm. That’s about the thickness of a
human hair and certainly of a size that could be seen with
the naked eye. Perhaps the most interesting property
of BECs for use in clocks is the fact that they are
extraordinarily cold—typically a few billionths of a degree
above absolute zero—and so expand very slowly. In
principle, this should allow observation times longer than
1000 s and a significant improvement in the accuracy of
clocks. The rate at which a BEC expands is given by
Heisenberg’s uncertainty principle. The more tightly that a
BEC is initially confined in a particular direction, the larger
the spread of momenta in that direction. This means that a
BEC spreads more rapidly in directions that were initially
tightly confined than in those that were not. This is
in contrast to a thermal cloud of atoms which expands
isotropically regardless of the shape of the initial trapping
potential and is a beautiful demonstration of the uncertainty
principle in action. Conveniently, BECs have already been
created with 133Cs atoms [14], the very element that defines
the SI second, and so they hold great promise for further
improving time standards. BECs are truly quantum objects
and provide just one example of how quantum physics may
be used to improve measurement precision.

So far, our discussion of atomic clocks has focused
largely on making the time of flight as long as possible
while ensuring that as many atoms as possible pass back
through the hole in the cavity. But why should it matter if
we miss some? Obviously, we do not want to lose all the
atoms or we could not make any measurement, but we
might expect that so long as a few make it we are still in
business. After all, the atoms are independent of one
another and so each must contain all the information we
want. In principle this argument is correct but a problem
arises when we go to measure the atoms. Whenever we
detect the state of a caesium atom, we find it in either of the
two relevant hyperfine levels. The fact that we never find
atoms in states between these two extremes introduces some
additional noise into the measurement. We can understand
this with a simple analogy.

Suppose we are given a coin and want to find out
whether or not it is ‘fair’, i.e. it has a 50:50 chance of
coming up heads or tails. One way is to try tossing it. If on
the first toss it comes up (say) heads, we are no nearer to a
conclusion. We already knew it had to be one or the other

Figure 2. Schematic of an atomic fountain. Laser-cooled
133Cs atoms are launched upwards through a cavity
containing a microwave field. After some time, gravity
reverses their direction and they fall back towards the
cavity. If the atoms are not cold enough a significant
fraction will miss the hole in the cavity on the return trip.
Colder atoms allow a longer time of flight and therefore
better measurement resolution.
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and we have no idea whether each of the next hundred
tosses will also be heads or whether there will be an even
distribution of heads and tails. As more tosses are made, we
get a better idea of the probability of each outcome since
the fractional width of the distribution decreases. The more
tosses that are made (or caesium atoms that are detected)
the better the precision of the measurement. This effect is
an artifact of the two outcomes being quantized. If on a
single toss of the coin we could measure it as (say) 83%
heads and 17% tails then we would immediately know the
two probabilities. Of course, in reality, we know that a
single toss always comes up completely heads or completely
tails. This partitioning of the outcomes is the source of the
additional noise. This so-called ‘shot noise’ also occurs in
quantum systems and a good way to understand it is to
consider a Mach –Zehnder interferometer.

4. Interferometers and shot noise

The interferometer has been one of the most significant
developments in metrology. It has enabled path length
differences to be detected with unprecedented accuracy and
has played a key role in a number of exciting experiments.
Interferometers enabled Michelson and Morley to disprove
the existence of the ether and giant versions of the same set-
up, with four kilometre long arms, are now being used to
look for evidence of gravitational waves at LIGO in
Washington and Louisiana [15]. If successful, these experi-
ments would confirm predictions made by Einstein’s
general theory of relativity and be another in a long list
of triumphs for interferometry. Despite their great suc-
cesses, however, interferometers are limited by the same
source of noise that affects coin-tossing measurements
and time-keeping with atomic clocks and it is worthwhile
studying how this noise comes about.

A Mach –Zehnder interferometer consists of two 50:50
beam splitters and a phase shift, f, on one of the paths (see
figure 3). This phase shift is equivalent to a path length

difference between the arms. To make things simple, we will
consider mirrors that are sufficiently massive that we can
neglect the effects of fluctuations in radiation pressure of
the light passing through. In some schemes these effects
can be important and need to be taken into account
[16 – 18].

The overall effect of the interferometer is to transform
the annihilation operators at the input ports, a1 and a2, into
annihilation operators at the output ports, b1 and b2, by the
following transformation,

b1
b2

! "
¼ sin ðf=2Þ cos ðf=2Þ

cos ðf=2Þ $sin ðf=2Þ

! "
a1
a2

! "
: ð1Þ

If a particle enters the interferometer at port a1, i.e. the input
state is j1; 0i ¼ ay1j0; 0i, the output state is found by trans-
forming the operator a1 using (1) to give jci¼ sin (f/2)
j1, 0iþ cos (f/2)j0, 1i. The probabilities that the particle

emerges in ports b1 and b2 are then, Pb1 ¼ sin 2ðf=2Þ and

Pb2 ¼ cos 2ðf=2Þ.
The phase shift can be found by measuring the difference,

n, in the number of particles detected in the two output
ports,

hni ¼ hby1b1i$ hby2b2i

¼ hay1a1i$ hay2a2i
# $

cosfþ hay1a2iþ hay2a1i
# $

sinf: ð2Þ

Throughout this discussion, I will consider only input
states for which hay1a2i ¼ hay2a1i ¼ 0, which means we can
write

hni ¼ hay1a1i$ hay2a2i
# $

cosf: ð3Þ

Normally in interferometry, a coherent state [19], jai, is fed
into one port, say a1, and a vacuum state, j0i, is fed into
the other. A measurement at the output ports then gives
hni¼N cos f, where N¼ jaj2 is the mean number of par-
ticles in the coherent state. This illustrates the principle
behind an interferometer: by measuring the difference in
the number of particles at each output port we can
infer the phase shift to within 2p, i.e. the path length
difference can be measured to within one wavelength of
the light used. As discussed above, one possible way of
improving the measurement precision is to use light with
a shorter wavelength. Here we would like to consider
how accurately we can measure a phase for a given
wavelength.

The variance of n is given by

ðDnÞ2 ¼ hðay1a2 þ ay2a1Þ
2isin 2f; ð4Þ

Figure 3. A Mach-Zehnder interferometer consisting of two
mirrors, two 50:50 beam splitters, and a phase shift, f on
one arm. If a photon enters at port a1, it will be detected in
ports b1 and b2 with probabilities sin2 (f/2) and cos2 (f/2)
respectively.

Precision measurements with quantum theory 261
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and is related to the uncertainty in our measurement of f
by a simple manipulation of the errors,

ðDnÞ2 ¼ @hni
@f

! "2

ðDfÞ2: ð5Þ

Rearranging and substituting for hni and (Dn)2, from
equations (3) and (4), we obtain an expression for the
uncertainty in f,

ðDfÞ2 ¼
hðay1a2 þ ay2a1Þ

2i
ðhay1a1i$ hay2a2iÞ

2
: ð6Þ

It is notable that the measurement precision Df is indepen-
dent of the value of f. If we now consider the case of
standard interferometry where a coherent state, jai, is fed
into one input port and a vacuum state, j0i, into the other,
we get (Df)2¼ 1/jaj2¼ 1/N.
This means that an interferometer can measure a

phase shift with a precision that scales as 1/N1/2. This
is the well-known scaling of shot noise with particle
number. The measurement precision improves as more
particles are detected and so it is possible to improve
our measurement of f simply by using more particles.
This explains why we want as many atoms as possible to
return through the microwave cavity in a fountain clock
set-up and why we want as many tosses of a coin as is
practical to determine its fairness. Shot noise can be a
major limitation to precision measurement schemes and
we would now like to consider ways this problem can be
overcome.

5. Squeezed states

Up until now we have considered only coherent states
as the input to the interferometer. At one port we had a
coherent state with amplitude a and at the other we had a
vacuum state, which is just a coherent state with zero
amplitude. In a sense, these can be thought of as the ‘most
classical’ states of light. It is therefore of interest to ask
whether using non-classical states of light can improve the
sensitivity of interferometers.

A convenient way to describe states of light is to
use the quadrature operators defined by X1¼ (aþ a{) and
X2¼7i(a – a{) [20]. These satisfy the commutation relation
[X1,X2]¼ 2i and their variances satisfy the uncertainty
relation DX1DX2& 1. Coherent states are minimum uncer-
tainty states, i.e. DX1DX2¼ 1, and have the additional
feature that the uncertainties of the quadrature operators
are equal,

DX1 ¼ DX2 ¼ 1: ð7Þ

In figure 4(a) the mean amplitudes and associated uncer-
tainties for a coherent state and a vacuum state are
represented as error circles. The centre of each circle is the
amplitude of the corresponding state and the diameter of
the circle represents the quadrature-operator uncertainties.
To simplify things, the phase of the coherent state is taken to
be zero.

Of course, the uncertainties in each quadrature do not
have to be equal. It is possible to have a minimum uncer-
tainty state with smaller fluctuations in one quadrature
than a coherent state. This reduction in one quadrature

Figure 4. Phase space representation of the mean values and uncertainties of X1 and X2 for (a) a vacuum state, j0i, and
a coherent state, jai, and (b) a squeezed vacuum, j 0, ri and a squeezed coherent state, ja, ri, where r4 0 is the squeeze
parameter.

262 J. A. Dunningham
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must be accompanied by an equivalent increase in the
fluctuations in the other quadrature to ensure that the
uncertainty relation is not violated. Such a state is known
as a squeezed state [21,22]. Squeezed states may be defined
by two quantities: their amplitude, a, and their squeeze
parameter, z¼ r exp(iy), where r is the strength of the
squeezing and y gives the direction of the squeezing. For
simplicity, throughout this discussion we will take y¼ 0, i.e.
the state is squeezed in the X1 quadrature and we can take
z¼ r. Phase space representations of a squeezed vacuum,
j0, ri, and a squeezed state with amplitude a, ja, ri are
depicted in figure 4(b). The uncertainties in the two quad-
ratures for states with a squeeze parameter r are DX1¼ exp
(7r) and DX2¼ exp(r). It is clear that these are minimum
uncertainty states since DX1DX2¼ 1.

The first experimental realization of squeezed light was
reported by Slusher and co-workers in 1985 [23]. They were
able to demonstrate a 7% to 10% reduction in the noise of
one quadrature below the level of a coherent state. Since
then, squeezing has developed into a mature field and has
been proposed and experimentally demonstrated in many
different optical and atomic schemes. The degree that states
can be squeezed has also progressed in leaps and bounds
and it is now even possible to create ‘perfectly squeezed’
number states that have essentially no uncertainty in the
number quadrature [24].

One of the most exciting possibilities for squeezed states
is to use them for precision measurements. The fact that the
noise in one quadrature can be much less than a coherent
state suggests that they might allow us to beat the shot-
noise limit. One ‘obvious’ thing to try is to use a squeezed
state ja, ri instead of a coherent state, jai, as the input to a
Mach –Zehnder interferometer. Let us now consider how
this works.

Suppose we feed the state ja, ri into port a1 and the
vacuum j0i into port a2. The precision with which f can be
measured is given by equation (6). Rearranging the order of
the operators a little, we get

ðDfÞ2 ¼
hay1a1iþ hay2a2i 2hay1a1iþ 1

# $

ðhay1a1i$ hay2a2iÞ
2

¼ 1

hay1a1i
; ð8Þ

where the last equality follows since hay2a2i ¼ 0, i.e. there
are no particles in the vacuum. This means that the phase
resolution is given by Df¼ 1/N1/2 and, despite all our
efforts, we are back to the shot-noise limit and no better
off than if we had used an unsqueezed coherent state all
along.

All is not lost however. A key breakthrough was made
when Caves realized that, somewhat counterintuitively, we
should squeeze the unused (vacuum) port rather than the
coherent state input [16,18]. Suppose we feed the coherent
state jai into port a1 and the squeezed vacuum j0, ri into

port a2. Rearranging (6), the measurement resolution is
given by

ðDfÞ2 ¼ NðDX1Þ2 þ hay2a2i
ðN$ hay2a2iÞ

2
; ð9Þ

where N¼ jaj2. We can substitute (DX1)
2¼ exp(72r) and

replace hay2a2i with the mean number of photons in a
squeezed vacuum. It turns out that this is no longer zero, as

it is for an unsqueezed vacuum, but rather hay2a2i ¼ sinh2 r.

This gives

ðDfÞ2 ¼ N exp ð$2rÞ þ sinh2 r

ðN$ sinh2 rÞ2
: ð10Þ

For modest levels of squeezing, N' sinh2 r, we get Df (
exp(7r)/N1/2. This is smaller than the shot-noise limit just
as we want and this improved resolution has been observed
in experiments [25,26].

The resolution cannot be improved indefinitely by
squeezing the vacuum harder and harder. At some point a
balance will be reached between reducing the vacuum
fluctuations, which tends to improve the resolution, and
increasing the mean number of photons in the vacuum port,
which tends to degrade the resolution. Minimizing Df as a
function of r gives the limit to the phase resolution that can
be attained by this method. For large numbers of particles,
N' 1, this is

Df ( N$3=4; ð11Þ

which is clearly an improvement on the shot-noise limit
and demonstrates that quantum theory can be used to
improve measurement precision. This, however, is not
the ultimate limit and it should be possible to do even better.

6. The cat gets the cream

Particle number and phase obey a kind of uncertainty
relation, DNDf>) 1, in the sense that as the number uncer-
tainty is increased, the phase uncertainty goes down and
vice versa. This apparent relationship was given a firm
footing by Summy and Pegg [27] and is interesting from the
viewpoint of precision measurements since it tells us how
accurately a phase can be measured with a given resource of
particles. Suppose we had a total of N particles available.
The maximum number uncertainty that any state in this
system can have is DN¼N, since it can have anything from
zero up toN particles. The uncertainty relation suggests that
the minimum resolvable phase is then Df* 1/N, which is
better than both the shot-noise and the squeezed light limits
discussed above. This is commonly referred to as the
‘Heisenberg limit’ due to the Heisenberg-like uncertainty
relation on which it is based.

Precision measurements with quantum theory 263



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f L
ee

ds
] A

t: 
11

:0
6 

2 
M

ay
 2

00
7 

So how do we create a state with the maximum pos-
sible number uncertainty? One possibility is to create a
‘macroscopic superposition’. These states are also called
Schrödinger cat states in analogy with Schrödinger’s
famous thought experiment in which he showed that a
bizarre consequence of quantum theory was that it should
be possible to put a cat into a macroscopic superposition of
being alive and dead [28]. We can see how such macro-
scopic superpositions allow us to maximize the number
uncertainty as follows. Suppose, for argument’s sake, we
wanted to measure a phase and had at our disposal 60
carbon atoms. One strategy would be to send the atoms
through an interferometer one by one and measure the
number that emerges from each output port. This would
allow us to make a shot-noise limited measurement as
discussed above. Another possibility would be to ‘stick’ all
the atoms together to make a C60 buckyball molecule and
then to send this molecule through the interferometer.
Inside the interferometer there would be a Schrödinger cat-
like superposition of all the atoms on one path and all on
the other. The uncertainty in the number of particles on
each path is now N¼ 60 (since we cannot know in advance
whether the outcome of a measurement on either path will
be zero or 60) and the phase uncertainty is Df* 1/N just as
we want. The difference in the mean number of molecules
detected at each output port, in this case, can be shown
to be

hni ¼ cos ðNfÞ: ð12Þ

Comparing this with the result for individual particles (3),
we see that the phase is amplified by a factor of N, which
means that we should be able to measure phase shifts that
are N times smaller. One way to understand this enhance-
ment is that, if the molecule travels along one path, every
one of the constituent atoms will get a phase shift, whereas
if it travels along the other path, none of them do. This is
why the phase shift for a molecule is N times bigger than
for an individual particle. An alternative explanation is
in terms of the de Broglie wavelength. We know that an
interferometer measures a phase shift to within a wave-
length of the particles used. Since the de Broglie wavelength
scales inversely with mass, the wavelength for a molecule
will be N times smaller than for any one of the constituent
particles and the measurement precision will be improved
by the same factor.

It is tempting to think that thismeans amolecule will allow
us to doN times better than a collection of individual atoms.
However, this argument does not account for shot noise.
It is true that, on a single measurement, a molecule allows a
measurement precision N times better than an atom.
However, with atoms, we can make N measurements with
the same resources as a single molecule, which gives a shot
noise improvement by a factor of N1/2. So, overall the

molecule wins by a factor of N1/2 and gives a resolution that
scales as 1/N, which is the Heisenberg limit.

Superpositions of C60 molecules have already been
observed in the laboratory [29] and it is also possible to
achieve cat-like superposition states without having to
bind the particles together [30 – 33]. Interferometry with cat-
like states has been observed in the laboratory for three [34]
and six [35] beryllium ions and the phase enhancement of
equation (12) has been confirmed. This suggests that the
use of cat states may be a viable route to achieving the
Heisenberg limit. So it would seem that we are done in our
quest to achieve the ultimate precision limit.

Things, however, are not quite that simple. The problem
with cat states is that they are incredibly fragile. This is one
reason why we do not see superpositions of macroscopic
objects in our everyday world. The basic idea is that, if a
superposition state interacts with its environment, it can
leave information in the environment about what state
it was in. For example, the buckyball molecule passing
through the interferometer could leave information in the
environment that betrays which path it took. It is well
known from Young’s two-slit experiment that as soon as
there is information about which path the particle took, the
superposition is destroyed and no interference fringes are
observed. This applies whether or not the path taken is
actually measured, but only on whether it could be known
in principle [36]. Macroscopic superpositions are particu-
larly fragile since as soon as there is information about the
path that any one particle took, the cover is immediately
blown for all the rest of them too.

This does not mean that cat states cannot exist. If we are
careful enough and clever enough we can mimimize the
effects of the environment and so create cat states in the
laboratory. Experiments have tackled this major challenge
with remarkable success, creating ever-larger cats. However,
when it comes to using these states for making precision
measurements, Huelga et al. identified a major problem [37].
If we think about what we want for a good clock (or
frequency standard) we want a system that can accurately
distinguish small divisions of time (e.g. we want our clock to
have a second hand) and we also want our clock to be stable
over long periods of time. When we check whether our
wristwatch is running fast or slow, for example, we compare
it with a reference clock, wait some time, and then compare
it again. The longer we wait between comparisons, the more
accurate our measurement is. The same idea applies to
fountain clocks, where we want the time of flight of the
atoms to be as long as possible. Cat states are good for
accurately distinguishing small time intervals, however,
their fragility means that they fail miserably when it comes
to making comparisons over long time intervals. It turns out
that these two effects exactly cancel each other out. So our
efforts to use cat states in precision measurements may well
have met a brick wall.
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7. Another way forward: number-correlated states

In order to overcome this problem, it is helpful to back-
track a little. A cat state was just our first attempt at finding
a state with the maximum possible number uncertainty.
It now seems that we have a stricter requirement: what
we really want is a state that has the largest possible
number uncertainty, and is also relatively robust to
interactions with the environment. It turns out that just
such a state is obtained if we send precisely the same
number of particles into each input port of the inter-
ferometer [38 – 40].

Suppose we send exactly one particle into each input
port. The initial state is jci¼ j1ij1i, and the state after the
first beam splitter can be shown to be jci¼ (j2ij0iþ j0ij2i)/
21/2. This has a cat-like structure in that both particles
emerge from one output or the other—there is no pos-
sibility of one particle emerging from each. This is known
as the Hong –Ou –Mandel effect [41]. This result can
readily be generalized to larger numbers of particles [39].
For N/2 particles at each input port, where N is even, the
state after the first beam splitter is

jN=2ijN=2i! 1

ð2NÞ1=2
XN=2

m¼0

½ð2mÞ!ðN$ 2mÞ!+1=2

m!ðN=2$mÞ!
j2mijN$ 2mi:

ð13Þ

This has a slightly unwieldy form and we do not need to
worry about it too much. However, the probability distri-
bution of the number of particles in either of the paths is
plotted in figure 5 for this state with N¼ 40. The most
notable feature of this distribution is that the number
fluctuations are large. In fact the fluctuations are of the
same size as the total number of particles in the system,
DN*N, which is just what we want. We now need to
consider how well this state stands up in the presence of
loss. It turns out that it does rather well.

Unlike a cat state, the distribution in figure 5 has a broad
‘plateau’ of values between m¼ 0 and m¼N. This means
that if we detect one particle on a particular path, this will
not unambiguously tell us where all the other particles are.
In other words, unlike a cat state, if information is left in the
environment about which way a particle went, the cover is
not blown for all the other particles. We would therefore
expect this state to be more robust to the effects of inter-
actions with the environment. Again this is just what we
want. A more detailed analysis of the effects of loss has
been carried out [42] and shows that this is indeed true. By
using equal number states at the input ports we get a state
that combines sharp phase resolution with long term sta-
bility. It seems that we really can have our cake and eat it.

However, we should not celebrate just yet. First we need
to consider how the signal of the phase shift is read-out. If
we use equation (3), the output signal for an equal-intensity

Figure 5. Probability distribution for the number of atoms at either output of a 50:50 beamsplitter if the input state was
precisely 20 particles at each port.
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input is hni¼ 0 independent of the phase f. This means that
no signal of the phase is encoded on the mean population
difference at the output ports. It turns out, instead, that the
variance of the particles emerging from the outputs is
related to f. This, in itself, should pose no major problem.
It is certainly possible to determine the variance of the
output distribution by repeating the experiment many times
to build up the number distribution. From this, the phase
shift should be able to be determined.

One problem that this technique throws up relates to the
efficiency of the detectors. It has been shown that, to beat
the shot-noise limit using this scheme, we would need
detectors with efficiencies better than 1 – 1/N1/2 and, to
reach the Heisenberg limit, we would need efficiencies better
than 1 – 1/N [43]. This is a problem since, to take full
advantage of the favourable number scaling, we would like
the number to be as large as possible. For example, if we
had four particles, this scheme could measure a phase with
twice the precision of standard (shot-noise limited) inter-
ferometry, but if we had a million particles, it could do one
thousand times better. However, as the particle number is
increased, the required detector efficiency increases and, for
any more than a handful of particles, this scheme is likely to
be impractical [44]. This threatens to consign it to being
little more than a theoretical curiosity.

However, one way we can overcome the problem of
detector efficiencies is by making use of collapses and
revivals of the relative phase of the output state [45]. We
can understand this effect as follows. Suppose that the
energy of a system depends nonlinearly on the particle
number. One example of this would be if we had atoms that
interact with one another. In this case, there will be some
energy U associated with the interaction between a pair of
particles, and since every particle interacts with every other
one, the total interaction energy for a collection of N
particles will be UN(N7 1), which is nonlinear. Now, each
number eigenstate, jmi, will evolve with time as exp(7iEmt/
!)jmi, where Em is the total energy of m particles. This
means that the phase depends nonlinearly on the number of
particles. Suppose now that we had a superposition of
different numbers (such as in a coherent state). Every term
in the superposition will evolve at a different rate and so the
phase of the state will ‘diffuse’. The broader the range of
numbers in the superposition, the more rapidly this
diffusion will take place. After some time, the phase will
have completely smeared-out—this is known as a phase
collapse. However, since particle number is discrete, if we
wait a longer time, eventually all the phases will get back
into step and we get a phase revival [46,47].

So how does all this help us with overcoming the problem
of detector inefficiencies? Well, we saw earlier that, in this
system, the phase shift is encoded on the number variance
of the state at the output of the interferometer. Since the
larger the variance is, the more rapidly the phase collapses,

if we could measure this rate of collapse, we should be able
recover information about the phase shift. In practice, this
could be achieved as follows. The input state jci¼ jN/2i
jN/2i is first passed through an interferometer and the
output is then allowed to undergo phase diffusion for some
fixed time, t. Finally the particles are allowed to overlap
and an interference pattern is detected between them. If
there is a well-defined phase between the outputs (i.e. it has
not diffused much) then a clear interference pattern would
be observed. If in time, t, the phase completely collapses
then no interference fringes would be observed on an
ensemble of measurements. This means that the rate of
collapse and hence the variance of the output (and value of
f that we want to measure) can be determined by how clear
the fringes are—this is called the fringe visibility.

In figure 6 we have plotted an example of how the
visibility of the interference fringes varies with Nf for a
particular hold time, t. This hold time has been chosen to
optimize the dependence of the contrast with the phase
shift, f [45]. We see that there is a clear series of ‘lobes’
that correspond to the collapses and revivals of the
phase. The key feature is that these lobes have a width of
approximately NDf* 1. This means that by changing the
phase by an amount of order 1/N, the visibility changes
from a local maximum (clear fringes) to zero (no fringes).
This sensitivity should allow us to resolve phase shifts to
within 1/N, i.e. the Heisenberg limit. The appearance and
disappearance of fringes is a dramatic observable that
should be able to be seen in the laboratory. Furthermore,
the beauty of this scheme is that it does not matter if we do
not detect all the particles. We could even miss the majority
of them and it would not matter—the fringes would still

Figure 6. Plot of the visibility as a function of Nf of the
interference fringes seen when particles are imaged after
undergoing relative phase diffusion for the optimum hold
time, t.
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either be visible or not and that is all that concerns us.
This is great news. It seems that now we really are
done and have found a practical candidate for making
measurements at the best possible precision allowed by
quantum mechanics.

8. Conclusion

In this article, I hope to have conveyed some of the
profound importance that measurements have in science.
Measurements allow us to carry out the scientific process
and anything that limits what we can measure will limit how
far we can take science. Improving measurement technolo-
gies is crucial since it allows us to subject theories to
increasing levels of scrutiny and so develop a better under-
standing of the physical world. It is also fascinating to turn
this approach on its head and use new theories to make
better measurements. One example is quantum theory,
which allows more precise measurements than anything
allowed by classical physics with the same resources.
Measurements are also interesting for the important role
they play in our everyday lives. The history of navigation,
for example, is closely pinned to the history of accurate
timekeeping right from the early days of exploration up to
the modern satellite navigation systems we use in our cars.

One question that still remains from all this discussion
might be ‘Is the Heisenberg limit of quantum theory truly
fundamental or can we do better?’. As far as we can tell at
the moment, it would seem that it really is fundamental.
At least we seem to be bound to it if we are unwilling to
abandon quantum mechanics, which is the best physical
theory we currently have. So maybe we really have found
the ultimate limit to measurement precision and future
developments in metrology will just be concerned with
mopping up the details and finding more efficient im-
plementations. But, then again, this viewpoint has more
than an echo of Michelson’s statement at the end of the
nineteenth century that the future of physics lay in looking
in the sixth place of decimals.
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