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1 INTRODUCTION

Physicists have got used to the idea that quantum
states can exist in superpositions, strange as they seem.
We have become familiar, for example, with particles
being in “two places at once” or being in a superposi�
tion of different polarisations in EPR experiments that
test local realism. Although certain observables seem
to lend themselves to superpositions much more
readily than others, there is nothing in the formalism
of quantum mechanics that makes this distinction.
Instead the idea of superselection rules [1] was put for�
ward to explain why we do not observe certain super�
positions in practice.

The fundamental basis for superselection rules is
not clear. Indeed Aharonov and Susskind [2] chal�
lenged the need for them at all with a thought experi�
ment to observe coherent superpositions of different
charge states. Their work showed that it is important
that there is an appropriate reference frame in order to
observe the coherence [2–7]. For some quantities like
position or polarisation, reference frames are readily
available, which means that their superpositions are
commonly observed. But, for other quantities like
mass or charge, the appropriate reference frames are
much less obvious and so it is much harder to observe
a superposition. The problem of observing coherent
superpositions seems to be reduced to the problem of
finding a suitable reference frame.

Other authors have extended the ideas of Aharonov
and Susskind and applied them to different systems
[3–5, 8]. Recent work, for example, has considered
whether it might be possible to observe interference
fringes that are due to a superposition of an atom and
a molecule [6, 7], i.e., two states with different mass.

1 The article is published in the original.

Here we give an overview of the problem and consider
different ways in which we might be able to observe
superpositions of different Fock states. There has been
a lot of interest lately in the related question of
whether a single particle can be entangled and whether
this entanglement can be used in quantum informa�
tion schemes [9–15]. In this paper we consider the
specific case of a superposition of a single particle
(atom or photon) and the vacuum, i.e.,

(1)

and present the details of specific interferometric
schemes that could be used to observe this superposi�
tion.

It is important to note that (1) is quite different
from the state created by passing a single particle
through a 50:50 beam splitter. A typical 50:50 beam
splitter is a semi�reflective mirror that reflects half the
incident light and transmits the rest. In general, this
performs the following unitary transformations
between the creation operators for particles at the
input and output ports,

 (2)

 (3)

Using Eqs. (2), (3) we can calculate the transforma�
tion of any input to the beam splitter, for example the
input  gives

 (4)

The most notable difference between this state and (1)
is that the beam splitter conserves particle number
whereas state (1) does not. Superpositions of the form

( )0 1 2ψ = + ,/
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of (1) could be achieved by the action of a Hadamard
gate (H) in the Fock basis :

(5)

(6)

This is just a mathematical formalism and doesn’t
mean much unless we can find a way of implementing
it. This paper will address precisely that issue: whether
we can create a Hadamard gate that operates in the
basis .

QUANTUM STATE TRUNCATION

Before we discuss the Hadamard gate, it is worth
reviewing a technique called quantum state truncation
(QST) that will be important in our scheme. This was
first put forward in 1998 [16] and involves creating
truncated versions of quantum superpositions condi�
tioned on particular measurement outcomes.

Suppose, for example, we had a coherent state with

amplitude  and phase , i.e., . This coherent

state can be written as a superposition of Fock states.

(7)

We will use a subscript c to denote coherent states; kets
without a subscript are taken to be Fock states. Sup�
pose, now, that we want to keep only the first two terms
of the superposition, i.e., the ones corresponding to

 and . We can achieve this by using the QST
scheme shown in Fig. 1a, which works as follows. We
input a single particle and a vacuum state into the two
inputs of a 50:50 beam splitter (BS1 in Fig. 1a). One of
the outputs is then combined with our coherent state
at a second beam splitter (BS2). The outputs from BS2
are recorded at detectors A and B and if one particle is
detected at A and none at B, then the remaining (and
as yet unaccounted for) output from BSl is the trun�
cated state that we wanted, i.e.,

(8)

We can see this result by explicity calculating how the
input state is transformed by the setup shown in
Fig. 1a. The initial state is:

(9)

where we have expanded the coherent state in the Fock
basis and ignored any overall normalisation. The last
two kets (qubits) are then transformed by BS1 to give

(10)

where the second qubit is directed towards BS2, and
the last qubit is directed towards the output mode.
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Next, the first two qubits are transformed by BS2 to
give the outputs at A and B. This gives,

(11)

From this, we see that if we detect 1 particle in A and
none in B then the output state must be projected onto

, which, when normalised, is precisely the
truncated state given by Eq. (8).

This QST procedure will be very useful when we
consider a scheme for observing superpositions
between a single particle and the vacuum. It is there�
fore convenient to represent it more compactly as a
“black�box” as shown in Fig. 1b.

HADAMARD GATE

We now turn our attention to implementing a Had�
amard gate in the Fock basis . One possible
scheme is shown in Fig. 2 and consists of three 50:50
beam splitters (labelled BS1, BS2, and BS3), two ordi�
nary mirrors, a  phase shift, and two nonlinear crys�
tals (labelled ). We take the Hamiltonian for the non�
linearity to be

(12)
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Fig. 1. Quantum state truncation scheme. (a) The Fock
states  and |1〉 are fed into a 50:50 beam splitter (BS1)

and one output is combined with the coherent state 

at a second 50:50 beam splitter (BS2). Depending on the
measurement outcomes at detectors A and B, it is possible
to achieve a truncated version of the coherent state at the
output. For simplicity, the quantum state truncation
scheme will be depicted as a “black box” (as shown in (b))
in the remainder of the paper.
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where a is the annihilation operator corresponding to
the mode on which the nonlinearity acts and  is the
corresponding number operator. We will take ,
which means that there is no phase shift if there are 0
or 1 particles in the mode, but a phase shift of  if there
are 2 particles. We can confirm that this setup performs
a Hadamard operation by directly calculating how it
transforms the input states.

Let us begin by considering the upper part of the
setup consisting of the interferometer made up of BS1
and BS2. For now we take the input state to be  (we
will consider  shortly). The other input to BS1 is

given by performing QST on the coherent state ,

which has an amplitude of α = 1. We have seen that

this gives . So the overall input state to BS1

is , where we are ignoring the normali�
sation, and will use the convention that the left hand
ket represents the left hand path at each point in the
scheme. We can now propagate this state through the
setup:

ñ
2χ = π/

π

0
1

1i

c
e θ

10 1ie θ
+

10 ( 0 1 )ie θ
+

(13)

The mirrors give a  phase change due to reflection
and we see that the nonlinearity in this case has no
effect since there is, at most, one particle on each path.
Carrying out a similar analysis for the input  gives

(14)

These two transforms give us something close to what
we want since we get orthogonal output states depend�
ing on the input state and these are equally weighted
superpositions of  and . The problem is that these
each of the output states of the second qubit are cou�
pled to a different state of the first qubit. This wouldn’t
matter if we were only interested in using  or  at a
time as our input. However, we want to be able to input
arbitrary superpositions of these two states

, for which the output would be

(15)

and in this case, our second qubit at the output path is
entangled with the first qubit at the other output from
BS2. If we trace over the first qubit, we get a mixed
state of  and  as our output at the second qubit,
which is not what we want. To avoid this, we need to
wash out this which�way information by a nonunitary
operation. We do this by combining the first qubit with
another state at BS3. We then detect the number of
particles at the outputs and retain only the cases where
we detect one particle at the left hand detector and
none at the right hand one. This is reminiscent of the
QST scheme described above.

We can intuitively see how this works. If we detect
only one particle at the two outputs of BS3 we do not
know whether it came the left or right hand input. In
other words, we don’t know what the state of the qubit
was that our output was coupled to. The detection irre�
versibly washes out this information. A straightforward
calculation of this shows that the transformations
brought about by the total scheme depicted in Fig. 2 is:
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Fig. 2. The Hadamard gate scheme. This consists of three
50:50 beam splitters (BS1, BS2, and BS3), two nonlinear�
ities ( ), a π phase shift ( ) and conditional measurements
made at the outputs of BS3. It also makes use of the quan�
tum state truncation scheme shown in Fig. 1. The overall
transformation that this interferometer performs is given
by Eqs. (16) and (17).
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This is equivalent to a Hadamard gate apart from some
unimportant phases that could easily be removed to
get (5) and (6).

Our scheme depends on post�selecting certain
measurement outcomes. The probability that the
Hadarmard is successful will depend on the success of
the QST as well as the wash�out process. We have a
probability of  for a quantum state truncation to
succeed if it is fed with an equally weighted superposi�
tion of the vacuum and one photon state in the coher�

ent state, i.e., for a  state [16]. This is true for ideal

photo detectors, nevertheless, even if we had photode�
tectors with efficiency of , we would still have a
probability of . Likewise, the success probabil�
ity for the wash�out stage can be shown to be  for
ideal photodetectors. The overall probability of suc�
cess for the Hadamard gate is therefore

. This is admittedly quite low. How�
ever, we really just want to demonstrate a proof of prin�
ciple here. Also, there are ways to improve the success
rate. For example, we could double the success proba�
bility at each QST stage if we didn’t disregard the out�
put state when we detected one particle in B and none
in A in Fig. 1a and instead subjected it to a phase shift
of . A similar logic could be applied to the wash�out
scheme at BS3, which would give us an overall success
probability of about 0.14.

INTERFEROMETER

There is little point in creating a superposition of a
particle and the vacuum if we cannot confirm that it
has been created. The classic signature of a coherent
superposition is an interference pattern. We could
observe an interference pattern in this case by combin�
ing two Hadamard gates with a phase shift, , between
them to create an interferometer as shown in Fig. 3a.

The problem with this approach is that it is compli�
cated since each Hadamard is implemented by the
scheme shown in Fig. 2. We can simplify things con�
siderably if we consider only a particular input to our
interferometer, let’s say the vacuum, . In this case,
the first Hadamard gate in Fig. 3a creates a superposi�
tion of a particle and the vacuum, but this could be
achieved more easily using QST on a coherent state.
Consequently, the input state and first Hadamard gate
can be replaced by a coherent state and the QST gate
as shown in Fig. 3b. Let us now consider how this
works.

After the input state,  has been truncated and

had a phase shift, , applied to it (i.e., the first two
steps in Fig. 3b), we end up with the state,

(18)
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This is then passed through a Hadamard gate using the
scheme shown in Fig. 2. We have seen that this gate
performs the transformations given by Eq. (16) and
Eq. (17) and so the final state is

(19)

where we have ignored an unimportant overall phase.
The probabilities of measuring one particle and none
at the output of the interferometer are respectively,

(20)

(21)

This looks promising as we have interference fringes at
the output that depend on the applied phase . How�
ever, the fringes also depend on  and , which pre�
sents a problem. To see interference fringes, we need to
repeat the experiment many times for each value of 
in order to find the values of  and . However the
phases of coherent states that are independently pro�
duced are not fixed and vary randomly from run to
run. This means that on the ensemble average we need
to average over all phases  and  and, consequently,
the interference fringes will wash out.

We can overcome this problem by fixing their rela�
tive value, i.e.,  by creating them from the same
source. In Fig. 4, we show how this could be achieved
by introducing another beam splitter (BS4) to create
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Fig. 3. (a) The general Hadamard interferometery scheme.
An input state in the basis  is transformed with a
Hadamard gate, a phase shift, , and then a second Had�
amard gate. (b) The scheme can be simplified if we are only
interested in a specific case that can demonstrate the
superposition of a single particle and the vacuum. In this
case, quantum state truncation is used to give the superpo�
sition state (similar to the output of the first Hadamard in
(a)). This state then undergoes a phase shift and a Had�
amard transformation.
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the states  and  so that their phase is the

same on every run, i.e., . In this case, the
output probabilities are

(22)

(23)

This means that interference fringes should be able to
be built up over an ensemble of runs since the position
of the fringes now depends only on the controllable
parameter, .

MIXED STATES

So far it seems that we have relied on the somewhat
circular argument that we need to start with a superpo�
sition of number states (i.e., a coherent state) in order
to observe a superposition of the form of (1). In this
section, we show that we do not need to start with
superpositions at all and can use mixed state inputs
instead.

The mixed state,

(24)
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is formally equivalent to a coherent state with ampli�
tude  averaged over all phases, i.e.,

(25)

This means that, if  is the input den�
sity matrix to our full interferometer shown in Fig. 4
with mixed states

(26)

(27)

instead of the coherent states  and , the

output is just what we calculated earlier, but averaged
over all phases  and . From (19), we see that we get

(28)

where we have used the fact that relative values of 
and  are fixed, i.e.,  and we have averaged
over  and . The output state is therefore a mixture
of a single particle and the vacuum. Interestingly, the
probabilities of detecting one or no particles at the
output are not affected. We can argue that this is con�
sistent with there being a superposition of a single par�
ticle and the vacuum inside the interferometer if we
think more carefully about the state where the phase,

, is applied. In order to do this, it is convenient to
slightly modify the scheme shown in Fig. 4 by adding
a QST step after the  phase shift on the lower out�
put from BS4. It is easy to see that this doesn’t affect
the final output from the interferometer because it just
throws away all cases where there were two or more
particles on that path. However, the post�selection
procedure at BS3 achieved the same effect.

If we consider the particular mixed state  given by
Eq. (26) as the input to the 50:50 beam splitter BS4,
then the output state after the QST on each path is

(29)

We can see that this state is not entangled by taking the
partial transpose and checking that there are no nega�
tive eigenvalues [17]. This means that the upper path
after the QST operation is not entangled with the
lower (reference) path after the QST operation.

This is important because it means that when the
phase, , is applied to the upper path, it should depend
only on the state on that path. However, we know that
the output from the full scheme (28) depends coher�
ently on the phase that is applied. This suggests that
the state on the path where  is applied is a superposi�
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Fig. 4. The full scheme for demonstrating interference
between a single particle and the vacuum as given in
Fig. 3b. Importantly, as discussed in the text, the phase of
the input to the QST scheme on the left and the input to
the which�way wash�out scheme at BS3 have their phases
fixed. This is achieved by creating them from a common
source at BS4.
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tion of number states. If we had a number state or a
mixture of number states at that point then the phase
would not alter the state, i.e.,

(30)

where  are general probabilities. This seems strange:
the total state (29) is mixed and yet the output from the
scheme shown in Fig. 4 suggests that the upper path is
in a superposition of a single particle and the vacuum.
The answer is that the upper path is in a mixed state on
average and we need to think about what happens run
by run.

One way of interpreting these conclusions is that,
on a given run, the output state of BS3 after the two
QST operations is

(31)

where  is a random phase and the left and right qubits
respectively represent the upper and lower paths. On a
single shot, we have a superposition of a single particle
and the vacuum where the phase, , acts on the upper
path. However, averaging over all phases gives us the
mixed state (29). Normally, these two interpretations
would be indistinguishable since an interference pat�
tern needs to be built up over many detections and the
fringes would wash out. However, we have arranged
things so that the lower path keeps track of the random
phase on each run. We can see this from (31) where the
lower state has a record of the same random phase that
appears in the upper path. This allows us to recon�
struct the interference pattern indicating that we had a
superposition of different Fock states inside the inter�
ferometer. Without the lower (reference) path no
interference pattern would be seen.

A SIMPLER SCHEME

We can see a similar effect with a simpler (though
perhaps less “clean”) scheme that is worth discussing
here. This just involves a straightforward modification
of a Mach�Zehnder interferometer. The new setup is
shown in Fig. 5. The Mach�Zehnder interferometer,
composed of the two beam splitters BS1 and BS2, is
modified by adding a QST operation to each path and
also implementing a scheme to wash�out one of the
output ports from BS2. The two inputs are the mixed
states given by (26) and (27), i.e.,
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Just after the two QST operations, the state inside the
interferometer is

(34)

Apart from some phases, this is the same as (29). As
before, we can rigorously show that there is no entan�
glement between the two paths of the interferometer.
Finally, we need to wash out the which�way informa�
tion at one of the output ports. This is important
because if we know (or could know) the number of
particles at both outputs, we will project the state
inside the interferometer onto an entangled state,
which is not what we want.

This wash�out scheme is implemented using BS3
and the mixed state . Results are post�selected based
on the measurement outcome of one particle at the
upper output from BS3 and no particles at the lower
output (see Fig. 5). As before, we can understand this
process intuitively because it introduces an ambiguity
as to whether the detected particle came from  or
from the output from BS2.

The state at the remaining output port (upper out�
put from BS2) is then given by

(35)

This clearly shows fringes that depend coherently on
the value of , but is not as “clean” a result as the per�
fect fringes given by the previous scheme as shown in
(28). For example, no fringes are seen for the case of
two particles. This is not surprising since the only way
that we could get two particles at the output is if each
path inside the interferometer contained a single par�
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Fig. 5. The simpler scheme. A Mach�Zehnder interferom�
eter is modified by putting a QST scheme on each path and
by washing out the which�way information at the lower
output port from BS2. Interference fringes that depend on
the phase, , are seen in the number of particles detected
at the port labelled “output.”
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ticle, i.e., the state was . This is insensitive to a
phase shift on either path and so, not surprisingly, does
not give an interference pattern that depends on . In
the case that no particle is detected, the visibility of the
fringes is 1/2. However, for a single particle, we get
fringes with visibility one.

So, although the output state is not as clear as in the
previous scheme, we still see fringes and the advantage
is that the setup is much simpler. We can use the same
argument as before that a consistent interpretation of
these results is that the state on the path inside the
interferometer where the phase acts must be a super�
position of a single particle and the vacuum.

CONCLUSIONS

We have proposed two different ways of both creat�
ing and observing evidence for a superposition of a
particle with the vacuum. Our schemes apply to both
optical and atomic systems. They also begin with
mixed states and so do not need to make any a priori
assumptions about the existence of non�number�con�
serving superpositions. We should note that the output
from both schemes is a mixed state and so they do not
prepare superpositions that could, for example, then
be used in other protocols. However, the probability of
detecting one or no particles at the output depends
coherently on a controllable external phase. This is
consistent with the interpretation that there was a
coherent superposition inside the interferometer at the
point at which the phase, , was applied.

What we have presented is really a “proof of princi�
ple” that evidence consistent with non�number�con�
serving superpositions could be observed in low energy
non�relativistic experiments. There may very well be
simpler schemes for doing this. It is nonetheless a fas�
cinating idea and it will be interesting to see how far its
applicability can be extended to a broader range of
physical systems or if there are fundamental limita�
tions that prevent this.
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