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We present a theoretical study of a type of Josephson device, the so-called “optical Josephson junction”
�Y. Shin et al. Phys. Rev. Lett. 95, 170402 �2005�.�. In this device, two condensates are optically coupled
through a waveguide by a pair of Bragg beams. This optical Josephson junction differs from the usual
Josephson junction where condensates are weakly coupled by tunneling through a barrier. We discuss the use
of this optical Josephson junction, for making precision measurements.
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I. INTRODUCTION

Atom optics has undergone rapid development since the
advent of Bose-Einstein condensates �BECs� of atomic gases
�1�. We have seen the realization of atom lasers, matter-wave
solitons �2�, and interferometry using coherent matter waves
�3�. In addition, new techniques of manipulating cold atoms
have been devised such as Bragg scattering �4� and magnetic
waveguides �5�, etc. These sophisticated techniques may lead
to the realization of quantum limited measurement �6� and
applications in quantum information processing �7�.

Recently, Saba et al. �8� and Shin et al. �9� have demon-
strated the Josephson effect in atom optics. Two beams of
atoms are optically extracted from separate trapped BECs
using Bragg scattering �4�. The two atomic beams subse-
quently overlap and interfere, and measurement of the inter-
ference pattern creates a relative phase between the BECs
they originate from. This pioneering experiment showed that
Josephson coupling of these two spatially separate systems
can be made through an intermediate “transport” system. It is
quite different from conventional Josephson devices, such as
superconducting systems �10�, and Bose-Einstein conden-
sates �11�, in which the two condensates involved are con-
nected by tunneling and their wave functions have a small
direct overlap.

In the “optical Josephson junction” �OJJ�, two trapped
condensates are connected by out-coupling small fractions of
the condensates using Bragg scattering �4�. Out-coupled at-
oms move along a magnetic waveguide �5� before being
transferred to the partner condensate �9�. The size of the
overall Josephson coupling can now be controlled by varying
the strength of the Bragg beams. The phase of the coupling
phase between these two condensates can also be tuned by
adjusting the phase shifts of the out-coupled atoms �9�. This
control gives the OJJ significant advantages over the conven-
tional junction. The OJJ could be used, for example, to
implement the precision scheme proposed by Dunningham
and Burnett �DB� �6� in which they consider Heisenberg lim-
ited measurement �i.e., the measurement uncertainty scales
as 1 /N, where N is the number of atoms� using an entangled
BEC trapped in a double-well potential.

We shall, therefore, study the use of the OJJ in the imple-
mentation of the scheme suggested by Dunningham et al.
�6�. This scheme could, in principle, be used to make preci-

sion measurements of atomic scattering strengths or the ac-
celeration due to gravity. In this proposed experimental
scheme, the initial measurement of phase is performed by
first pulsing the Josephson coupling. The final phase infor-
mation produced is encoded in atom number fluctuations.
These fluctuations can be determined from the collapse and
revival of the relative phase between the condensates. This
scheme provides a way to measure the interaction induced
phase produced with Heisenberg limited accuracy.

The paper is organized as follows: In Sec. II, we introduce
our theoretical model of the OJJ. In Sec. III, we derive an
effective Hamiltonian under the two-mode approximation for
the trapped BECs. In Sec. IV, we study the implementation
of the DB scheme in this system. For completeness we have
given a brief review of the theory of the Bragg scattering
process in the Appendix.

II. BASIC MODEL

We consider two trapped condensates coupled into a 1D
ring-form waveguide using Mth-order Bragg scattering �8,9�
as shown in Fig. 1. This Bragg scattering coupling is envis-
aged to be the 2Mth-order multiphoton Raman process

FIG. 1. The schematic of the optical coupling of two trapped
condensates 1 and 2, and the out-coupling atoms are transferred via
a waveguide in the ring form with radius r. The pair of Bragg
beams with frequencies � and �-� are denoted by a dashed-dotted
line and dashed line, respectively.
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�4,12�. The necessary stimulated emission and absorption is
driven by the two counterpropagating Bragg beams acting as
pump and probe field with a controlled frequency difference.
The wavelength and wave number of the Bragg beam with
frequency � are � and k=2� /�, respectively.

A small portion of the BECs are outcoupled from the two
trapped BECs with definite momenta �k1 and �k2 at the
Mth-order Raman process. For simplicity, we assume the
two momenta �k1 and �k2 have similar magnitude but oppo-
site sign, for �2k1,2

2 /2m=M�� and m is the mass of an atom.
In our model Bragg beams can produce “recapture” of atoms
to the condensate and should enable us to see Josephson
effects. In contrast, in the experiments �8,9� the atoms were
strongly coupled out and not transferred back to the trapped
portion of the condensates �9�.

We now discuss the Hamiltonian of this system and derive
an effective two-mode Hamiltonian to describe the optical
Josephson effect. The Hamiltonian of the total system has the
form

H = H0 + Hring + Hcouple, �1�

where H0, Hring, and Hcouple are the Hamiltonians of BECs 1
and 2, the out-coupled atoms in the one-dimensional �1D�
ring, and the coupling between the trapped atoms �1 and 2�
and the out-coupled atoms in the ring, respectively. The
Hamiltonian for the trapped atoms has the form

H0 = �
j=1

2 � ds�� j
†�s��−

�2

2m

�2

�s2 + Vj�s�	� j�s�

+
U0

2
� j

†�s�� j
†�s�� j�s�� j�s�
 . �2�

Here, � j�s� and Vj�s� are the field operator and trapping
potential, respectively, for condensate j, U0 is the interaction
strength and j=1,2, and s=r� for r is the radius of the ring
and � is the polar angle of the ring �see Fig. 1�.

We consider that the two condensates are held in traps
such that the single-mode approximation is valid �15�. The
field operator � j�s� can then be approximated by cj	 j�s�,
where cj and 	 j�s� are, respectively, the annihilation operator
and mode function of the jth trap and j=1,2. If we take the
system to be symmetric so that �1�s� has the same form as
�2�s�, the Hamiltonian H0 can be written as

H0 = E0�c1
†c1 + c2

†c2� +
�


2
��c1

†c1�2 + �c2
†c2�2� , �3�

where

E0 = � ds	 j
*�s��−

�2

2m

�2

�s2 + Vj�s�		 j�s� , �4�

is the eigenenergy of the two modes and


 = U0� ds�	 j
*�s�	 j�s��2 �5�

is the self-interaction strength.
We should note that atoms can be out-coupled from a

trapped condensate with near unit efficiency using first-order

Bragg scattering �4�. The efficiency of higher order Bragg
scattering is, however, significantly lower �4�. This will lead
to a modification to our effective coupling both in phase and
amplitude. In the subsequent discussion, we shall consider
the case of low-order Bragg scattering with high efficiency.
The Hamiltonian representing the effective coupling between
the trapped atoms and free atoms can then be written, in the
form

Hcouple = �� ds�� f
†�s��1�s� + e−i��kr� f

†�s��2�s�� + H.c.,

�6�

where � is the coupling between condensate in the trap BECs
and waveguide �13,14�, �k=k1+k2−4k �9�, respectively. The
relative phase shift ��kr is generated during the flight be-
tween the two condensates. The phase shift �k directly de-
pends on the Bragg beams and the momenta k1,2 which can
be adjusted in the experiment �9�.

The Hamiltonian of the 1D ring has the form:

Hring = � ds�� f
†�s��−

�2

2m

�2

�s2	� f�s�

+
U0

2
� f

†�s�� f
†�s�� f�s�� f�s�
 , �7�

where � f�s� is the field operator of the condensate in this
ring-form waveguide. The condensate is free to move in the
angular direction, but confined radially. We can justify this
approximation by considering the magnitude of the kinetic
energy and the strength of the nonlinear interaction. The ki-
netic energy ��kj

=�2kj
2 /2m of the outcoupled condensates

by the Bragg beams is with �kj
�102 kHz �9� whereas the

mean-field interaction shift of atoms in the waveguide will
be at the most tens of Hz. From this we can argue that the
out-coupled condensates can be treated as freely evolving
when in the ring waveguide.

The operator superposition that represents atoms in the
ring is thus given by

� f�s� = �2�r�−1/2�eik1sgk1
+ eik2sgk2

� . �8�

Here 2�r is the circumference of the loop, k1,2 should satisfy
the boundary condition k1,2r=
1,2, where 
1,2 is an integer,
and gkj

are the annihilation operators for the ground states
with the momentum �kj. The Hamiltonian for the atoms in
the ring can be written as

Hring = �
j=1

2

��kj
gkj

† gkj
. �9�

III. EFFECTIVE HAMILTONIAN

We now derive an effective Hamiltonian to describe the
Josephson effect in this system. To do this we adiabatically
eliminate the nearly free intermediate states through which
the two traps are coupled. In this way we find the effective
coupling Hamiltonian in the form
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Hcouple = ��
j=1

2

���kj��c1
† + ei�c2

†�gkj
+ H.c. �10�

Here ���kj�=��2�r�−1/2
dse−ikjs	 j�s�, j=1,2, and �=��kr.
We assume that the two coupling strengths ���kj� are ap-
proximately equal, i.e., 
dse−ik1s	1�s�� 
dse−ik2s	2�s�. The
Heisenberg equation of motion of gkj

then has the form

iġkj
= �kj

gkj
+ ���kj��c1 + e−i�c2� . �11�

We use the adiabatic approximation, i.e., ġkj
�0 as the con-

dition �kj
� ����kj�� is, we assume, satisfied,

gkj
� −

���kj�
�kj

�c1 + e−i�c2� . �12�

The validity of this adiabatic approximation relies on the
flight time between the two trapped condensates being short
compared to the period of the Josephson oscillation. We can
estimate this flight time at approximately 0.1 to 1 ms, with
the velocity of the out-coupled atoms ��10 m ms−1�, and the
length of the ring ��1 to 10 �m� �9�. Thus, the Josephson
frequency must be much lower than 1 to 10 kHz which can
easily be achieved by adjusting the strength of the Bragg
beams �12�.

The resulting effective two-state Hamiltonian can thus be
written

Heff = �E0 −
��

2
	�c1

†c1 + c2
†c2� +

�


2
��c1

†c1�2 + �c2
†c2�2�

−
��

2
�e−i�c1

†c2 + ei�c2
†c1� , �13�

where �=2� j=1
2 ��2�kj� /�kj

. It is noteworthy that this effec-
tive two-mode Hamiltonian is akin to the Josephson Hamil-
tonian of the external �15� and the internal �16� BEC sys-
tems. This Josephson coupling can be controlled by using the
strength of the Bragg beam to vary g. The phase of Joseph-
son coupling can be adjusted by the phase shift � that is
proportional to �k and the arclength between the BECs. This
is a most useful feature to have in the use of the OJJ in
applications. It is convenient to write the effective Hamil-
tonian in terms of angular momentum operators thus

Jx =
1

2
�c1

†c2 + c2
†c1� , �14�

Jy =
1

2i
�c1

†c2 − c2
†c1� , �15�

Jz =
1

2
�c1

†c1 − c2
†c2� , �16�

where the total atom numbers N=c2
†c2+c1

†c1 is conserved.
The Hamiltonian for the system can then be written in the
final form

Heff = �
Jz
2 − ���cos �Jx + sin �Jy� + C , �17�

where C= �E0−�� /2�N+�
N2 /4. This constant C does not
affect the quantum dynamics of the system, and can be ig-
nored.

IV. IMPLEMENTATION OF PRECISION MEASUREMENT

In this section, we discuss the implementation of preci-
sion measurement on the optical Josephson junction. Dun-
ningham and Burnett proposed a precision measurement
scheme using a number-squeezed BEC trapped in a double-
well potential �6�. This scheme requires the active control of
the Josephson coupling. The phase information can be finally
obtained by measuring the number fluctuations detected via
the visibility of the interference fringes of the two conden-
sates. There are some serious limitations of the BEC double-
well system with respect to the control of the Josephson cou-
pling. The Josephson coupling strength depends
exponentially on the height of the potential barrier between
the two wells. This means that the height of the potential
barrier must be controlled very accurately indeed in order to
obtain the correct coupling. In addition, when we want to
make the Josephson coupling large, there would necessarily
need to be a large spatial overlap between the wave functions
in two wells. If this were so, the two-mode approximation
would no longer be valid. This problem can now be avoided
by using the OJJ and it is, therefore a promising route to
implementing this scheme.

We shall now describe how one could realize explicitly
the DB scheme. For simplicity, we choose the phase shift �
=�, so that the effective Hamiltonian has the form

Heff = �
Jz
2 + ��Jx. �18�

We first prepare the initial state as a number-squeezed state
�N /2�1�N /2�2 which contains a definite number of atoms
trapped in two wells. This can be prepared by adiabatically
switching off the Josephson coupling strength so that the
condensates are isolated in two different traps in the Fock
regime, i.e., 
��N �17�. For simplicity, we consider only
the perfectly squeezed case here. This can be difficult to
achieve in practice, particularly for large N. However, as
long as some degree of squeezing can be achieved, it should
still be possible to perform measurements with an accuracy
that surpasses the shot-noise limit �18�.

We can use this system to measure a relative phase be-
tween the condensates as follows. A large Josephson cou-
pling is turned on rapidly with the strength ��
N by using
Bragg pulses with �=�*. To describe the situation when the
coupling in on, it is convenient to write the state in the new
eigenbasis, i.e., the symmetric mode 
= �c1+c2� /�2 and an-
tisymmetric mode �= �c1−c2� /�2 with respect to two traps.
The quantum state in this new basis, has the form �6�

�	� = �
m=0

N/2

�− 1�mCm�2m�
�N − 2m��, �19�

where Cm=��2m�!�N−2m�! / �2N/2m!�N /2−m�!�. It is worth
noting that this superposition of states is relatively robust
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against the particle loss as noted in �19�. In this regime, there
is a small energy difference, �*, between the symmetric and
antisymmetric modes, different phases result for the terms in
the superposition. Then, the system is held for a certain time
t= t* to allow the natural evolution of the system.

Next, the Josephson coupling is suddenly switched off
fast with respect to coupling between wells, but slow with
respect to the inverse energy level spacing in each well �22�.
Thus, the state is conveniently expressed in terms of the
number basis in each well. The quantum state becomes �6�

�	��0�� =
1

2N/2�N/2�!�n=0

N

�− 1�nDn�n�1�N − n�2, �20�

where

Dn = �
p=max�0,n−N/2�

n/2 �N/2

p* 	
��p*

p
	�n!�N − n�!�i sin ��p*

�2 cos ��n−2p �21�

for p*=N /2−n+2p and �=�*t*. This completes the mea-
surement of the phase � which is recorded in the quantum
state now. The information of this phase � can be obtained
from the number uncertainty �n, where n=c1

†c1=N−c2
†c2 is

the number of atoms in the trap 1 �or 2�. From Eq. �20�, the
number uncertainty can be calculated as �6�

�n =
N

2�2
sin � . �22�

This number uncertainty is of order N. According to the
number-phase uncertainty relation �n���1, we can see
that the uncertainty of the phase �, for the minimum uncer-
tainty state, is of order N−1, i.e., it scales with N in the same
manner as the Heisenberg limit.

This number variance can be experimentally determined
from the interference pattern. Bragg scattering provides a
convenient method to determine the relative phase. A small
fraction of the atoms are coupled out horizontally from these
two condensates and allowed to interfere with each other.
The relative phase of the two trapped condensates can be
determined from the interference pattern of these two over-
lapping waves �20,23�. The interference pattern �24�, I
=�dx�� f1

† �x�� f2�x�+� f2
† �x�� f1�x��, is directly proportional

to the interference terms of two trapped condensates, where
� f1 and � f2 are the field operator of two out-coupled con-
densates from the jth trap, and x is the coordinate in the
horizontal direction. Following a similar treatment to the pre-
ceding section and taking �=�, the intensity of the interfer-
ence fringes, I, of these two out-coupled condensates can be
obtained as �24�

I =
���k1����k2�

�k1�k2

�	�����c1
†c2 + c2

†c1�	����� , �23�

where � is the time of holding the system with the merely
nonlinear interaction of the atoms. This state vector is given
by

�	����� =
1

2N/2�N/2�!�n=0

N

�− 1�ne−i
�n2+�N − n�2��/2Dn�n�1�N − n�2.

�24�

Thus, the intensity, I, is proportional to

I��� � �
n

Dn+1
* Dn

��n + 1��N − n�ei
�2n+1−N��

+ Dn−1
* Dn

�n�N − n + 1�ei
�N−2n+1��. �25�

The collapse times tcoll can be estimated by considering the
particle numbers in the range, n=N /2±�n /2. Hence, the
collapse times of the relative phase tcoll is about � /
�n
�20,23�. This collapse time can be determined by holding the
system with the nonlinear interaction as a function of time �
and measuring the corresponding intensity I with different
�’s. We can therefore determine the number fluctuation and
hence the required phase information.

The experimentally observable collapse time can be short
and the effects of the decay and decoherence effects rela-
tively modest. This means that an accurate measurement of
the number variance should be possible using this method.
Although the revival time can reveal the phase information,
it takes a much longer time to observe. Keep in mind that the
measurement of collapse and revival time of a Bose-Einstein
condensate has been demonstrated in the experiment �21�.

V. CONCLUSION

In this paper, we have presented a study of a microscopic
model of the “optical Josephson junction” and, derived the
effective Hamiltonian for the operation of this device. We
have also discussed how this system can be used to imple-
ment Heisenberg limited precision measurement, through the
examination of the collapse time of an interference pattern.

We noted above that the lower efficiency of higher order
Bragg scattering may well limit the effective coupling be-
tween the two BECs. Future experiments will be needed to
show to what extent this can be avoided. On the other hand,
it is very interesting to compare this optical-based Josephson
junction with its solid-state counterpart.
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APPENDIX: BRAGG SCATTERING

In this appendix, the basic mechanism of the condensates
using the Bragg scattering is briefly reviewed. The pump-
probe mechanism has been discussed in detail in Ref. �12�.
The pump and probe fields impart a momentum 2k to the
ground state of the condensates each time by coupling to the
excited state with a large detuning �= �̃−� between the
two-level atoms with the energy difference ��̃ and the laser
field. To elucidate this process, we study the first-order Bragg
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resonance case by considering a time-independent Hamil-
tonian in the interaction picture and assume the zero ground-
state energy for g0 which is given by

H1st = ��1ek
†ek + ���1 − �2�g2k

† g2k + ���g0
†ek + ek

†g0�

+ ����g2k
† ek + ek

†g2k� , �A1�

where enk and gnk are the annihilation operators for the ex-
cited and ground states with the momentum nk; � and �� are
the coupling strength of the pump field and the probe field of
this pair of Bragg beams; and �1=�+�k and �2=�+�k
−�2k+� are the detuning between the ground and the excited
states with the different momenta and the Bragg beams, for
�nk=��nk�2 /2m.

The equations of motion for the different momentum
states are given by

iġ0 = �ek, �A2�

iėk = �1ek + �g0 + ��g2k, �A3�

iġ2k = ��1 − �2�g2k + ��ek. �A4�

At the Bragg resonance, the detuning �1−�2=4�k−� equals
zero at �=4�k. The excited state ek can be adiabatically
eliminated as �1�� ,��, i.e.,

ek = −
1

�1
��g0 + ��g2k� . �A5�

Therefore, the equations of motion for these two different
ground states have the form

iġ0 = −
1

�1
��2g0 + ���g2k� , �A6�

iġ2k = −
1

�1
����g0 + ��2g2k� . �A7�

Clearly, we can see that these two momentum states are ef-
fectively coupled with each other at the first-order Bragg
resonance.

In general, we can consider the Mth-order Bragg scatter-
ing which is a 2Mth multiphoton Raman process. Within this
process, the different momentum modes are virtually excited
but they can be adiabatically eliminated because of energy
conservation being unfavorable. It is legitimate to consider
the effective coupling between the trapped condensates and
the free momentum states ��k1,2

=M� at the Bragg resonance
only in which the energy is conserved. The explicit form of
the effective coupling between the trapped and free states, �,
has been found as �12�

� = � ����/��M

��M − 1�!�2�2k
M−1� . �A8�

The detailed analysis can be found in Ref. �12�.
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