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We discuss a scheme for using entangled Bose-Einstein condensates to detect phase differences with
a resolution better than the standard quantum limit. To date, schemes have shown that the enhancement
in phase resolution gained by entangling condensates is lost when dissipation is present. Here we show
how this can be overcome by using number correlated condensates, as have been produced recently in
the laboratory. We also outline a scheme for measuring this phase that is not destroyed when the effects

of finite detector efficiency are considered.
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Quantum limits to the noise in interferometry have
long been a subject of both fundamental and practical
interest. Great efforts have been made to reduce the un-
certainty in interferometric measurements to below the
standard quantum limit (SQL), where the precision scales
inversely with the square root of the number of particles
involved, N.

One way this has been achieved, in the optical regime,
is by using squeezed states of light as the input to an
interferometer [1,2]. Closely related to this are a number
of theoretical schemes which have shown that, by intro-
ducing quantum correlations between particles, the mea-
surement accuracy can be improved to the Heisenberg
limit, where it scales as N~! rather than N~'/2 [3.4].
These schemes, which make use of macroscopic super-
position states, do not, however, account for loss, and it
has been shown that, when loss is included, the resolution
is degraded back to the SQL [5].

Another method for achieving Heisenberg limited
accuracy involves passing number correlated pairs of
photons through a beam splitter [6] and has been studied
when the effects of decorrelation of the input pair [7] are
accounted for. The measurement in this case, however,
has been shown to be extremely sensitive to any deviation
from unit detector efficiencies [8], which suggests that
such a scheme is unlikely to be practical. In this Letter we
demonstrate how an atomic analog of this scheme also
achieves Heisenberg limited accuracy and, importantly,
retains sub-SQL precision even in the presence of signifi-
cant losses. We also outline a procedure for measuring
phase differences, which is not destroyed by imperfect
detectors. This suggests that number correlated pairs may
be ideal for use in high precision interferometry schemes.
This is particularly timely because of recent experiments
which have created such states in the laboratory [9,10].

The scheme we discuss involves manipulating conden-
sates that are separated by an optical potential barrier and
is an analog of more traditional interferometry schemes
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which make use of beams of particles traveling along
separated paths. This new geometry has the distinct ad-
vantage of enabling us to entangle and distentangle the
two paths which, as we shall see, is crucial for achieving
sub-SQL measurements.

In this Letter, we are interested in the optimum phase
resolution achievable for N atoms in the presence of
decoherence. We compare macroscopic superposition
states (Schrodinger cats) of the form

1
) = E(INNO) +10)[V)), )

and number correlated pairs,
l4) = IN/2)IN/2), 2

with binomial states [11], which have SQL precision. To
begin with, we develop the formalism for a general en-
tanglement between two Bose-Einstein condensates.

We identify the two condensates with the annihilation
operators @ and b and then the general form of an en-
tangled state, |/), with a total of N atoms may be written
as

N
gy = > Culm)yIN — m), 3)
m=0

where 3 |C,,|> = 1 and {|n)} are the Fock states.

The phase difference probability distribution can be
evaluated by calculating the overlap between the state
and the set of two-mode phase states of Barnett and
Pegg differing by the angle Af. This set of states con-
stitutes the projector [12]

N

I1(A6) = Z 161, 01—n0/e)X01 O-n0/6), 4
=0

where € = 27/(s + 1). The phase probability distribution
is then
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P(AG, kt) = Tr[ p(k) IT(AH)], 5

where p(kt) is the density matrix that describes the
evolved state at time ¢ under the influence of dissipation
at rate k, which we take to be the same for each mode. In
the case of no dissipation, this is given by p(0) = |¢)i].
Multiplying (5) by (s + 1)/27 and taking the limit s —
oo gives the physical phase difference probability density
[12,13]. This procedure leads to

P(AG, kt) = % Z Z (r,n—rlp(kt)lr, n— )

n=0r,r'=0

X ei(r*r/)AG‘ (6)

In the presence of dissipation, the density matrix,
p(kt), for the system can be written as [14]

p(kt) = exp{lexp(2x1) — 11} exp(2x1L)p(0),  (7)

where the superoperators J and L are defined in terms of
their action on the density matrix as

Jp = apa® + bpbt, ®)

Lp=- %[(cﬁa +btb)p + plata +btb)].  (9)

Using (6) and (7), we can write the phase distribution of
the general entangled state (3) as

e—ZNKt N ;
P(AD, k1) = — D (e =)y, (10)
T 17=0
where
Nl 12/ N — 1/2 2
m N—m :
Q= Zcm(l) ( p ) emA0 L)
m=l

We can now use this general result to calculate the
phase resolution for certain specific states. We begin by
considering a binomial state, i.e., one that is formed by
resonantly Raman coupling a number state |[N) with a
vacuum mode |0) for a quarter cycle, or alternatively by
cutting a noninteracting condensate in half by adiabati-
cally raising a potential barrier. The coefficients for this

state are [15]
N\1/2
C,= (m) . (12)

We use this state as our benchmark since it can be formed
in experiments readily and, as we shall see, its phase
resolution is given by the SQL, Af ~ 1/+/N, which is
what we want to surpass. Substituting (12) into (11) gives
the phase distribution for the binomial state.

We define the phase resolution of the state to be the
value of A@ for which
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P(AG, k1) 1

PO 2 (13)

which corresponds to the half width at half maximum of
the phase distribution.

First we consider the lossless case, which is obtained
by setting kt = [ = I’ = 0. If we then replace the sum in
(11) with an integral, the phase distribution reduces to a
Fourier decomposition of the initial number distribution.
This is what we might expect since number and phase are
conjugate variables. Replacing the binomial (12) with its
Gaussian approximation, the calculation is straightfor-
ward and gives A9 = /21In(2)/N. As expected, the phase
scales with N as A@ « 1/+/N.

In Fig. 1(a) the solid line shows how the phase resolu-
tion, A#, of this state varies when loss is introduced for
N = 50. As more and more loss is introduced to the
system, the width of the relative phase distribution in-
creases. For large N, the phase resolution varies as

[ 21n2
AH = Ne—ZKt' (14)

This result is plotted as the crossed curve in Fig. 1(a) and
shows good agreement with the full calculation. The form
of (14) is simply the resolution given by a binomial state
with a reduced number of atoms due to the loss and
suggests that a binomial state is not changed by loss.
Another way to think of this is that the binomial state
is very robust [16].

With the benchmark set, we now try to improve upon it.
We start by considering the phase resolution of a cat state.
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FIG. 1. Variation of the relative phase resolution with 2kt for

(a) a binomial state (solid curve) and the approximation given
by (14) (crossed curve), (b) a cat state, and (¢) a number
correlated state for N = 50. The dotted line indicates the point
at which the cat state has been destroyed and no longer contains
any phase information. The dashed region is enlarged in Fig. 2.
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We choose such a state since it is highly entangled and
there have been proposals for how it may be able to be
used to give Heisenberg limited resolution in inter-
ferometry schemes [3]. The coefficients for this state are

Cm = (6m,0 + 5m,N)/\/_z‘: (15)

where §;; = 1ifi = jand 0 if i # j.
Substituting into (11), the relative phase distribution is

P(AG, 1) = %[1 + e 2Nkl cos(NAB)]. (16)

A simple calculation yields the phase resolution, which is
given by

cos(NAG) — %(1 _ o2er) 17

In the limit of no loss, k¢t = 0, the solution is A§ =
7/(2N). The phase resolution of this state scales as Af ~
1/N and potentially allows for a considerable improve-
ment over the binomial case which, as we have seen,
scales as 1/+/N. This fact has led to proposals for the
use of cat states in clock schemes [4].

If there is loss, however, Eq. (17) has no solution for
Nkt > 1In(3)/2 = 0.5. This means that the phase infor-
mation is completely wiped out if on average more than
half of an atom is lost from each mode, i.e., if at least one
atom is lost from the system. This is what we would
expect since a macroscopic superposition state of this
sort is completely destroyed by the loss of a single
atom. We can infer from this that the cat state has a
lifetime of t = 1/(2Nk).

In Fig. 1(b) we have plotted how the solution, Af, of
(17) varies with 2kt for N = 50. An enlargement is shown
in Fig. 2. For no loss, the resolution is significantly better
than for a binomial state with the same number of atoms.
However, it rapidly worsens as «t is increased and, as
predicted, the relative phase is undefined for 2«t >
In(3)/50 = 0.022.

Although cat states have excellent phase resolution
properties, they are extremely fragile and have a fleeting
existence in the presence of loss. Huelga et al. showed that
when it comes to usefulness for a frequency standard
these two effects exactly cancel [S]. A cat state does not
give better phase resolution than a standard quantum
limited state since, although cat states are more sharply
defined in phase space, they can be evolved only for a
much shorter time.

This standard quantum limit, however, is by no means
fundamental, and it has been shown that it can be sur-
passed by a factor of 1/,/e by making use of partially
entangled states with a high degree of symmetry [5]. We
now show how sub-SQL resolution can be achieved by
making use of number correlated condensates, which
have the important advantage of being able to be created
experimentally [9,10].
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FIG. 2. An enlargement of the dashed region in Fig. 1.

The phase resolution of number correlated pairs of
photons of the form of (2) are known to scale as 1/N
when passed through a beam splitter [6]. An analogous
result has been shown for resonantly Raman coupled (or
Josephson coupled) pairs of atoms [17]. Intuitively, we
might feel that these states contain more information than
cat states since it has been shown that cat states can be
formed from number correlated pairs when there is a
reduction of coherence or information due to loss [18].
We now investigate this more formally and show how this
allows us to surpass the SQL.

Raman coupling the number correlated state |¢f) =
|n)|n), with a total number of N = 2n atoms, for a quarter
cycle yields the state [6]

)= 0 3 YO ot — . 19
m=0 : :

By substituting the coefficients into (11) and taking the
lossless limit, kt = [ = I' = 0, the phase resolution for
this state can be shown to vary as A§ = 1.4/n = 2.8/N
for large N. This has the same number scaling as the cat
state (A@ = 77/2N) but is a factor of about 1.8 worse. We
can conclude that in a purely lossless situation, cat states
would be the best states to use in interferometry.

A completely lossless situation, however, is not realistic
and we need to compare the two states in the presence of
dissipation. As before, we can find Af by solving (13)
where P(A#, k1) is given by (10). In Fig. 1(c) we plot Af
for different values of 2kt for N = 50 using the coeffi-
cients given by (18). We can compare this with Figs. 1(a)
and 1(b) which show the corresponding relationships for
a binomial state and a cat state, respectively. In the
lossless case, the phase resolution of this state scales
with N in the same way as for the cat state. Their behavior
differs markedly, however, when loss is present.

Although the loss of a single atom destroys all the
phase information in a cat state, we see in Fig. 1(c) that
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for the number correlated state the loss of a single atom
only slightly degrades the phase resolution. As the loss is
increased, the phase resolution is smoothly degraded but a
well defined relative phase still exists between the modes.
This is true even for significant losses. In Fig. 1 the phase
resolution is plotted for losses of over 60% of the atoms
from the original system. An analysis for different num-
bers of atoms shows that the number scaling of the phase
resolution, which is 1/N at k¢ = 0, tends towards 1/+/N
as «t increases. Huelga et al. showed that for uncorrelated
particles (corresponding to the binomial state) the opti-
mum phase resolution is achieved after an evolution time
t = 1/(2k) [5]. Over this range, we see that the number
correlated state has better phase resolution than the bino-
mial state and so must allow for improved measurement
precision.

This result is very encouraging as our required starting
state (number correlated modes) has been observed in
chains of coupled condensates [9] and perfect number
correlation, via a Mott insulator transition, has been
experimentally demonstrated in a three-dimensional lat-
tice [10]. A further analysis shows that the modes do not
need to be perfectly number correlated to achieve sub-
SQL precision.

An experimental implementation of this scheme would
require a readout process. Current readout schemes for
photons involve passing the state through a second beam
splitter and detecting the number difference between the
two output ports, J. = (ata — bTb)/2 [6,7]. Kim et al.
have shown that (J,) for such a technique is always zero
and that the relative phase difference is encoded in the
correlations between the output ports (J2) [7]. Fur-
thermore, they have shown that, for an N-particle state,
the detectors must have an efficiency better than 1 — 1/N
to detect this signal. This renders such a technique im-
practical for large N.

An alternative measurement scheme can be applied to
the atomic case. After passing the state through the
second beam splitter (i.e., resonant Josephson coupling),
we pass it back through the Mott transition. This can be
achieved by adiabatically lowering the potential barrier
between the wells [9,10], which disentangles the particles.
Numerical simulations we have done show that, for a
relative phase difference ¢, the mean number difference
between the two traps at the end of this process scales as

(J,) = /N sin(N¢), (19)

and the variance scales as (AJ_)?> « N. This means that
the phase can be resolved to an uncertainty [19]

AJ 1

Z

ACb:W“N; (20)

i.e., it is Heisenberg limited. The key point, however, is
that the relative phase has now been encoded on the mean
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population difference between the traps, rather than on
the noise. This means that any deviation from unit detec-
tor efficiency only linearly degrades the signal (19). In
other words, the phase difference should still be able to be
readout even for detectors with moderate efficiencies. The
full details of this measurement process will be presented
elsewhere.

Our results suggest that highly number-squeezed Bose-
Einstein condensates may be ideal candidates to be used
in interferometry schemes since they combine Heisenberg
limited precision with robustness to loss. Furthermore, by
passing the state back through the Mott transition, prob-
lems associated with finite detector efficiencies can be
overcome. This technique could have applications in pre-
cision measurements of such things as frequencies in
clock schemes or forces.
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