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We discuss how a consistent phase standard for Bose-Einstein condensates may be defined
show that it has the properties we would wish for in a phase standard: it is not corrupted by subse
comparisons. A quantum jump technique is employed to study the time evolution of a three m
condensate system on which we make measurements, which entangle the modes and so es
relative phases between them. By establishing, in turn, the phases of two condensates relat
a reference condensate, we show that the relative phase between them can be predicted acc
The existence of such a phase standard gives a precise definition to the phase of a conde
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A central problem in the theory of matter wave source
is whether we can attribute a definite phase to a condens
gas. Can such a phase be defined in a manner t
everyone will agree on? Is it more than a convenie
fiction, or an unwarranted extrapolation of the ideas o
spontaneous symmetry breaking from infinite systems
the finite condensates produced in the laboratory?

It can be argued that one can speak of the phase
a condensate only relative to another. Mølmer [1], i
particular, has shown that isolated atomic fields cann
have nonvanishing mean amplitudes and the concept of
absolute phase for a condensate has no meaning. Suc
conclusion gives special importance to the role of a “pha
standard”: a reference condensate with which the phas
of other condensates can be compared and the arbitrarin
eliminated. Recent work [2,3] has demonstrated that, b
making measurements which entangle two condensat
a relative phase can be generated between them eve
they are initially in states of an undefined phase. Th
question arises whether one such condensate can act
consistent phase reference, and so be assigned the rol
phase standard.

This concept has been discussed in previous work bo
in the context of Josephson junctions [4,5] and atom
condensates [6]. The latter authors considered a sche
in which measurements induced a relative phase betwe
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condensates, initially in number states with no initial pha
information. They showed, in particular, that the interfe
ence patterns observed are indistinguishable from those
tained if the condensates start in coherent states, i.e., s
of a well-defined phase. From this observation, they p
posed that if relative phases were generated between
of two condensates (A andB) and a third one (C), the rela-
tive phase betweenA andB can be predicted from the re
sults of the other two measurements. Such a proposal
C acting in precisely the role of a phase standard.

Leggett has shown that such a phase standard ca
exist if the system is allowed to reach equilibrium
with the environment [4]. Although he suggests that
phase standard might be meaningful on a shorter ti
scale [7]. In this Letter, we test this proposal an
include the key effect of measurements establishing
phase. We also investigate whether a phase is prese
in a measurement; in other words, if we repeat t
measurement do we get the same result?

The entanglement between the three modes is cru
to such a scheme, and we need to keep a full record o
evolution. Previous methods which use conditional prob
bilities to determine the position (or time) of detection
the next atom in interference schemes [2,3] will not wor
We need to keep track of the quantum state of the sys
at all times and hence follow a new calculational rou
© 1999 The American Physical Society 3729
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We have chosen to apply the quantum jump method (s
for example, [8]) to a system of two condensates incide
on a beam splitter to study the evolution of the system
atoms are detected. This enables us to keep track of
entanglement throughout a particular realization and m
be viewed as a representative history of an experiment [
We will see that the transitive nature of the phase hol
for any such realization. Of course, in this case we w
not have to think of many realizations, since the idea of
phase standard is that it is a single, unique reference.

The setup is analogous to the theoretical work
Javanainen and Yoo [2], who analyzed the case of tw
initially spatially separated condensates that are allowed
overlap and the positions of atoms in the interference p
tern recorded. An entanglement between the two “mode
is established due to the fact that one cannot know fro
which condensate the atoms have come. This entang
ment leads to a relative phase seen in the buildup of
interference pattern in the spatially detected atoms. F
convenience, we consider the time analog of this schem
observing the time, rather than the position, at whic
atoms are detected. As in the spatial model, we wou
expect a relative phase to develop. This temporal sche
has the advantage of allowing us to consider condensa
in trap ground states rather than in momentum eigensta

There have been various proposals for measuring
relative phase between condensates. These are base
recording interference patterns [2] or by inducing Rama
transitions which couple the condensates [10,11]. T
precise way in which the measurement is made do
not matter as all of these schemes rely on detecting
superposition of the two fields. We have chosen to use
beam splitter to produce this superposition but a variant
the same analysis would work for any of these scheme

We consider a 50:50 beam splitter with a condensate
the input to each of the two ports. The two condensa
modes are identified with the operatorsa and b. If we
transform to a frame rotating at the frequency of modea,
va, the field operators at the two output ports of the bea
splitter are

C1 ­
p

ky2 sa 1 ibe2iVtd , (1)

C2 ­
p

ky2 sia 1 be2iVtd , (2)

where k is the rate of detection of atoms andV ­
vb 2 va.

We wish to calculate the quantum state of the syste
conditioned on all the previous detections,jccl. The
procedure for simulating this measurement process is

(i) Determine the probability that an atom is detected
port i in a time interval,Dt,

Pist, Dtd ­ Dtkccstd jC
y
i Cijccstdl . (3)

Then generate random numbers,ri , from a flat distribu-
tion between zero and one, and compare withPi.

(ii) If ri , Pi , a detection is made in porti during Dt
and the system jumps to the renormalized form,
3730
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jccstdl !
Cijccstdlq

kccstdjCy
i Cijccstdl

. (4)

(iii) If r1 . P1 and r2 . P2, there is no detection in
the interval,Dt, and the system evolves as

jccstdl ! expf2iHeffDtg jccstdl . (5)

We have defined̄h ; 1, and the effective Hamiltonian,
Heff, is given byHeff ­ H0 2 iksaya 1 bybdy2, where
H0 is the system Hamiltonian. The state needs to
renormalized after each step sinceHeff is non-Hermitian.

(iv) Repeat these steps to propagate the state in t
until the desired number of atoms has been detected.

We can summarize this procedure as a stocha
Schrödinger equation (SSE), which the reader may fi
helpful. For each port, this equation contains a stochas
term which consists of the change in the state vec
when a detection takes place at that port, multiplied by
random variable which determines whether or not an at
is detected at that time. There is also a deterministic te
describing the evolution when an atom is not detecte
More formally, we can write the SSE as

djccl ­

(
dN1

√
C1p

Q1
cstd

2 1

!
1 dN2

√
C2p

Q2
c std

2 1

!

2 dt

"
iH0 1

k

2
saya 1 byb 2 kayal

2 kbybld

#)
jccl , (6)

where we have definedQi
cstd ; kccstdjCy

i Cijccstdl. The
random variables,dN1 anddN2, must have the properties

dNistd2 ­ dNistd , (7)

EfdNistdg ­ Qi
cstd dt ­ Pist, dtd , (8)

where Ef?g denotes an ensemble average.
Another way to consider (6) is as an “unraveling” o

the master equation [8,12–14]. We can show this
calculating the time derivative of the system’s densi
matrix, rstd ­ jccstdl kccstdj, on an ensemble average
A simple calculation using (6) gives the master equati
for the system, which is what we would expect fo
an ensemble average over all the trajectories. There
no unique unraveling of the master equation. Howev
Eq. (6) is the special case for which each trajectory c
be thought of in terms of a representative experimen
run [9]. This is what we want, since when comparin
a condensate with a phase standard, we must consid
single trajectory not an ensemble average.

For an initial number state, the master equation c
lead only to mixtures of number states and, as su
does not allow for the buildup of phase. However, th
need not concern us since, as we shall see in the res
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below, each trajectory demonstrates the same fixed a
predictable phase relationship between the modes. O
concept of a phase standard is that there is only one, a
so this must obey the same phase relationship as that o
single trajectory. The phase information would be wipe
out only if we were to take the ensemble average ov
all phase standards. The notion of a phase standard t
relies on everybody using the same reference condensa

We are now in a position to study how the phase build
up between condensates when we detect atoms at
output ports of the beam splitter. We use the calculation
procedure outlined in Eqs. (3)–(5). The three mode set
is shown in Fig. 1. We take each condensate initially
be in a number state with 1000 atoms, and so the syst
begins with no phase information. The total system w
remain in a state of a known number throughout th
simulation since we detect and record every atom th
escapes from the traps. As we shall see, however, t
does not prevent relative phases from developing betwe
the three parts of the system.

For simplicity, we set the trap frequencies and detectio
rate so thatva ­ vc ­ vby4 ­ 40k. In the rotating
frame, we also set the system Hamiltonian,H0, equal to
zero. This last condition amounts to considering atom
which do not interact with one another. It is very
straightforward to generalizeH0 to include interactions
between atoms, which give rise to interesting effects su
as collapses and revivals of the phase [15].

To begin with, we allow atoms to leak out of trapsa
andb and we record the times at which atoms are detect

FIG. 1. The three mode setup. (i) In the first stage, conde
satesa and b are the inputs to a beam splitter and we recor
atomic detection times at the two output ports. (ii) In the se
ond stage we repeat the process but withb (now entangled with
a) andc as the two inputs. (iii) Finally, we measure the rela
tive phase betweena andc and compare with the results of the
phase measurements in (i) and (ii).
nd
ur
nd
f a
d
er
hus
te.
s
the
al
up
to
em
ill
e
at
his
en

n

s

ch

ed

n-
d
c-

-

in beam splitter ports 1 and 2. We continue until abo
10% of the atoms in trapsa andb (i.e., about 200) have
been detected. Throughout the simulation, we dynamica
calculate the relative phase betweena andb, fab. This is
given by

fabstd ­ arghkccstdjaybjccstdlj . (9)

The measurement scheme serves the dual role of b
creating and measuring the relative phase. This phase
may be found by taking the difference in the number
atoms detected at each port,Dstd, per time interval,Dt.
For zero phase difference, we would expect equal numb
of detections at each port, and fora leading (lagging)b by
py2 we would expect more detections at port 1(2). Th
means that for degenerate modes, we would expect to
a sinusoidal time dependence of the difference in numb
of atoms detected at the two ports. In analogy with t
position of the spatial fringes in interference experimen
we can use the “time position” of the temporal fringes
a measurement of the relative phase.

On average, the difference in the number of atom
detected at each port per time interval is given by

DstdyDt ­ kccstd jC
y
1 C1 2 C

y
2 C2jccstdl (10)

­ ikskaybleiVt 2 kbyale2iVtd . (11)

We can write

kaybl ­ jkaybljeifab std, (12)

where fabstd contains the nondeterministic part of th
relative phase due to the randomness of each traject
With this substitution, we get

DstdyDt ­ 22k sinfVt 1 fabstdg . (13)

So the relative phase is given by the argument of t
sinusoidal plot of the difference in the number of atom
detected at each port per time interval. For our resu
we subtract the known deterministic component,Vt.

A plot of fab against time is shown in Fig. 2(a). As
expected, the relative phase is initially undefined. The
as atoms are detected, it fluctuates for a while befo
settling down to a fixed constant value,Fab. This value is
random and varies for measurements made on identic
prepared systems. At the end of this detection proce
modesa and b are entangled and modec is unaffected.
The state vector for the system is given by

jccl ­

√
NX

i­N2l

cij2N 2 l 2 ilajilb

!
jNlc , (14)

whereN is the initial number of atoms in each trap,l is
the number of atoms detectedsl , Nd, and hcij are the
coefficients determined by the numerical simulation.

In the second part of the simulation, we take modeb
(now entangled witha) as the input to one port of a beam
splitter, and modec as the other input. As before, we
record the times that atoms are detected at the two ou
ports until roughly10% of the atoms have been detecte
3731
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FIG. 2. Plot of the establishment of a relative phase betwe
the condensate modes. The time evolution of the relative pha
between modesa and b is shown in (a) and betweenb (now
entangled witha) andc in (b). In each case, the relative phas
[modulo(p)] is plotted against the dimensionless quantitykt,
wherek is the rate of detection of atoms.

A plot of the relative phase between modesc andb, fcb ,
is shown in Fig. 2(b). As in the first part, this eventuall
settles down to a fixed constant value,Fcb , and this varies
randomly for measurements made on identically prepar
systems.

An important observation is that the entanglement ofb
andc does not affect the existing entanglement betweena
andb, so long as the modes are not too severely deple
in the process. This is a very desirable property for
phase standard since it means that the standard is
corrupted in the process of comparing it with anothe
condensate.

In this simulation, we consider that there is no indepe
dent loss from the traps. Such a process, which is cu
rently under investigation, will corrupt the entanglemen
and so degrade the phase standard. This explains why
scheme will not work if the system is allowed to reac
equilibrium with the environment [4]. We investigate the
system on a different time scale: long before it reach
equilibrium. For our system, this can be long enough fo
useful experiments. The effect of interactions and loss a
treated by Sinatra and Castin [16].

At the end of this second measurement stage, modea
andc are each entangled withb. The state vector for the
system is

jccl ­
NX

j­N2m

NX
i­2N2m2j

di,jj3N 2 i 2 j 2 mlajjlbjilc ,

(15)

where m is the total number of atoms detected in
both measurement stagessm , Nd, and hdi,jj are the
coefficients determined by the numerical simulation.
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Finally, in the third part, we calculate the relative phas
betweena andc, fac. This is given by

fac ­ arg
£
kccjaycjccl

§
­ arg

(
NX

j­N2m

NX
i­2N2m2j

di,jdp
si21d,j

3
p

is3N 2 i 2 j 2 m 1 1d

)
. (16)

Proposals have been made for how this could be me
sured [10]. Alternatively, we could perform another in
terference measurement. The difference here is that
relative phase existsa priori and is not built up by the
measurement. For this scheme to work successfully a
phase standard, we require thatfac ­ Fab 2 Fcb . From
the simulation shown in Fig. 2, we see that there is r
markable agreement. In fact, many simulations were pe
formed and in all of them we were able to predict th
relative phase betweena andc with great accuracy.

Once the phases have been established between
modes, further measurements give the same resu
The relative phases are now fixed and are encoded
the entanglements and further phase measurements do
corrupt these.

Of course, we could carry on and measure the rel
tive phase between a fourth condensate and our ph
standard. We know that this measurement will not de
stroy the entanglements with the other condensates, so
could then predict the relative phases between this co
densate and the other two. The only limitation on how
many times this phase reference can be used is the nu
ber of atoms it contains. Provided that the initial numbe
of atoms is very large, many measurements can be ma
before the standard is depleted. As our simulations sho
only a small fraction of the atoms need to be removed
make a measurement, which means our sample is not
stroyed in the process. Such an arrangement demonstra
all the properties that we require in a phase standard.

The existence of a phase standard for Bose-Einste
condensates is of considerable importance. It gives us
clear and precise definition of the phase of a condensa
We can now speak sensibly of a condensate’s pha
interpreting this as being relative to a phase standard.
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