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We discuss how a consistent phase standard for Bose-Einstein condensates may be defined. We
show that it has the properties we would wish for in a phase standard: it is not corrupted by subsequent
comparisons. A quantum jump technique is employed to study the time evolution of a three mode
condensate system on which we make measurements, which entangle the modes and so establish
relative phases between them. By establishing, in turn, the phases of two condensates relative to
a reference condensate, we show that the relative phase between them can be predicted accurately.
The existence of such a phase standard gives a precise definition to the phase of a condensate.
[S0031-9007(99)08970-X]
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A central problem in the theory of matter wave sourcescondensates, initially in number states with no initial phase
is whether we can attribute a definite phase to a condenseaformation. They showed, in particular, that the interfer-
gas. Can such a phase be defined in a manner thahce patterns observed are indistinguishable from those ob-
everyone will agree on? Is it more than a convenientained if the condensates start in coherent states, i.e., states
fiction, or an unwarranted extrapolation of the ideas ofof a well-defined phase. From this observation, they pro-
spontaneous symmetry breaking from infinite systems t@osed that if relative phases were generated between each
the finite condensates produced in the laboratory? of two condensatesi(andB) and a third one(), the rela-

It can be argued that one can speak of the phase dive phase betweeaA andB can be predicted from the re-

a condensate only relative to another. Mglmer [1], insults of the other two measurements. Such a proposal has
particular, has shown that isolated atomic fields cannoC acting in precisely the role of a phase standard.

have nonvanishing mean amplitudes and the concept of an Leggett has shown that such a phase standard cannot
absolute phase for a condensate has no meaning. Suclesist if the system is allowed to reach equilibrium
conclusion gives special importance to the role of a “phas&ith the environment [4]. Although he suggests that a
standard”: a reference condensate with which the phasghase standard might be meaningful on a shorter time
of other condensates can be compared and the arbitrarinessale [7]. In this Letter, we test this proposal and
eliminated. Recent work [2,3] has demonstrated that, bynclude the key effect of measurements establishing the
making measurements which entangle two condensateghase. We also investigate whether a phase is preserved
a relative phase can be generated between them eveniif a measurement; in other words, if we repeat the
they are initially in states of an undefined phase. Themeasurement do we get the same result?

guestion arises whether one such condensate can act as &he entanglement between the three modes is crucial
consistent phase reference, and so be assigned the roletofsuch a scheme, and we need to keep a full record of its
phase standard. evolution. Previous methods which use conditional proba-

This concept has been discussed in previous work bothilities to determine the position (or time) of detection of
in the context of Josephson junctions [4,5] and atomidhe next atom in interference schemes [2,3] will not work.
condensates [6]. The latter authors considered a schemée need to keep track of the quantum state of the system
in which measurements induced a relative phase betweeat all times and hence follow a new calculational route.

0031-900799/82(19)/3729(5)$15.00 © 1999 The American Physical Society 3729



VOLUME 82, NUMBER 19 PHYSICAL REVIEW LETTERS 10 My 1999

We have chosen to apply the quantum jump method (see, Cilgpe (1))

for example, [8]) to a system of two condensates incident t '
on a beam splitter to study the evolution of the system as \/<l’/j"(t)|c’ C’ll/jc'(t» o
atoms are detected. This enables us to keep track of the (i) If r > P, andr, > P, there is no detection in
entanglement throughout a particular realization and maghe interval, Az, and the system evolves as

be viewed as a representative history of an experiment [9]. .

We will see that the transitive nature of the phase holds |9c(1)) — exd —iHer At] e (1)) (5)
fortarl]ny Sl:cflh(eillz?tlon. Of i:_ou:_se, in this ctﬁsgdwe Wf'”We have defined: = 1, and the effective Hamiltonian,
not have to think of many realizations, since the idea of & ‘is given byH.; = Hy — ix(ata + btb)/2, where

phase standard is that it is a single, unique reference. is the system Hamiltonian. The state needs to be
The setup is analogous to the theoretical work ofHO '

J i dy 2 h lvzed th F renormalized after each step sindgt is non-Hermitian.
vavanainen an 00 [2], who analyze € case of two (iv) Repeat these steps to propagate the state in time
initially spatially separated condensates that are allowed t8nti| the desired number of atoms has been detected
overlap and the positions of atoms in the interference pat- We can summarize this procedure as a StocHastic

tern recorded. An entanglement between the two “modes¢ chrodinger equation (SSE), which the reader may find

IS (_astabllshed due to the fact that one cannot_know frorTf'1e|pfu|. For each port, this equation contains a stochastic
which condensate the atoms have come. This entangl?

; . ; erm which consists of the change in the state vector
ment leads to a relative phase seen in the buildup of

fhen a detection takes place at that port, multiplied by a

interference pattern in the spatially detected atoms. Folrandom variable which determines whether or not an atom

convenience, we consider the time analog_ ‘.Jf this schgm% detected at that time. There is also a deterministic term
observing the time, rather than the position, at WhlcR‘
I

lpe (1)) — (4)

; _ escribing the evolution when an atom is not detected.
atoms are detected. As in the spatial model, we wou

: . ore formally, we can write the SSE as
expect a relative phase to develop. This temporal scheme
has the advantage of allowing us to consider condensates Ci C,
in trap ground states rather than in momentum eigenstates?”"ﬂc> = ldM(W - 1) + dNZ(W - 1)
There have been various proposals for measuring the ¢ ¢
relative phase between condensates. These are based on . K
recording interference patterns [2] or by inducing Raman B dt[’H" Ty (a'a + b'b — (a'a)
transitions which couple the condensates [10,11]. The
precise way in which the measurement is made does - (b*b))“l(/@, (6)
not matter as all of these schemes rely on detecting a
superposition of the two fields. We have chosen to use a
beam splitter to produce this superposition but a variant oivhere we have define@’(r) = (;ch(t)IC,T Cile(2)). The
the same analysis would work for any of these schemes.random variables/N, anddN,, must have the properties,
We consider a 50:50 beam splitter with a condensate as 5
the input to each of the two ports. The two condensate dN;(t)” = dNi(1), (7)
modes are identified with the operatarsand b. If we E[dN;(1)] = Q.(t)dt = Pi(,dr), (8)
transform to a frame rotating at the frequency of made
wg, the field operators at the two output ports of the beanwhere E[-] denotes an ensemble average.

splitter are Another way to consider (6) is as an “unraveling” of
— [ =it the master equation [8,12—14]. We can show this by

€1 K/2(a + ibe ' ) @ calculating the time derivative of the system’s density

Cy = V& /2(ia + be ™), (2)  matrix, p(t) = (1)) {.(t)], on an ensemble average.
where x is the rate of detection of atoms arfd = A simple calculation using (6) gives the master equation
wy — w,. for the system, which is what we would expect for

We wish to calculate the quantum state of the systen@" e€nsemble average over all the trajectories. There is
conditioned on all the previous detectiorlgy.). The NO unique unraveling of the master equation. However,
procedure for simulating this measurement process is  EQ. (6) is the special case for which each trajectory can

(i) Determine the probability that an atom is detected a€ thought of in terms of a representative experimental

porti in a time interval Az, run [9]. This is what we want, since when comparing
+ a condensate with a phase standard, we must consider a
Pi(t, Ar) = Athe (1) |7 Cile (1)) (3)  single trajectory not an ensemble average.
Then generate random numberg,from a flat distribu- For an initial number state, the master equation can
tion between zero and one, and compare With lead only to mixtures of number states and, as such,
(ii) If r; < P;, a detection is made in poitduring Ar  does not allow for the buildup of phase. However, this
and the system jumps to the renormalized form, need not concern us since, as we shall see in the results
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below, each trajectory demonstrates the same fixed anid beam splitter ports 1 and 2. We continue until about
predictable phase relationship between the modes. Ouf% of the atoms in trapa andb (i.e., about 200) have
concept of a phase standard is that there is only one, arisken detected. Throughout the simulation, we dynamically
so this must obey the same phase relationship as that ofcalculate the relative phase betweeandb, ¢,,. Thisis
single trajectory. The phase information would be wipedgiven by
out only if we were to take the ensemble average over _ 1
all phase standards. The notion of a phase standard thus Par(t) = ArGre(D)la” bl (1)} ©)
relies on everybody using the same reference condensatéhe measurement scheme serves the dual role of both
We are now in a position to study how the phase buildsreating and measuring the relative phase. This phase (9)
up between condensates when we detect atoms at thiedy be found by taking the difference in the number of
output ports of the beam splitter. We use the calculationaktoms detected at each poR(z), per time interval Az.
procedure outlined in Egs. (3)—(5). The three mode setufyor zero phase difference, we would expect equal numbers
is shown in Fig. 1. We take each condensate initially toof detections at each port, and foteading (laggingp by
be in a number state with 1000 atoms, and so the system/2 we would expect more detections at port 1(2). This
begins with no phase information. The total system willmeans that for degenerate modes, we would expect to see
remain in a state of a known number throughout thed sinusoidal time dependence of the difference in numbers
simulation since we detect and record every atom tha@f atoms detected at the two ports. In analogy with the
escapes from the traps. As we shall see, however, thigosition of the spatial fringes in interference experiments,
does not prevent relative phases from developing betweeie can use the “time position” of the temporal fringes as
the three parts of the system. a measurement of the relative phase.
For simplicity, we set the trap frequencies and detection On average, the difference in the number of atoms
rate so thatw, = w. = w,/4 = 40k. In the rotating detected at each port per time interval is given by

frame, we also set the system Hamiltoni&f, equal to D(t)/At = (g (1) ICIFCI _ C;C2|¢C(I)> (10)
zero. This last condition amounts to considering atoms . o i F oy ion
which do not interact with one another. It is very = ik(a'b)e™ —(bTaje ™). (11)

straightforward to generalizél, to include interactions \wne can write
between atoms, which give rise to interesting effects such ot iy (1)
as collapses and revivals of the phase [15]. (a'b) = Ka'b)le" "™, (12)
To begin with, we allow atoms to leak out of traps  where ¢,,(t) contains the nondeterministic part of the
andb and we record the times at which atoms are detectegklative phase due to the randomness of each trajectory.
With this substitution, we get

(iii) D(t)/At = =2k siNQt + ¢ (2)]. (13)

//”_\ So the relative phase is given by the argument of the

sinusoidal plot of the difference in the number of atoms
detected at each port per time interval. For our results,
we subtract the known deterministic componet,

A plot of ¢, against time is shown in Fig. 2(a). As
expected, the relative phase is initially undefined. Then,
as atoms are detected, it fluctuates for a while before
settling down to a fixed constant valuk,,. This value is
random and varies for measurements made on identically
prepared systems. At the end of this detection process,
modesa and b are entangled and modeis unaffected.
The state vector for the system is given by

N
|¢C> = ( Z Ci|2N -1 - l>a|l>b> |N>c, (14)
i=N-1
whereN is the initial number of atoms in each trapis
Detectors the number of atoms detect¢tl < N), and{c;} are the
FIG. 1. The three mode setup. (i) In the first stage, condeneoefficients determined by the numerical simulation.
satesa and b are the inputs to a beam splitter and we record |n the second part of the simulation, we take madde

atomic detection times at the two output ports. (i) In the SeCynow entangled withr) as the input to one port of a beam
ond stage we repeat the process but witfmow entangled with l d d h her i As bef

a) andc as the two inputs. (iii) Finally, we measure the rela- SPIItter, and mode: as the other input. As before, we
tive phase between andc and compare with the results of the record the times that atoms are detected at the two output

phase measurements in (i) and (ii). ports until roughly10% of the atoms have been detected.

Beam splitters
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2 . - : ~ ‘ Finally, in the third part, we calculate the relative phase
_______________________________________________________________________________________ betweena andc, .. This is given by

65‘%0 ®_=05704 | Pac = arg[<¢c|a‘rc|¢lc>]
(a) N N
=arg > D digdioy,
e P, I i
0 0.02 0.04 0.06 0.08 0.1
, Kt X iGN —i—j—m+1)}. (16)
& -1.4298 Proposals have been made for how this could be mea-
8ol © & =—0.8504 o | sured [10]. Alternatively, we could perform another in-
< ab b terference measurement. The difference here is that the
0,,=-0.8591 relative phase exista priori and is not built up by the
ol . o o . . measurement. For this scheme to work successfully as a
o 0.02 0.04 0.06 0.08 0.1 phase standard, we require tifgt. = ®,, — P.,. From
Kt the simulation shown in Fig. 2, we see that there is re-

FIG. 2. Plot of the establishment of a relative phase betweeinarkable agreement. In fact, many simulations were per-
the condensate modes. The time evolution of the relative phadermed and in all of them we were able to predict the

between modes and b is shown in (a) and betweeh (now  relative phase betweenandc with great accuracy.
entangled withu) andc in (b). In each case, the relative phase o6 the phases have been established between the
[modulo(7r)] is plotted against the dimensionless quantits, .
wherex is the rate of detection of atoms. modes, further measurements give the same results.
The relative phases are now fixed and are encoded in
the entanglements and further phase measurements do not
corrupt these.
Of course, we could carry on and measure the rela-
tive phase between a fourth condensate and our phase
andard. We know that this measurement will not de-

A plot of the relative phase between modeandb, ¢,

is shown in Fig. 2(b). As in the first part, this eventually
settles down to a fixed constant valde,,, and this varies
randomly for measurements made on identically prepare

systems. b ion is that th | ; stroy the entanglements with the other condensates, so we

An important observation is that the entanglemenb of ., ;i then predict the relative phases between this con-
andc does not affect the existing entanglement between yocate and the other two. The only limitation on how
andb, so long as the modes are not too severely deplete ;

phase standard since it means that the standard is ngf otoms is very large

corrupted in the process of comparing it with anothefyefore the standard is depleted. As our simulations show,

condensate. only a small fraction of the atoms need to be removed to

In this simulation, we consider that there is no md_epen-mc,;lke a measurement, which means our sample is not de-
dent loss from the traps. Such a process, which is cu

rétroyed in the process. Such an arrangement demonstrates

rently under investigation, will corrupt the entanglements, 1o properties that we require in a phase standard.

and so degrade the phase standard. This explains why thepg ‘eyistence of a phase standard for Bose-Einstein
scheme will not work if the system is allowed to reach g jengates is of considerable importance. It gives us a

equilibrium with the environment [4]. We investigate the 65, ang precise definition of the phase of a condensate.
system on a different time scale: long before it reachegya can now speak sensibly of a condensate’s phase
equilibrium. For our system, this can be long enough for; '

. ) . interpreting this as being relative to a phase standard.
useful experiments. The effect of interactions and loss are This work was financially supported by the British

treated by Sinatra and Castin [16]. Council, the United Kingdom EPSRC, and the EU, under

At the end of this second measurement stage, modes o TR network “Coherent Matter Wave Interactions”
andc are each entangled with The state vector for the =R EMRX-CT-0002

system is

, many measurements can be made

N N
ey =D > di BN —i— j — myalidlide,

j=N—m i=2N—-m—j
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