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Relative number squeezing in Bose-Einstein condensates
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We describe a procedure for creating pairs of condensates with appreciable relative number squeezing. We
show that our procedure is relatively robust against the effects of loss and may therefore prove to be a practical
way of generating such states. We use a quantum simulation for small humbers that enables us to validate a
semiclassical model. This is used to predict the scaling for large numbers.
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[. INTRODUCTION To do this, we first apply a far off resonant light pulse to
modea to shift the phase by- #/2 [5]. The state after this

Number correlated pairs of Bose-Einstein condensates af@€P IS

a powerful quantum resource. They can, for example, be N

used to generate states with Heisenberg-limited relative )= i 2 / N! e ™ |k)IN—K) 2

phasd1,2] of great importance in interferometfg]. In this v V2V &0 VK (N—K)! a b

paper we demonstrate how pairs of condensates may be cre-

ated with relative number squeezing. The method we outlingvhich we take to be the initial state of our squeezing proce-

does not depend strongly on knowing the number of atoms iglure. In this state, the two modesand b have zero mean

the initial condensate and works even in the presence of largelative phase.

losses. It may prove to be a practical technique for generat- Next we couple the two condensate modes with resonant

ing this resource. It relies on choosing the right balance oRaman pulses, which is equivalent to Josephson coupling the

coupling between condensates and interactions between ahodes, and we allow them to evolve under the influence of

oms in each condensate. the nonlinear interactions. The Hamiltonian for this evolu-
tion is taken to be

Il. QUANTUM ANALYSIS H=U(a™a?+b"b?)+I'(a’b+b'a), 3)

al ?gfc?;%?iil V\gz u('asre Iossi?ilgqr:lziatt% Sog? ngzosgr? dk;%;g:g where U is the interatomic interaction strength which we
. g superp take to be the same for each mode for simplicity, &rid the

We ponS|der two condensate mod_es. rgpresc_ented by the an%upling strength. We take the trap frequencies to be the
hilation operatorsa andb. Mode a is initially in a number

D : same for the two modes and have removed them by trans-
state|N) andb is initially in Fhe vacuum stat¢0). We then forming to a rotating frame. The parametéidepends on the
couple these two modes W't.h resonant Raman pulges to CMitrinsic atomic interactions and the shape of the traps. This
ate a pair of condensates with a relative phase defined to t

standard quantum limit. If this step is very fast compare k n be tuned in principlge], but for a given experiment is

with the time scale of the nonlinear evolution, we can ignore ixed. The coupling raté” can be controlled by the experi-
' 9 mentalist by varying the strength of the coupling laser.

g::tsfifsg;gnf geracnons. Alter a quarter Raman cycle, the In Fig. 1, we have plotted how the relative number distri-
bution of Eq. (2) evolves for the parametefd=100, U
=0.5, andl'=1 where, for conveniencé) andI" are unit-
|¢>=e‘ m(a'b+ bTa)/4|N>a|0>b less quantities scaled Hy. In Fig. 1(a), we plot the variance
N of N,—N, as a function ofQt, where Q=2 TUN+T?.
B 1 z / N! — K This is a measure of the width of the relative number distri-
_ﬁ “ me [K)alN=K)o- (1) pution and we see that it undergoes oscillations. To begin
with, the distribution gets narrower with time and, for the
parameters used here, the maximum squeezing occurs at
This is a superposition of states with different relative num-Qt=1.67. This is precisely the result that we want and it is
bers of atoms in the two modes. The relative phAgseof  encouraging how strong the squeezing is. For the present
this state scales with number in the same way as the brokgrarameters, a reduction in the variance by a factor of 25 is
symmetry state that can be produced by measurefi@nt observed.
A6~1/\JN. The number correlation between the modes in In Fig. 1(b), we plot the number distribution of modeat
Eqg. (1) is weak and we would like to squeeze the relativethe optimum squeezing time. This is identical to the number
number distribution. distribution of modeb. The original number distribution is
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FIG. 1. () Time variation of the variance ofN,—N,) as a FIG. 2. Solutions of the semiclassical equations for different
function of Ot, whereQ =2 TUN+T2. (b) Number distribution initial conditions as a function af)t. Thez(t) solutions are shown
of modea at tl‘lle optimum squeezing time. as the full curves infa) and the corresponding(t) solutions are

shown as the full curves itb). The dashed and crossed curves are

also shown as a dashed line for comparison and we see thii'"esPonding(t) and ¢(t) solutions of the linearized equations
the modes are strongly number squeezed around the me of two different initial conditions.

value of N/2. In other words, the two modes are strongly _ )
number correlated. whereN=N_+ N, is the constant total number of atoms, and

the relative phase

Ill. SEMICLASSICAL MODEL d)(t)zargKaTb)}— -
In order to understand these results, we perform a semi- = 0, (1) — 0,(t)— (9)

classical analysis of the systgm,8]. Our results do not de- b al .

pend on this, but we believe that it gives considerable further . e Lo

insight into them. The Hamiltonian for the system is given W& introduce this phase shift since we shall see that it is

by Eq. (3), which allows us to write down the equations of convenient if the initial value of Eq(9) is zero when we

motion for the operators come to linearize the system. This transformation in no way
’ changes our results. We can derive semiclassical equations
ia(t)=2Ua’aa+Th 4) of motion for this system in terms of these new quantities
’ [7],
b(t=2UbbbrTa © 2(t)=20 1~ 20 s p(0)], (10
We can make a semiclassical approximation by making
the replacements : 2I'z(t
¢(t)=—2UNZ(t)—¥COS{¢(t)] 11
a(t) = \N(D) e, ®) =
b(t) = Ng(t) & %0 @) In Fig. 2, the solid lines show numerical solutions of Egs.

(10) and(11) for different initial conditions. We set the pa-

- ters to be the same as for the quantum calculation
where N, , corresponds to the number of atoms in modesr_ame - - _ ’
a,b and 6, corresponds to the phase afb. This is a _8'5’ F__Oll’;ﬂ]g gAf_olgOdAonan trzjegtory t?]or(estp()ln(zst to
reasonable approach to take since, if we look at the form o (0)ei-0. RSN 12and, since the initial state
Eq. (2), we see that each mode has the form of a cohere as zero relative phase b_etween the mddee Eq(2)], we
state and so we can replace the operators with complex nuntf'j-‘k%?(o)zo for each traje(t:)tor);]. ht of | |
bers containing the mean amplitude and mean phase of each € quantum state can be thought of loosely as a super-

mode position of these classical realizations. Here we interpret
Next we define the new quantities of fractional populationeaCh trajectory to represent part of the state an_d,_m particular,
imbalance a few adjacent terms in EQ), i.e., terms with similar num-

bers of atoms in moda. The way that the state is split up

into trajectories is arbitrary and does not affect our results.
— , (8) The parametersand ¢ now respectively represent the mean
(b'b)+(a'a) N number difference between modes and the mean phase for

(b'b)—(a'a) Nu(t)—N,(t)
z(t)= =
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each of these parts. The evolution of the whole state can be 06
seen by observing the evolution of each of its parts or trajec-

tories. —w 047 @
We notice thatz and ¢ both undergo oscillatory motion, EZ'_’
which is what we observed in the full calculation. It is im- 0.2
portant, to note that at certain timgsvanishes, indepen- -~
dently of the initial value ofz. We see in Fig. @) that the % 20 20 50 80 100
first focus is sharp and that subsequent focus points becom: N,

more and more blurred. This means that if we started with an 30 ' '
initial state that was a superposition of different valueg,of
and allowed this to evolve under the Hamiltonie8), after

some time the state would be strongly squeezed abelt. T

The predictions of the semiclassical model agree well with (c)

the full calculation. 0 ——
First, we would like to understand the times at which the 0 06 12 1.8

squeezing is optimized. To do this, we assume thét)| Qt

<1 and sifg(t)]=¢(t). The second assumption is accurate
to within a few percent fokp(t) <0.5. We will justify these
assumptions later.

Linearizing Eqs(10) and(11) allows us to write

FIG. 3. (@) Number distribution of modea at the optimum
squeezing timebar graph compared with the number distribution
of the initial state(dashed curve (b) Variance of N;—N) as a
function of Qt. (c) Mean value of N,—N) as a function of()t.
For this simulation, nine atoms were lost frarand eight fromb.

2(t)=2T $(1), (12)
) This is in agreement with the result shown in Fig. 2 and
d(t)~—2(UN+T")z(t). (13 agrees to within a few percent with the quantum prediction
of Ot=1.67.
These equations are very straightforward to solve and give
the result IV. EFFECT OF LOSS
Z(t)~z(0)cogq Ot), (14 In any realistic physical system, there will be some degree

of loss due, for example, to collisions. In this section we

) consider how loss affects our ability to create states with

$(1)~— 2(0)sin(Q2t), (15  squeezed relative number by including random loss from
modesa and b in the quantum model. The results for our

where Q=2 TUN+T2. We see that the conditiorjg(t)] ~ Simulation are shown in Fig. 3.
<1 and|4(t)|<0.5 hold for|z(0)|<1 and Q/T)z(0)<1. We consider a system with the same parameters as before,

If we assume that our initial relative number distribution N =100 andU/I’=0.5, and consider the rate of damping to
is Gaussian(as is the case for the full calculatipthen P€ the same for each mode. In FigaBwe show the number

|z(0)|<~1/2\/ﬁ and (/T)z(0)<~ JUIT. This means distribution for modea at the optimum squeezing time and
that the system ’is well described by the Iinéar equatiags compare it to the initial distribution. For this particular tra-

and (13) for N>1 andU/I'<1. These conditions are satis- jectory, nine atoms were lost from a[1d eight fromb. We
fied by the parameters we use here see that the mean number of atomsiis reduced to around

In Fig. 2, we have plotted the solutions @ z(t) and(b) 41, as we might expect, but interestingly the distribution is

_ still strongly squeezed.
Eé((tg) <;c()£)))(j((?))é(ﬁ(g))zcrégétaoc)ur\(ogalf:re ?h e %;Qgesezng o- In fact, the variance of this number distribution is as small
Iution, ma>{z(t)].=0’04 and map(t)]=0.28 and our two as for the lossless case. The variance of the two modes must

conditions are satisfied. We see that this approximate SOILPzr[[(ijceur;gfslalslljgc?l'mser%oetngl{crrP;[eerv%fna:‘tc())rrT:rIseelg;;j'al toissome
tion is very close to the solution of the full equations and it isP ' 9

0 . PN
hard to distinguish the two trajectories in Fig. 2. For the ¢35€ 17%) the relative number distribution Mait-Ny)

X - _ will be strongly squeezed by this method. In realistic cases
dashed line, mdx(t)]=0.12 and mapp(t)]=0.86, the two )
conditions not satisfied, and we see that this approximat}gle_l_vr\:gu'ir(?;ﬁsgtotp?hlaosns ;?bt;? (T:t?%l(i'so Sntg?%t:ézs a
solution is not very good for long times. It does, however,f i v fIQt is sh u Fi ﬂl)) Iltu : hibits th
still predict the first squeezing time quite well. We can con- unction o IS ShOwn In F1g. ). 1t exnibits the same

clude that the linearized equations should provide a googehavmr as _the !OSSIGSS case and an almqst |den'_[|cgl opti-
mum squeezing time. In Fig(& we show the time variation

description of the full model and we can write down an ana-Of the difference of the mean number of atoms in moaes
lytical approximation for the optimal squeezing time, . L : .
n bp P q g andb. Owing to the loss, this is not necessarily zero and this
effect introduces some additional uncertainty into the num-
(16)  ber correlation between the two modes.

a a
ts=5n = —F—.
*1 20 4T(UN+T) An estimate of the width of the distribution of the differ-
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ence in mean number is given M WhereNloSS is the So far thlngs look gOOd for the eXperimental feaSlblllty of
total number of atoms lost. We can write this scheme. However, one practical difficulty that arises is
that the optimum squeezing time depends on the number of
N atoms in the system. This suggests that to implement opti-
Nioss~ YNt=7\/ 55 (17 mum squeezing we would need to know how many atoms

were in the system to begin with. It is very unlikely that we

where y is the rate of loss per atom per unit time and wewould have this information. Fortunately, the squeezing is
have put in the optimum squeezing time. This means that ouielatively insensitive to evolution time. We can see this in
uncertainty in the difference of the mean numbers scales dsig. 1. For example, even if we underestimakéty a factor
JyNY4. So, for largeN or smally, this is much smaller than of 2 and so allowed the system to evolve fortoy/+2,
the uncertainty in the number difference of the originalwheret,, is the optimum squeezing time, the final relative
Gaussian state, which scales\A$. This method for creating humber distribution would still be strongly squeezed. For the
number correlated condensates therefore works even in th@rameters used here, the final variance would be about 4.5,
presence of appreciable losses during the preparation. \Which is about 5.5 times smaller than in the original state.
have shown that dissipation has little effect on the variance For improved correlation, we can imagine a t(@o more
of the squeezed number state and that the relative mean nustep process. In this we could estimate the number of atoms,
ber uncertainty that is introduced is much smaller than thé@llow the system to evolve for the estimated optimum
number uncertainty of the original state. squeezing time, and then perform a destructive measurement

We can understand this result with reference to Fig).2 of the number of atoms in one condensate. This would give
If we imagine a solution following one of the trajectories in Us an accurate estimate of the number of atoms in the other
Fig. 2(a), the loss of a few atoms will simply move us to a condensate without destroying it. We could then use this
different trajectory. Since all trajectories focus at the sameondensate as the starting point for a second relative number
time, our initial reaction is that it does not matter if atoms aresqueezing process. This time, however, our improved knowl-
lost, and there is still optimum relative number squeezing ag¢dge of the total number of atoms in the system would allow
t=m/2Q. The reason that the number correlation is not agiS to predict the optimum squeezing time more accurately
good as in the lossless case is that when atoms are logihd so create better number correlated condensates.
although thez solution is moved to another trajectory, tie

solut_ion is unc_hanged._From E(L3) we see that the phase ACKNOWLEDGMENTS
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