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Abstract

Quantum Phase of Bose-Einstein Condensates

Jacob Dunningham, St John’s College

DPhil thesis, Hilary Term 2001

The quantum phase of a Bose-Einstein condensate has long been a subject

fraught with misunderstanding and confusion. In this thesis we provide a consis-

tent description of this phenomenon and, in particular, discuss how phase may be

defined, created, manipulated, and controlled.

We begin by describing how it is possible to set up a reference condensate

against which the phase of other condensates can be compared. This allows us

to think of relative phases as if they were absolute and gives a clear and precise

definition to ‘the phase of a condensate’. A relative phase may also be established

by coupling condensates and we show how this can be controlled. We then extend

this model to explain how the phase along a chain of coupled condensates can lock

naturally without the need for any measurements.

The second part of the thesis deals primarily with the link between entangle-

ment and phase. We show that, in general, the more entangled a state is, the

better its phase resolution. This leads us to consider schemes by which maximally

entangled states may be able to be created since these should give the best prac-

tical advantages over their classical counterparts. We consider two such states: a

number correlated pair of condensates and a Schrödinger cat state. Both schemes

are shown to be remarkably robust to loss.

A comparison of the merits of these two states, as the inputs to an interferom-

eter, reveals very different behaviours. In particular, the number correlated state

performs significantly better than the cat state in the presence of loss, which means

that it might be useful in interferometry and frequency standard schemes where

phase resolution is of the utmost importance.

Finally, we propose a scheme for concentrating the entanglement between con-

densates, which is an important step in quantum communication protocols. This,

along with the ability to manipulate phase and entanglement, suggests that the

future for condensates holds not only academic interest but great potential for

practical applications.

i



ii



Sometimes a scream is better than a thesis

Ralph Waldo Emerson
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Chapter 1

Bose-Einstein Condensation

1.1 Introduction

In 1924, Bose derived the Planck distribution by developing a new statistical de-

scription of a collection of photons as identical particles [1]. The following year,

Einstein extended this description to ideal gases of material bosons [2] and re-

alised that when the particle number is conserved, these statistics could force a

macroscopic number of the particles to occupy a single quantum state. This ef-

fect, now known as Bose-Einstein condensation (BEC), is one of the most startling

predictions of quantum-statistical mechanics.

In the decade following its prediction, the properties of BEC were extensively

studied, but it was still not clear whether the effect was real. Einstein himself

commented, “The theory is pretty, but is there also some truth to it?”. It was

London who first found this ‘truth’ when in 1938 he made the ground-breaking

step of conceptually linking the properties of liquid 4He with BEC [3, 4]. Since

then BEC has been widely associated with the macroscopic quantum phenomena of

superfluidity and superconductivity [5]. The theoretical description of both these

systems, however, is clouded by the presence of strong interactions and so there

has been intense interest in achieving BEC in a weakly interacting gas, since this

would allow for a detailed quantitative comparison with theory.

The quest began in the 1970s with work on spin polarised hydrogen [6, 7],

but proved to be very difficult. Direct experimental observation of BEC in a

weakly interacting system continued to elude experimentalists up until 1995, when

a remarkable series of experiments was carried out in dilute vapours of rubidium

1



2 Chapter 1. Bose-Einstein Condensation

[8, 9], lithium [10], and sodium [11]. This marked the end of a search that spanned

two decades and, more excitingly, heralded a golden era in coherent matter wave

physics. Since these first experiments, numerous groups around the world have

observed BEC, techniques in cooling and trapping atoms continue to be improved,

and many exciting new phenomena have been revealed. The spectacular success

of these experiments has also triggered a renaissance in theoretical interest.

In this chapter we develop the subject of Bose-Einstein condensation, we sum-

marise some of the main results, provide a brief discussion of how they are made,

and conclude with an overview of this thesis.

1.2 BEC in an Ideal Gas

The fact that identical particles are fundamentally indistinguishable has a pro-

found effect on their statistical properties. If particles cannot be distinguished,

the exchange of two of them in a many body system must leave all observables

unchanged. This means that such a process can at most introduce an overall global

phase shift to the wave function. Furthermore, repeating the exchange must return

the original state, which means that the process of swapping two particles can only

introduce a phase factor of either +1 or −1.

All fundamental particles can therefore be divided into two categories depend-

ing on their behaviour under the exchange of particles. Particles for which the

wave function is antisymmetric (i.e. the phase factor is −1) are called fermions,

and particles for which the wave function is symmetric are called bosons. Remark-

ably, this property is related by the spin statistics theorem of quantum field theory

to the intrinsic angular momentum or spin of the particles [12]. All particles with

a spin that is an integer multiple of the reduced Planck constant, h̄, are bosons,

and all particles with half integer units of spin are fermions.

This classification of particles is not merely book-keeping: the simple fact that

particles have wave functions that are either symmetric or antisymmetric gives

rise to very different behaviours. A direct consequence of this for fermions, is the

Pauli Exclusion Principle which states that no two particles can occupy identical

quantum states. Bosons, on the other hand, are not restrained by the same law

and, in fact, like to occupy the same state. Under certain specific conditions all

the bosons of a system may crowd into a single state and form a Bose-Einstein

condensate.

The formation of a BEC is closely related to laser action. In a laser, a macro-
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scopic population is built up in a single mode of the radiation field due to stimulated

emissions. Photons are more likely to be emitted into modes that already have a

large population. A similar stimulated transition takes place for bosons. We can

see this by considering the transition rate for the scattering of two bosons,

Γ(1,2)→(3,4) ∝ N1N2(1 +N3)(1 +N4). (1.1)

This depends on the population not only of the initial states, N1,2, but also of

the final states, N3,4, and so a boson is more likely to end up in a state that is

already occupied. For classical particles, the transition rate would be completely

independent of the populations of the final modes. The so-called Bose enhancement

factors, (1+N3)(1+N4), play a critical role in the formation of a condensate [13, 14]

since they ‘coax’ atoms into the same state.

The equilibrium distribution for a collection of bosons can be found by applying

detailed balance to the scattering rates given in (1.1). The result is

Ni(εi, T ) =
1

e(εi−µ)/kBT − 1
, (1.2)

where Ni(εi, T ) is the population of a state with energy εi at temperature, T , kB is

Boltzmann’s constant, and µ is the chemical potential. The chemical potential is

the energy required to add a particle to the system while keeping the entropy and

volume fixed. It is determined by the constraint that the total number of atoms

in the system is fixed,

N =
∑
εi

1

e(εi−µ)/kBT − 1
. (1.3)

From Equation (1.2), we see that µ must be smaller than the lowest energy, ε0,

otherwise the population of that energy level would be negative. If we set the

ground state to be ε0 = 0, we require that µ < 0.

For homogeneous systems, the spacing between energy levels scales inversely

with the volume of the system, V . If V is large, the energy spacing is small and

the distribution varies slowly between energy levels, which allows us to replace

the sum in (1.3) with an integral. For the lowest energy level, this may not be a

good approximation, since we see from (1.2) that as µ→ 0, the population of the

ground state can become macroscopically large. Furthermore, this level is actually

neglected by the density of states (see Equation (1.5)) and so this is not a good

description. To overcome this, it is common to remove the lowest energy level from
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the integral and to treat it separately. This allows us to write (1.3) as

N = N0 +
∫

dε g(ε)Ni(εi, T ), (1.4)

where N0 =
[
e−µ/kBT − 1

]−1
is the condensate population and the integral gives

the total number of atoms in excited states, Nex. The density of states, g(ε), for

free particles in 3-dimensions is [15],

g(ε) =
V

4π2

(
2m

h̄2

)3/2

ε1/2. (1.5)

The population of each energy level, given by (1.2), increases with an increase

of µ or T . This means that, in order to keep the total number of particles in the

system constant, a decrease in temperature must be accompanied by an increase

in µ. However, µ must be negative, which gives an upper limit to the number

of atoms that can be in the excited states of the system. This can be found by

evaluating the integral in (1.4) with µ = 0, and gives

Nmax
ex = V ζ(3/2)

(
mkBT

2πh̄2

)3/2

(1.6)

where ζ(x) is the Riemann zeta function [16] and ζ(3/2) ≈ 2.612.

As the temperature is decreased, µ approaches zero and the number of atoms

that can be populated in the excited states decreases. Eventually we will reach a

point where the maximum number of atoms that can be in excited states is equal

to the total number of atoms in the system. If we were to cool further, the only

place for atoms to go is into the ground state, which leads to a macroscopic build

up of population in this mode. We can calculate the so-called critical temperature,

Tc, at which this transition takes place, simply by setting Nmax
ex = N in (1.6) and

solving for temperature. This gives,

Tc =
2πh̄2

mkB

(
N

ζ(3/2)V

)2/3

. (1.7)

The proportion of atoms in the condensate mode for T < Tc follows directly, and

is given by
N0

N
= 1−

(
T

Tc

)3/2

. (1.8)

A useful way to reformulate the condition for BEC is in terms of the length
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scales of the system: the interparticle spacing, (N/V )1/3 and the de Broglie wave-

length of the particles, λdB, defined by

λdB =

(
2πh̄2

mkBT

)1/2

. (1.9)

Substituting this into (1.7) allows us to rewrite T ≤ Tc as

N

V
λ3

dB ≥ 2.612, (1.10)

which is the most commonly quoted criterion for BEC. It tells us that BEC occurs

when the de Broglie wavelength of the particles is comparable to their separation,

or equivalently, when there is a significant overlap of the de Broglie wavelengths

of the particles.

So far, we have discussed only the case of an homogeneous condensate. All

current experiments, however, are performed on trapped condensates which are

spatially localised and so have inhomogeneous densities. The traps used in ex-

periments are very well approximated by harmonic potentials. For noninteracting

atoms in a spherically symmetric harmonic trap with angular frequency ω, the

critical temperature is given - in the thermodynamic limit - by [17]

kBTc

h̄ω
=

(
N

ζ(3)

)1/3

, (1.11)

where ζ(3) ≈ 1.202. Since N can be very large, we see that the energy at the

critical temperature may be much larger than the spacing between energy levels of

the system. This highlights an important point about the nature of the transition:

BEC does occur because the particles are energetically forced to occupy the lowest

energy state and simply don’t have the energy to be in higher levels. Rather they

are encouraged into it by the Bose enhancement factors, in much the same way that

stimulated transitions take place in a laser. For T < Tc, the number of condensate

atoms is given by,
N0

N
= 1−

(
T

Tc

)3

. (1.12)

This has the same form as for the homogeneous case (1.8), but differs in the value

of the exponent.
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1.3 Interacting gases

Although the theory of BEC does not rely on interactions, they form an important

part of any realistic system. Bogoliubov showed in 1947 [18] how interactions do not

significantly alter a BEC in a weakly interacting gas and so can be perturbatively

included in the ideal gas theory. The advantage of such a system is that it allows

for an accurate quantitative comparison between experiment and theory.

The measure of diluteness of the gas is expressed as the ratio of the scattering

length, a, to the mean interparticle separation, r, a/r. For ratios near 1, as is

the case for liquid 4He, the simple theory of BEC fails. The interactions are so

strong in this case that it is estimated that fewer than 10% of the atoms are in

the condensate [19]. Remarkably, however, the observed transition temperature of

Tc ∼ 2.2K is very close to the temperature calculated by assuming that it is an

ideal gas BEC, Tc ∼ 3.2K.

The conditions for BEC in a weakly interacting dilute gas can be written as

λdB/r > 1 and a/r � 1. (1.13)

The first condition is simply a reformulation of the BEC criterion (1.10) and the

second inequality is the diluteness condition. These can be combined to write,

a � r < λdB. For current experiments in alkali gases a/r ∼ 0.01, and so these

systems can justifiably be considered to be weakly interacting.

Although the interactions are weak, they can have a major impact on the

behaviour of the system. For example, an homogeneous condensate with attractive

interactions is unstable whereas one with repulsive interactions is stable. The

collective excitation spectrum of an interacting gas also differs significantly from

that of a non-interacting ideal gas. The effect of the interactions can be seen from

energetic considerations: even for condensates of only a few thousand atoms, the

total energy of the condensate is made up of comparable contributions from the

trap potential and the interactions.

Throughout this thesis we consider only condensates at T = 0. However, the

effects of finite temperature on the excitation spectrum has been an active and

interesting area of research [20, 21, 22, 23]. At zero temperature, a condensate is a

collection of atoms all occupying the same quantum state. The many-body wave

function of such a state can be written simply as the product of N single particle

wave functions. For a noninteracting system, this wave function is given by the

solution of the Schrödinger equation.
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When interactions are present, however, this wave function is changed. In

this case, each atoms feels an additional potential due to the presence of all the

other atoms. This potential is due to the local atomic density and gives rise to

a nonlinear term in the Schrödinger equation. The resulting equation, called the

nonlinear Schrödinger equation or Gross-Pitaevskii (GP) equation is [24],

ih̄
∂ψ

∂ψ
= H0 ψ(r, t) +N0U0 |ψ(r, t)|2 ψ(r, t), (1.14)

whereH0 includes the kinetic energy and the trap potential. The second term is the

nonlinearity due to interactions and the coefficient U0 is given by U0 = 4πh̄2a/m,

where m is the mass of a single condensate atom and a is the s-wave scattering

length.

The potential can be written in this particularly simple form because the gas

is extremely cold and dilute [15, 25]. The diluteness means that we need consider

only binary scattering and since the gas is so cold, we can neglect all but the

lowest order (s-wave) scattering events. The de Broglie wavelength of the atoms is

enormous, compared to the range of the interactions, which allows us to model the

interactions with a hard sphere potential using the method of pseudo potentials

[15]. This greatly simplifies calculations for interacting gases.

The Gross-Pitaevskii equation has proven to be one of the most useful tools

in BEC theory. It has been widely used, with great success, to investigate the

properties and dynamics of BECs.

1.4 Experimental overview

The first observation of BEC in a weakly interacting dilute gas was achieved with
87Rb atoms at JILA in 1995 [8]. This was rapidly followed by reports of BEC in
7Li at Rice University [10] and in 23Na at MIT [11]. Since then there has been an

explosion of interest in this field of research and currently 22 institutions around

the world have successfully observed BEC.

Typical experiments in Na and Rb result in condensates containing a few million

atoms with number densities around 1014 cm−3, however, these parameters vary

widely. For example, 7Li has attractive interactions which sets an upper limit

to the number of atoms that the condensate can support [26, 27]. For current

experimental parameters, the maximum number of atoms in a 7Li condensate is

around 1000. By contrast, condensates in spin polarised hydrogen containing 109
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atoms have been observed [28].

All atomic condensates, so far, have been produced by a combination of laser

cooling and evaporative cooling in magnetic traps. The atoms are laser cooled

before being trapped and compressed in a magnet-optical trap (MOT) and then

evaporatively cooled. A good review of these techniques is given by [29, 30]. In

laser cooling, atoms are bombarded with photons from counter-propagating laser

beams, which are red-detuned from an atomic resonance. Due to the Doppler

effect, the laser that opposes each atom’s motion with be shifted towards the

resonance and atoms will be more likely to absorb a photon from this laser than

the other one. Atoms will therefore preferentially get momentum kicks which slow

them down. Optical molasses is the term given to this Doppler cooling scheme

when it is extended to three dimensions with three pairs of counter-propagating

beams in orthogonal directions. No matter what direction an atom moves in this

‘molasses’ it feels a force opposing its motion. The cooling stops when the atoms,

because of the change in velocity, are no longer in resonance with the laser. This

can be overcome by chirping the laser frequency or by tuning the atomic frequency

with magnetic fields. Optical molasses was first demonstrated in 1985 with sodium

atoms [31].

At the end of the laser cooling process, atoms are typically cooled to temper-

atures of a few millionths of a degree, however the phase space density is still as

many as six orders of magnitude smaller than that required for BEC. Evaporative

cooling allows this density limit to be surpassed and can achieve sufficiently high

phase space densities for BEC. It was first developed by Hess in 1986 as a method

for cooling atomic hydrogen [32, 33] and relies on removing the high-energy com-

ponent of the thermal distribution of atoms from the trap. The evaporated atoms

take away more than the average energy, so that when the remaining atoms rether-

malise (by undergoing elastic collisions), the temperature of the vapour decreases.

One can increase the density of the remaining atoms even though the total number

of atoms decreases. The essential condition for evaporative cooling is a slow loss

rate from the trap compared to the rethermalisation rate. Evaporative cooling

typically provides six orders of magnitude increase in phase space density at a cost

of a factor of 1000 reduction in the number of atoms.

Pritchard and Walraven suggested that evaporation could be performed con-

veniently if the rim of the trap was defined by an RF-resonance condition rather

than simply by the tomography of the magnetic field [34, 35]. The idea is to use

an RF transition between mF sub-states to remove atoms from the magnetic trap
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at a distance from the trap centre defined by the Zeeman shift of the transition

associated with the trapping field.

The RF radiation flips the atomic spins and, as a result, the attractive trapping

force turns into a repulsive force and expels the atoms from the trap. The scheme

is energy-selective because the resonance frequency is proportional to the magnetic

field strength, and therefore to the potential energy of the atoms.

The MIT and JILA groups were the first to combine laser cooling with evap-

orative cooling allowing evaporative cooling to be extended to alkali atoms. This

led directly to the first experimental observations of BEC. Since then, numerous

groups have implemented RF evaporative cooling of magnetically trapped atomic

vapours.

Evaporation in a time-averaged orbiting potential (TOP) trap is more compli-

cated than for a static (e.g. Ioffe-Pritchard) trap due to the rotating magnetic

field. In a TOP trap, in addition to RF-induced transitions, one can also induce

Majorana spin-flips using the zero magnetic field point of the rotating quadrupole

trap. Near the zero point, the Lamor frequency becomes sufficiently small that the

magnetic moment of the atoms can flip, ejecting the atoms from the trap. The zero

point orbits the atomic sample on a path which is known as the circle of death.

For a lossless trap, in which atoms are removed only by evaporation, the cooling

efficiency can be made arbitrarily large by truncating further out on the tail of the

thermal distribution. In real traps, however, there are loss mechanisms. If the

truncation energy is made too large, the slow increase in phase space density will

be overwhelmed by the decrease due to losses. Efficient cooling therefore requires

a favourable ratio of elastic collisions which enable rethermalisation, to inelastic

collisions which lead to trap loss and heating. At the energies of trapped atoms,

the elastic collision rate is given by γe = nvσa, where n and v are respectively

the density and mean relative velocity of the atoms, and σa is the s-wave collision

cross-section. As evaporation proceeds, the mean velocity decreases but the density

increases. Collisional rethermalistion can take seconds due to the fact that the gas

is extremely dilute.

The dominant inelastic process for alkali atoms is collisions with the background

gas. When such a collision takes place, the most likely outcome is that both

atoms are cleanly ejected from the trap without further collisions. This process

is proportional to the background gas pressure and experimentalists go to great

lengths to achieve an ultra-high vacuum environment to minimise these effects.

There are two common methods used in BEC labs for achieving a large laser
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cooled sample in an extreme vacuum: an atomic beam and Zeeman slower, or a

double MOT and push beam setup.

In addition to background gas collisions, there is also loss from dipolar relax-

ation (a 2-body process) and 3-body recombination [36]. These inelastic collisions

are particularly troublesome since they give rise to loss at the most dense and low-

est energy part of the atomic sample, and so are more significant in a condensate

because the density is much higher than in a thermal cloud. At low energies, the

dipolar relaxation rate, γ2b and the 3-body recombination rate, γ3b are independent

of collisional energy, and we can write

γ3b = λn2 and γ2b = βn, (1.15)

where λ and β are the respective rate constants.

For good evaporation, one requires the elastic collision rate to be greater than

these inelastic collision rates. By serendipity, this is precisely the case for 87Rb

and the lower hyperfine level of 23Na. It is this happy coincidence that has led to a

prevalence of Bose condensates in these species in laboratories around the world.

With other atoms, the cold collision properties are in general not so favourable

and evaporative cooling has proved to be a lot more difficult.

1.5 Overview of thesis

In this thesis, we are interested primarily in the quantum phase of condensates

and its connection with entanglement. We begin in Chapter 2 with an overview

of phase and discuss the difference between the phase coherence of a condensate

and the phase between two condensates. We show that for condensates produced

in the laboratory, only relative phase is a meaningful concept and show that this

is due to entanglement between two condensates. We discuss how phase may be

created and measured and set some important foundations for the remainder of

the thesis.

Everything presented from Chapter 3 onwards represents original research that

I have carried out during the course of my doctorate. In Chapter 3 we show that

it is possible to define a consistent phase standard - a reference against which

the phase of other condensates may be compared. This gives a precise definition

to what we mean by the phase of a condensate and allows us to give phase a

pseudo-absolute sense.
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In Chapter 4 we investigate the phase between coupled condensates. We begin

by studying the phase relationship between a condensate and a component that

has been coupled out. We show that the phase relationship can be controlled by

varying the parameters of the transfer process. We also consider phase locking

along a chain of condensates. We show that measurements are not necessary to

create phase and that it can arise naturally due to processes such as interparticle

interactions and dissipation.

Next we investigate the resolution with which the relative phase between two

condensates can be defined. In particular, we show that measurement induced

phase results in a state with shot noise limited phase resolution. However, if

two number correlated condensates are Raman coupled, Heisenberg limited phase

resolution can be achieved. This is the best possible phase resolution allowed for

by the Uncertainty Principle and suggests that such a state may be a valuable

quantum resource.

The second half of the thesis considers the link between phase and entan-

glement. In particular, we consider experimentally feasible methods of creating

specific entanglements and then compare their merits. In Chapter 6, we outline

a technique for creating number correlated pairs of BECs. These are an impor-

tant resource for achieving states with phase defined to the Heisenberg limit. The

technique is based on coupling condensates with the right balance between the

coupling strength and the interparticle interactions.

In Chapter 7 we consider how Schrödinger cat states may be generated in

condensates by manipulating their phases. We present two schemes: one is a

simple scheme based on interferometry and the other is a more complex scheme

that has the advantage of being relatively robust to loss during the creation process.

Cat states have long been intriguing to quantum physicists and the generation of

them in atomic systems would provide a valuable tool for studying measurement

and entanglement.

Both cat states and number correlated states give rise to phases that have a

Heisenberg limited resolution. This means that each entangled state would be

equally good (and the best possible) in an interferometer. In Chapter 8 we com-

pare the merits of these two states in an interferometer both with and without

loss present. We show that while they have the same performance in the lossless

case, they behave very differently when there is loss. The cat state is completely

destroyed by the loss of a single atom, whereas the number correlated state is only

gently affected by loss. We conclude that the number correlated state is the max-
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imally entangled one and discuss how it may be used to create a more accurate

clock or frequency standard.

Finally, in Chapter 9, we discuss how the techniques we have developed may be

used in an entanglement concentration scheme for BECs. This chapter is a little

separate from the general flow of the thesis, but it highlights the link between

phase and entanglement. It also suggests that BECs may become an important

tool in quantum information. In Chapter 10 we conclude with an overview of our

results and suggest some interesting possibilities for further research.



Chapter 2

The quantum phase of a Bose

condensate

A central problem in the theory of matter wave sources is whether we can attribute

a definite quantum phase to a condensed gas. Can such a phase be defined in a

manner that everyone will agree on? Is it more than a convenient fiction, or an

unwarranted extrapolation of the ideas of spontaneous symmetry breaking from

infinite systems to the finite condensates produced in the laboratory?

These issues and many related ones have caused great discussion and confusion

and make Bose condensates an interesting environment for investigating the subtle

concept of phase. In this chapter, we develop this subject and discuss some of the

important issues that it raises. We begin with a discussion of the phase coherence

of a condensate before investigating how coherence can arise between two distinct

condensates. We discuss the link between absolute and relative phase and the

circumstances under which each is meaningful, and conclude with a summary of

the measures that we will use to quantify phase throughout this thesis.

2.1 Phase coherence

Long range phase coherence is perhaps the key defining feature of a Bose conden-

sate. We can understand what this is with an operational definition of a coherence

measurement. Suppose we were to take atoms from two particular spatial points

in an atomic cloud, and allow them to fall onto a detector in such a way that we

could not determine which point a given atom had come from. The amplitudes of

13
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atoms arriving from the two points would interfere and so the number of atoms

detected would be sensitive to the difference in their local quantum phases. A

condensate differs fundamentally from a cloud of cold atoms in this regard since

the relative phase in a condensate is completely predictable. This means that the

position of the interference fringes between any two points of a condensate can be

known in advance. This is what is meant by the coherence of a condensate.

Anderson demonstrated this result by considering a box containing a stationary

condensate of N free bosons [37, 38]. He showed that, if we imagine dividing this

box up into m cells of equal size, the system cannot be treated as a collection of

cells each containing a condensate of N/m atoms. This model fails because it does

not account for the phase coherence between the cells.

Another way to show this is to consider the density correlation between any

two spatial points in a condensate. If we expand the field operator at point r, ψ(r),

in terms of the annihilation operators for the single particle states of momentum

k, ak, the correlation function can be written as,

〈ψ†(r)ψ(r′)〉 =
1

V
〈a†0a0〉+

∫ d3k

(2π)3
eik.(r−r′)〈a†kak〉, (2.1)

where we have removed the condensate mode from the integral as in Chapter 1.

For large spatial separations, |r− r′| → ∞, we see that the contribution from the

second term in (2.1) vanishes and the correlation between the two points is given

by the density of particles in the condensate mode. This means that the long range

coherence vanishes for noncondensed gases, but acquires a finite value, ρ0, when

a condensate is present. This result can be reformulated as the following general

definition of Bose condensation,

〈ψ†(r)ψ(r′)〉 −→ ρ0 for |r− r′| −→ ∞. (2.2)

The phase coherence of a condensate has been compellingly demonstrated in

experiments performed at MIT [39] and Munich [40]. In the Munich experiment,

atoms were coupled out of two spatially distinct positions, r and r′, of a single

trapped condensate in much the same way as our operational definition described

above. Falling under gravity the two beams of output-coupled atoms were allowed

to overlap, and atoms were detected. The appearance of an spatial interference

pattern in the number of detected atoms proved that r and r′ were phase coher-

ent. The experiment was repeated for different temperatures and showed that the
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visibility of the interference pattern decreased with an increase in temperature.

Above the critical temperature, T > TC , the interference completely vanished

showing that phase coherence is a property of Bose condensates and not simply of

cold atoms.

In analogy with (2.2), Penrose and Onsager [19] proposed the following general

criterion for Bose condensation, which embodies the concept of phase coherence,

〈ψ†(r)ψ(r′)〉 −→ 〈ψ(r)〉∗〈ψ(r′)〉, for |r− r′| → ∞, (2.3)

where

〈ψ(r)〉 =
√
ρ(r) e−iθ. (2.4)

This formalism introduces the concept of broken symmetry whereby the ensemble

average of the Bose mode is assigned a finite mean amplitude.

This formalism is both convenient and useful as evidenced by the great success

of mean-field theories in investigating the properties of Bose condensates. However,

its form can be misleading and we must be careful with its interpretation. In

particular, we should not interpret this to mean that the condensate has an absolute

phase, as we shall show in the next section.

2.2 Phase symmetry

The question of whether a condensate has an overall phase has caused a great deal

of discussion. It is distinct from the question in the previous section of whether

two points within a condensate have a predictable phase relationship.

For this investigation, it is common in the literature to adopt the Ginzburg-

Landau approach for studying the qualitative nature of the Bose transition. This

involves introducing a local order parameter, φ(r), which is a expectation value

of ψ(r). This means that φ(r) is a complex number and implicitly assumes that

the condensate has an overall phase. We shall see how this arbitrary phase is

eliminated.

The Landau free energy functional of this system can be written in terms of

the order parameter as [15]

E[φ] =
∫ ∞

−∞
dr

(
h̄

2m
|∇φ|2 − µ|φ|2 + U |φ|4

)
, (2.5)

where U is strength of the interactions between atoms, µ can be treated simply
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Figure 2.1: Free energy density as a function of |φ| above (µ < 0) and below (µ > 0) the
Bose transition temperature.

as a Lagrange multiplier which sets the number of atoms in the ground state, and

m is the atomic mass. This is simplified considerably for a homogeneous system

since the kinetic energy term vanishes and we can write the free energy density as

E/V = −µ|φ|2 + U |φ|4, (2.6)

where V is the volume of the system. We take the interaction strength to be fixed

and positive (since an homogeneous system is not stable for a negative interaction

strength [15, 41]).

The energy density is plotted as a function of |φ| in Figure (2.1). There are

two distinct cases. For µ < 0, the energy density has a minimum at |φ| = 0.

This corresponds to a temperature above the transition for BEC and, as we might

expect, the amplitude of |φ| vanishes since there is only a microscopic occupation of

the condensate mode. Below the Bose transition temperature, µ > 0, the energy

is minimised for a non-zero value of |φ|. This means that |φ| acquires a finite

amplitude and indicates that there is a macroscopic occupation of the condensate

mode.

If we now turn our attention to the phase rather than the amplitude of the
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Figure 2.2: Free energy density as a function of φ below the Bose transition temperature.
The function exhibits phase symmetry.

ground state, inspection of (2.5) reveals that the free energy does not depend on

the phase of φ. This is a direct consequence of the fact that the total number

of particles is conserved in the system. Rotating φ by an arbitrary angle does

not affect the free energy and so the plot of free energy against φ is symmetric

around the energy axis. In Figure (2.2), we show this plot for µ > 0, i.e. when a

condensate is present.

The free energy density has the form of a ‘Mexican hat’, where the minimum

has a well defined finite amplitude but is completely degenerate in phase. There

is no reason why the system should prefer one phase over another. Goldstone has

shown that this phase degeneracy can be seen in the existence of a zero energy

excitation of the system, which corresponds to a global rotation of the condensate

phase [42].

Another way to think of the phase symmetry is in terms of the state of the

condensate. Since atoms cannot be created or destroyed, particle number is con-

served in a single isolated condensate. This means that such a system is in either

a number state or a mixture of number states. A number state can be written in
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terms of coherent states, |α〉, as

|N〉 ∝
∫ 2π

0
e−iNθ |α〉 dθ, (2.7)

where α = |α| eiθ. We see from this that a number state has no phase information,

since it is an average over coherent states of all phases with equal weighting. It

follows that a mixture of number states (and therefore an isolated condensate)

must also have no phase. This is linked closely with the well-known uncertainty

relationship between phase and number, ∆N∆θ > 1, which has the consequence

that if the number of atoms in a BEC is precisely known, the phase is completely

uncertain.

It is this conclusion that gives rise to the problem in using (2.3) as a definition

of Bose condensation. Since the phase of an isolated condensate is undefined, the

ensemble average of the Bose amplitude vanishes, 〈ψ〉 = 0. This means that the

right hand side of (2.3) vanishes. However, as we have seen, a condensate exhibits

phase coherence and so (2.2) requires that the left hand side remains finite. Despite

this problem, the usefulness of (2.3) is undeniable [43, 44, 45]. In the next section

we will attempt to resolve this apparent contradiction.

2.3 Transitivity of phase

Phase coherence naturally leads to a transitive property of phase within a conden-

sate. We can think of this by considering any three spatial points in the condensate,

r, r′, and r′′. If we define our notation such that θ(i, j) represents the phase of i

relative to j, where i, j ∈ {r, r′, r′′}, then the transitive property of phase can be

written as

θ(r′, r) = θ(r′, r′′)− θ(r, r′′). (2.8)

This allows us to interpret (2.4) in a more consistent manner. Instead of taking

θ to be the ‘phase’ of the wave function at a certain point, we take it to be the

phase at that point relative to another fixed point in the condensate. In other

words, we take (2.4) to mean

〈ψ(r)〉 =
√
ρ(r) e−iθ(r,r′′), (2.9)

where the phase is interpreted to be the phase relative to the arbitrary but fixed

point r′′. This quantity is always non-zero for a condensate since phase coherence
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ensures a well-defined relative phase. Let’s now consider the form of (2.3) in this

new context. The left hand side may be written as

〈
ψ†(r)ψ(r′)

〉
=
〈√

ρ(r)ρ(r′) e−iθ(r′,r)
〉
. (2.10)

Making use of the transitivity property (2.8), we can write this as

〈
ψ†(r)ψ(r′)

〉
=

〈(√
ρ(r) eiθ(r,r′′)

)(√
ρ(r′) e−iθ(r′,r′′)

)〉
= 〈ψ(r)〉∗ 〈ψ(r′)〉 , (2.11)

where the last step follows since the two bracketed quantities in the first line are

independent. We see that (2.3) is now consistent: both sides are finite and equal to

one another, independent of the state of the condensate. It holds even for number

states with completely undefined overall phase.

Such an interpretation also gives a feel for when mean field theories are valid.

We can assign a finite value to 〈ψ〉 when the system is phase coherent which is

equivalent to all the atoms being in the same mode. However, near Tc, many

macroscopically distinguishable modes occur with non-negligible probabilities and

so the mean field approximation may not be a good one near Tc. This region of

validity is formalised by the Ginzburg criterion.

2.4 Absolute phase versus relative phase

An analogy is often drawn with a ferromagnet when discussing issues of symmetry

breaking in Bose systems. A ferromagnet is similar to a Bose gas in that a plot

of free energy against magnetisation has the same form as the Mexican hat of

Figure (2.2). However, below a critical temperature known as the Curie tempera-

ture, the symmetry is broken and a ferromagnet assumes a particular direction of

magnetisation.

The symmetry breaking can be explained by the fact that any stray magnetic

field will ‘tilt’ the Mexican hat giving an energetically favourable direction for the

spins. Below the Curie temperature, this effect dominates over the randomising

thermal effects. Once the symmetry has been broken, the magnetisation is robust

even when the field is no longer present since, for a large system, the probability

of all the spins simultaneously rotating to another particular value is very small.

When this argument is extended to the thermodynamic limit, a symmetry
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breaking field is no longer needed. In such a case, the symmetry is said to be

spontaneously broken. This can be seen by introducing a small symmetry-breaking

field (which we will later remove) with some arbitrary particular direction. If

we now take the thermodynamic limit of the state, N → ∞ and V → ∞ such

that N/V remains finite, and then take the limit that the symmetry breaking

field vanishes, the system retains a net magnetisation in the direction that the

symmetry-breaking field had.

A number of authors have extended this approach to show that an infinite con-

densate also undergoes spontaneous symmetry breaking and acquires an absolute

phase [15]. The difference is that for a Bose system, this symmetry breaking field

is unphysical and must be treated purely as a mathematical tool. For this reason,

the analysis only works in the strictly infinite limit where the field can be formally

eliminated.

For finite condensates, it is enlightening to consider a different model consisting

of two coupled condensates. This has the advantage of doing away with the need for

an unphysical symmetry breaking field and will also show the link between absolute

and relative phase. Our model consists of a number state condensate, |N〉, coupled

to a vacuum mode, |0〉. These modes respectively have the annihilation operators

a and b. We consider that the coupling takes the form of quantum mechanical

tunnelling between the modes or equivalently to resonant Raman coupling.

The state after evolution for time, t, is given by

|ψ(t)〉 = exp
[
−iΓt

(
a†b+ b†a

)]
|N〉a|0〉b, (2.12)

where Γ ≥ 0 is the coupling strength.

We would now like to examine the relative phase relationship between the two

modes as a function of time. As a simple approach, we will take the mean value

of the phase of a relative to b to be given by φab(t) = arg{〈ψ(t)|b†a|ψ(t)〉}. We

discuss this measure of phase in more detail in Section (2.6). Substituting from

(2.12) and rearranging the operators using the operator theorem [46]

eζBAe−ζB = A+ ζ[B,A] +
ζ2

2!
[B, [B,A]] + · · · , (2.13)

the relative phase can be written as

φab(t) = arg {iN sin(2Γt)} . (2.14)
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We see that for non-zero values of the coupling, Γt 6= 0, the relative phase is

φab = π/2 apart from the special cases when Γt is an integer multiple of π/2. In

these cases, the phase is undefined, since the population is all in one mode or all

in the other and the idea of a relative phase between the modes is meaningless.

We would now like to consider what happens in the limit of infinitely large con-

densates, N →∞, since this is the limit in which the symmetry is spontaneously

broken in ferromagnetic systems. The relative phase in this case is,

φab = lim
N→∞

arg {iN sin(2Γt)} . (2.15)

We see now that no matter how small Γt is, the expression in the curly brackets is

always non-zero and the relative phase is π/2. Writing out this zero-coupling limit

fully, we have

φab(t) = lim
Γt→0

lim
N→∞

arg {iN sin(2Γt)} =
π

2
. (2.16)

This is an expression for the phase of mode a relative to a vacuum with which

it has never been coupled. In other words, the uncoupled limit corresponds to

the absolute phase of the condensate. We conclude that, in the limit N → ∞, a

condensate can be considered to have an absolute phase.

If we now consider the result where N is arbitrarily large but finite, the phase

of a relative to b in the uncoupled limit (i.e. the “absolute phase” of a) is given by

φa ≡ φab = lim
Γt→0

arg {iN sin(2Γt)} = arg{0}, (2.17)

which is undefined.

This then establishes an important axiom: absolute phase is defined only for

infinite condensates. For condensates produced in the laboratory, only relative

phase is physically meaningful. In the remainder of this thesis, therefore, we will

concern ourselves only with relative phase.

2.5 Creating phase

If an isolated condensate does not have a well-defined global phase, it follows

that two condensates that have never been in contact with one another have no

phase relationship. The results, then, of a recent experiment at MIT may seem

perplexing. In this experiment, a condensate was split into two components with

a light sheet. The two parts were then allowed to recombine and an interference
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a b 

Figure 2.3: Two condensates initially in number states are allowed to fall onto an array
of detectors. If atoms are detected in such a way that we cannot know which condensate

an atom came from, a spatial interference pattern is seen.

pattern was observed in the region of overlap [39].

At first sight this may appear to contradict the fact that the phase of a conden-

sate is undefined. Javanainen and Yoo [47], however, have shown how the observed

interference pattern can be explained without assuming any particular phase prop-

erties of the two clouds of atoms. They have shown that if the two condensates are

initially in number states (i.e. states with completely undefined phase), the act

of sequentially detecting atoms builds up correlations in the remaining particles

and leads to an observed interference between them. The interference pattern is

formed by the back action of the measurement process itself: in effect, by looking

for a relative phase, one is created.

We can understand how this comes about with the following argument. We

consider two condensate modes denoted by a and b (see Figure (2.3)) which are

each initially in a number state, |N〉. If we allow these to overlap and detect an

atom in such a way that we cannot know which trap it originated from, the new

state is

1√
2
(a+ beiθ(x)) )|N〉a|N〉b =

1√
2

(
|N − 1〉a|N〉b + eiθ(x) |N〉a|N − 1〉b

)
, (2.18)

where θ(x) is a phase that depends on the position, x, at which the atom was
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detected. The two modes are now entangled since the total state cannot be written

as the product of the states of modes a and b. Furthermore, 〈a†b〉 now has a

nonvanishing value which indicates that a coherence has been established between

the modes.

After a relatively small number of detections, the two remaining condensates

find themselves in a relative coherent state. Castin et al. [48] have shown that the

interference pattern observed is indistinguishable from one that would be obtained

if the condensates started in coherent states. The value of the relative phase is

undetermined before the actual measurement, but once it has been established it

is robust. This demonstrates that the observation of an interference pattern in this

experiment is not at odds with the fact that a single isolated condensate has no

global phase.

Uncondensed clouds do not possess internal phase coherence and so allowing

two such clouds to overlap would not result in the observation of an interference

pattern. This experiment then, along with the phase coherence experiment of the

Munich group, is very important since it shows unambiguously that a condensate

has been produced rather than just a very cold, dense cloud of atoms.

2.6 Measures of phase

We conclude this introduction to the quantum phase of a BEC by discussing ways

that phase can be quantified. We will limit ourselves to a discussion of relative

phase.

We shall use two definitions in this thesis: one is an operational definition for

the mean relative phase between two condensates which could be experimentally

implemented. The second is a theoretical definition of the relative phase distribu-

tion.

The operational definition relies on allowing two condensates to overlap and

measuring the interference pattern between them in much the same way as the

MIT experiment. Of course, this process may not just measure the phase but

also create one, but once this phase is established, subsequent measurements will

yield the same result. For now, we consider just the case where a relative phase is

initially defined. The position of the fringes give a measurement of this phase as

the following treatment demonstrates.

We consider two condensates with corresponding annihilation operators â and

b̂. If these condensates are allowed to overlap and fall onto an array of detectors
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the probability that an atom will be detected at position, x, is

P (x) =
1

2

〈(
â eikx + b̂ e−ikx

)† (
â eikx + b̂ e−ikx

)〉
=

1

2

〈
â†â+ b̂†b̂+ â†b̂ e−2ikx + b̂†â e2ikx

〉
, (2.19)

where the exponential factors account for the differential phase which accumulates

while the atoms are being transported to the detector, and x = 0 is defined to be

the point where this is identical for both beams.

If there is a relative phase φ between the modes, we can write

〈â†b̂〉 = |〈â†b̂〉| eiφ. (2.20)

Substituting this into (2.19) we obtain

P (x) =
1

2

[
〈â†â〉+ 〈b̂†b̂〉+ 2|〈â†b̂〉| cos (φ− 2kx)

]
. (2.21)

We see from the final term in this expression that the detected atoms exhibit

spatial interference fringes and that the position of these fringes depends on φ.

It is, therefore, experimentally feasible to extract the mean relative phase of

two condensates by recording the position of the fringes. For this reason, we define

the phase of b̂ relative to â as

φ = arg
{〈
â†b̂
〉}

= arg
[
Tr
{
ρâ†b̂

}]
, (2.22)

where ρ is the density matrix of the system. This definition of phase is particularly

useful when discussing what is experimentally observable.

The second definition we use is more theoretical and is very useful, among other

things, for calculating the phase distribution of a state. This definition relies on

the Pegg-Barnett basis of states of well-defined phase [49, 50, 51],

|θl〉 =
1√
s+ 1

s∑
p=0

eiplε|p〉, (2.23)

where l = 0, 1, ..., s, {|p〉 : p = 0, ..., s} denotes the Fock states, and ε = 2π/(s+1)

is the rotation between adjacent phase states. The index s parametrises the Hilbert

space and, in general, we need to take the limit s → ∞. As described elsewhere

[52], we should calculate the moments as a function of s and then take the limit
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s → ∞, rather than the other way around. This is an important distinction to

make for light states, for which the Hilbert space is infinite due to photons readily

being created and destroyed.

A condensate, however, has a fixed finite number of atoms and when we take

the overlap of its state with (2.23), terms for which s is larger than the total number

of atoms in the condensate, N , vanish. This means that we simply need our basis

to extend over the total number of atoms in the state that we are examining, i.e.

s = N .

This basis can be used to calculate the relative phase distribution of two modes.

The probability that the relative phase between two modes is ∆θ is found by

calculating the overlap of the state with the joint phase state |θl〉|θl−∆θ/ε〉 and

summing over all values of the absolute phase, which is parametrised by l.

2.7 Summary

We have provided an overview of the subject of the quantum phase of a Bose

condensate. Our subsequent investigations in this thesis rest on the platform of

this chapter and so it is worthwhile reviewing the main points here. The basic

axioms of phase we have established are as follows.

• Bose condensates are characterised by phase coherence across the entire sys-

tem.

• Only in the limit of infinite atoms does a condensate have an absolute phase.

Therefore, for all condensates produced in the laboratory, relative phase is

the only meaningful concept.

• Relative phase appears due to an entanglement of condensate modes. This

entanglement can be created by the phase measurement process itself.
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Chapter 3

A phase standard for Bose

condensates

Most of us are happy with the fact that in everyday life we can think of certain

relative quantities as if they were absolute. Direction is one such example. It

is common to speak of compass points as if they were absolute directions, even

though strictly they are defined relative to the direction of the Earth’s magnetic

field. Such usage, however, is perfectly acceptable so long as the reference direction

is well-defined and implicitly understood.

Using the same reasoning, one might ask whether a similar standardisation can

be applied to the phase of a condensate. Strictly, we know that only relative phases

are defined. However, if we could define a consistent “phase standard”: a reference

condensate with which the phases of other condensates can be compared, we could

give phase the same pseudo-absolute sense that direction has.

In this chapter, we outline how such a phase standard may be defined. The ex-

istence of a phase reference is important since it gives a clear and precise definition

to what we mean by the phase of a condensate.

3.1 Introduction

A phase standard for Bose condensates has been discussed in previous work both in

the context of Josephson junctions [53, 54], and atomic condensates [55]. Leggett,

in particular, has considered whether it is possible to set up a consistent phase

reference. He considered the case of three superconductors (or superfluids), A, B,

27
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and C, that are placed in contact with one another via Josephson coupling [56]. In

his model, A is first placed in contact with B, with C absent, and sufficient time

is allowed for equilibrium to be established. The contact is then broken and B

and C are placed in contact and allowed to reach equilibrium. Finally this contact

is broken and A and C are put in contact. He then asked whether, by observing

the Josephson currents between A and B and between B and C, it is possible to

predict the current that will flow when finally A and C are connected.

Since the instantaneous Josephson current is directly related to the phase dif-

ference, this is the same as asking whether phase is transitive. In other words, does

superconductor B act as a phase standard in this model? Intuitively, we might feel

that the phase relationship that is established between A and B in the first step

will in some way be degraded when B and C are subsequently allowed to come

to equilibrium. Leggett demonstrated that, when the effects of the environment

are included, this is indeed the case and concluded that a phase standard for Bose

condensates cannot be defined in this sense.

He did, however, suggest that a phase standard might still be meaningful on

shorter timescales. Provided that this timescale is long compared to the length of

an experiment, it may still be a useful concept. After all, the Earth’s magnetic

field, which defines North, changes with time and it is the fact that this change

is slow compared with our lifespans that it still forms a valuable and meaningful

direction standard.

In this chapter, we test this proposal and include the key effect of measure-

ments establishing the phase. We also investigate whether phase is preserved in a

measurement; in other words, if we repeat the measurement do we get the same

result?

3.2 Scheme

Our scheme is based on recent work [47, 48, 57, 58] which has demonstrated that,

by making measurements which entangle two condensates, a relative phase can be

generated between them even if they are initially in states of undefined phase. Cirac

et al. showed that the interference patterns observed between number states are

indistinguishable from those obtained if the condensates start in coherent states,

i.e. states of well defined phase. From this observation, they proposed that if

relative phases were generated between each of two condensates (A and C) and

a third one (B), the relative phase between A and C can be predicted from the
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results of the other two measurements. Such a proposal has B acting in precisely

the role of a phase standard.

The entanglement between the three modes is crucial to such a scheme, and we

need to keep a full record of its evolution. Previous methods which use conditional

probabilities to determine the position (or time) of detection of the next atom in

interference schemes [47, 57], will not work. We need to keep track of the quantum

state of the system at all times and hence follow a new calculational route.

We have chosen to apply the quantum jump method (see, for example, [59])

to a system of two condensates to study the evolution of the system as atoms are

detected. This enables us to keep track of the entanglement throughout a particular

realisation and may be viewed as a representative history of an experiment [60].

We will see that the transitive nature of phase holds for any such realisation. Of

course, in this case we will not have to think of many realisations, since the idea

of a phase standard is that it is a single, unique reference.

The set-up is analogous to the theoretical work of Javanainen and Yoo [47],

who analysed the case of two initially spatially separated condensates that are

allowed to overlap and the positions of atoms in the interference pattern recorded.

An entanglement between the two ‘modes’ is established due to the fact that one

cannot know from which condensate the atoms have come. This entanglement

leads to a relative phase seen in the build up of an interference pattern in the

spatially detected atoms. We begin by studying a simple model involving the

detection of just two atoms. This gives considerable insight into how the phase

standard scheme works. We will discuss a more general multiparticle detection

scheme later.

Our basic model consists of three condensate modes, A, B and C, each initially

in a number state with no phase information. For convenience, we take each mode

to have the same number of atoms, N , and the same rate of loss of atoms. If we

now allow modes A and B to fall onto a detector and detect one atom in such

a way that we cannot know which condensate it came from, the two modes are

entangled. This detection both creates and measures a phase between A and B,

φAB. We can write the total state after this step as

|ψ〉 =
1√
2

(
|N − 1, N,N〉+ eiφAB |N,N − 1, N〉

)
. (3.1)

We now consider detecting a single atom from the overlap of modes B and C. If

the phase associated with this detection is φBC , we can write the total state after
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this step as

|ψ〉 =
1

2
(|N − 1, N − 1, N〉+ eiφBC |N − 1, N,N − 1〉

+eiφAB |N,N − 2, N〉+ ei(φAB+φBC) |N,N − 1, N − 1〉), (3.2)

where, for illustrative purposes, we have taken N to be sufficiently large that we

can neglect the difference between N and N − 1 in the coefficients. The phase of

mode A relative to C, which have never directly interacted, is then given by

φAC = arg
{
〈ψ|c†a|ψ〉

}
= φAB + φBC . (3.3)

This result demonstrates that the phase is transitive and has mode B acting as a

phase standard.

Although the transitivity of mean phase is present even after the detection of

a single atom from each pair of condensates, the phase resolution is poor. A phase

standard will be of limited use unless the phases are well defined. For this reason,

we would now like to consider the more general case where many particles are

detected and so the statistics are improved. The permutations of this calculation

rapidly become very complicated, so we perform a numerical analysis which will

also enable us to model the random nature of the atomic detections.

For convenience, we consider the time analogue of the scheme outlined above,

observing the time, rather than the position, at which atoms are detected. As in the

spatial model, we would expect a relative phase to develop. This temporal scheme

has the advantage of allowing us to consider condensates in energy eigenstates

rather than momentum eigenstates. In an experiment, we expect the condensate

to be in the ground state energy level of the trap.

There have been various proposals for measuring the relative phase between

condensates. These are based on recording interference patterns [47], or by induc-

ing Raman transitions which couple the condensates [61, 62, 63, 64]. The precise

way in which the measurement is made does not matter as all of these schemes

rely on detecting a superposition of the two fields. We have chosen to use a beam

splitter to produce this superposition but a variant of the same analysis would

work for any of these schemes.

We consider a 50:50 beam splitter with a condensate as the input to each of

the two ports. The two condensate modes are identified with the operators a and

b. If we transform to a frame rotating at the frequency of mode a, ωa, the field
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operators at the two output ports of the beam splitter are

C1 =

√
κ

2

(
a+ ib e−iΩt

)
(3.4)

C2 =

√
κ

2

(
ia+ b e−iΩt

)
, (3.5)

where κ is the rate of detection of atoms and Ω = ωb − ωa.

We wish to calculate the quantum state of the system conditioned on all the

previous detections, |ψc〉. The procedure for simulating this measurement process

is outlined below.

(i) Firstly, we determine the probability that an atom is detected at port j ∈ {1, 2}
in a time interval, ∆t

Pj(t,∆t) = ∆t〈ψc(t)|C†
jCj|ψc(t)〉. (3.6)

We then generate random numbers, rj, from a flat distribution between zero and

one, and compare these with Pj.

(ii) We define our protocol so that if rj < Pj, a detection is made in port j

during ∆t and the system jumps to the renormalised form,

|ψc(t)〉 −→
Cj|ψc(t)〉√

〈ψc(t)|C†
jCj|ψc(t)〉

. (3.7)

(iii) If r1 > P1 and r2 > P2, there is no detection in the interval, ∆t, and the

system evolves due to the unitary part of the Hamiltonian,

|ψc(t)〉 −→ exp [−iHeff∆t] |ψc(t)〉. (3.8)

We have defined h̄ ≡ 1, and the effective Hamiltonian, Heff is given by, Heff =

H0 − iκ(a†a+ b†b)/2, where H0 is the system Hamiltonian. The state needs to be

renormalised after each step since Heff is non-Hermitian.

(iv) Steps (i)–(iii) are repeated to propagate the state forward in time until the

desired number of atoms has been detected.

We can summarise this procedure as a stochastic Schrödinger equation (SSE),
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which the reader may find helpful. For each port, this equation contains a stochas-

tic term which consists of the change in the state vector when a detection takes

place at that port, multiplied by a random variable which determines whether or

not an atom is detected at that time. There is also a deterministic term describing

the evolution when an atom is not detected. More formally, we can write the SSE

as

d|ψc〉 =

dN1

 C1√
Q1

c(t)
− 1

+ dN2

 C2√
Q2

c(t)
− 1


− dt

[
iH0 +

κ

2

(
a†a+ b†b− 〈a†a〉 − 〈b†b〉

)]}
|ψc〉, (3.9)

where we have defined Qj
c(t) ≡ 〈ψc(t)|C†

jCj|ψc(t)〉. The random variables, dN1 and

dN2, must have the properties,

dNj(t)
2 = dNj(t) (3.10)

E[dNj(t)] = Qj
c(t)dt = Pj(t, dt), (3.11)

where E[dNj(t)] denotes the ensemble average of dNj(t). This is because for a

single trajectory at a given time, t, dNj(t) ∈ {0, 1} since either a jump takes place

or it doesn’t. The expectation value for each of the random variables, however,

must be equal to the probability of a detection in that port at time, t.

Another way to consider (3.9) is as an ‘unravelling’ of the master equation

[59, 65, 66, 67, 68]. We can show this by calculating the time derivative of the

system’s density matrix, ρ(t) = |ψc(t)〉〈ψc(t)|, on an ensemble average.

ρ̇(t) = E

[
d

dt
(|ψc〉〈ψc|)

]
. (3.12)

A simple calculation gives

ρ̇(t) = −i [H0, ρ(t)] +D[a]ρ(t) +D[b]ρ(t) (3.13)

where

D[s]ρ(t) = κ
(
sρ(t)s† − 1

2
s†sρ(t)− 1

2
ρ(t)s†s

)
. (3.14)

This is the master equation for the system, which is what we would expect for

an ensemble average over all the trajectories. There is no unique unravelling of

the master equation. However, Equation (3.9) is the special case for which each
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trajectory can be thought of in terms of a representative experimental run [60].

This is what we want, since when comparing a condensate with a phase standard,

we must consider a single trajectory not an ensemble average.

For an initial number state, the master equation can lead only to mixtures of

number states and, as such, does not allow for the build-up of phase. However,

this need not concern us since, as we shall see in the results below, each trajectory

demonstrates the same fixed and predictable phase relationship between the modes.

Our concept of a phase standard is that there is only one, and so this must obey

the same phase relationship as that of a single trajectory. The phase information

would be wiped out only if we were to take the ensemble average over all phase

standards. The notion of a phase standard thus relies on everybody using the same

reference condensate.

3.3 Results

We are now in a position to study how the phase builds up between condensates

when we detect atoms at the output ports of the beam splitter. We use the

calculational procedure outlined in Equations (3.6)–(3.8). The three mode set-up

is shown in Figure (3.1). We take each condensate to be initially in a number state

with 1000 atoms, and so the system begins with no phase information. The total

system will remain in a state of known number throughout the simulation since

we detect and record every atom that escapes from the traps. As we shall see,

however, this does not prevent relative phases from developing between the three

parts of the system.

For simplicity, we set the trap frequencies and detection rate so that ωa = ωc =

ωb/4 = 40κ. In the rotating frame, we also set the system Hamiltonian, H0, equal

to zero. This last condition amounts to considering atoms which do not interact

with one another. It is very straightforward to generalise H0 to include interactions

between atoms, which give rise to interesting effects such as collapses and revivals

of the phase [69].

To begin with, we allow atoms to leak out of traps a and b and we record the

times at which atoms are detected in beam splitter ports 1 and 2. We continue

until about 10% of the atoms in traps a and b (i.e. about 200) have been detected.

Throughout the simulation, we dynamically calculate the phase of a relative to b,
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φab. This is given by

φab(t) = arg
{
〈ψc(t)|b†a|ψc(t)〉

}
. (3.15)

The measurement scheme serves the dual role of both creating and measuring

the relative phase. This phase (3.15) may be found by taking the difference in

the number of atoms detected at each port, D(t), per time interval, ∆t. For zero

phase difference, we would expect equal numbers of detections at each port, and

for a leading (lagging) b by π/2 we would expect more detections at port 1(2).

This means that for degenerate modes, we would expect to see a sinusoidal time

dependence of the difference in numbers of atoms detected at the two ports. In

analogy with the position of the spatial fringes in interference experiments, we can

use the ‘time-position’ of the temporal fringes as a measurement of the relative

phase.

On average, the difference in the number of atoms detected at each port per

time interval is given by

D(t)/∆t =
〈
ψc(t)

∣∣∣C†
1C1 − C†

2C2

∣∣∣ψc(t)
〉

(3.16)

= iκ
(
〈a†b〉 e−iΩt − 〈b†a〉 eiΩt

)
. (3.17)

We can write

〈b†a〉 = |〈b†a〉| eiφab(t), (3.18)

where φab(t) contains the non-deterministic part of the relative phase due to the

randomness of each trajectory. With this substitution, we get

D(t)/∆t = 2κ|〈b†a〉| sin (Ωt+ φab(t)) . (3.19)

So the relative phase is given by the argument of the sinusoidal plot of the difference

in the number of atoms detected at each port per time interval. For our results,

we subtract the known deterministic component, Ωt.

A plot of φab against time is shown in Figure (3.2a). As expected, the relative

phase is initially undefined. Then, as atoms are detected, it fluctuates for a while

before settling down to a fixed constant value, Φab. This value is random and

varies for measurements made on identically prepared systems. At the end of this

detection process, modes a and b are entangled and mode c is unaffected. The
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Detectors
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Figure 3.1: The phase standard scheme. (i) In the first stage, condensates a and b are
the inputs to a beam splitter and we record atomic detection times at the two output
ports. (ii) In the second stage we repeat the process but with b (now entangled with a)
and c as the two inputs. (iii) Finally, we measure the relative phase between a and c

and compare with the results of the phase measurements in (i) and (ii).
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state vector for the system is given by

|ψc〉 =

 N∑
i=N−l

ci |2N − l − i〉a|i〉b

 |N〉c, (3.20)

where N is the initial number of atoms in each trap, l is the number of atoms

detected (l < N), and {ci} are the coefficients determined by the numerical simu-

lation.

The fact that a relative phase arises does not contradict our discussion in

Chapter 2 that a condensate cannot have an absolute phase. We can see this by

finding the reduced density matrix for either mode. The reduced density matrix

describing mode b is found by tracing over the states of mode a. This gives

ρb = Tra{ρ} =
N∑

i=N−l

|ci|2 |i〉〈i|, (3.21)

which is a mixture of number states and so has no phase information. We can see

this by calculating the phase directly,

φb = arg [Tr {ρbb}] = arg{0}, (3.22)

which is undefined. We conclude that, although there is a well-defined relative

phase between modes a and b, each mode individually has no phase.

In the second part of the simulation, we take mode b (now entangled with a) as

the input to one port of a beam splitter, and mode c as the other input. As before,

we record the times that atoms are detected at the two output ports until roughly

10% of the atoms have been detected. A plot of the relative phase between modes

c and b, φcb, is shown in Figure (3.2b). As in the first part, this eventually settles

down to a fixed constant value, Φcb, and this varies randomly for measurements

made on identically prepared systems.

An important observation is that the entanglement of b and c does not affect the

existing entanglement between a and b, so long as the modes are not too severely

depleted in the process. This is a very desirable property for a phase standard

since it means that the standard is not corrupted in the process of comparing it

with another condensate.

In this simulation, we consider that there is no independent loss from the traps.

Such a process, corrupts the entanglements and so degrades the phase standard. In

Chapter 4, we study in more detail how dissipation degrades phase relationships.
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Figure 3.2: The establishment of a relative phase. The time evolution of the relative
phase between modes a and b is shown in (a) and between b (now entangled with a) and
c in (b). In each case, the relative phase is plotted against the dimensionless quantity

κt, where κ is the rate of detection of atoms.
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This explains why a phase standard will not work if the system is allowed to

reach equilibrium with the environment as pointed out by Leggett [53]. Here we

investigate the system on a different timescale: long before it reaches equilibrium.

For our system, this can be long enough for useful experiments. The effect of

interactions and loss are treated by Sinatra and Castin [70].

At the end of this second measurement stage, modes a and c are each entangled

with b. The state vector for the system is

|ψc〉 =
N∑

j=N−m

N∑
i=2N−m−j

di,j |3N − i− j −m〉a|j〉b|i〉c, (3.23)

where m is the total number of atoms detected in both measurement stages (m <

N), and {di,j} are the coefficients determined by the numerical simulation.

Finally, in the third part, we calculate the phase of a relative to c, φac. This is

given by

φac = arg
{
〈ψc|c†a|ψc〉

}
= arg


N∑

j=N−m

N−1∑
i=2N−m−j

di,j d
∗
(i+1),j

√
(i+ 1)(3N − i− j −m)

 . (3.24)

Proposals have been made for how this could be measured [61, 62, 63, 64]. Alterna-

tively, we could simply perform another interference measurement. The difference

here is that the relative phase exists a priori and isn’t built up by the measure-

ment. For this scheme to work successfully as a phase standard, we require that

φac = Φab−Φcb. From the simulation shown in Figure (3.2), we see that there is re-

markable agreement. In fact, many simulations were performed and in all of them

we were able to predict the relative phase between a and c with great accuracy.

Once the phases have been established between the modes, further measure-

ments give the same results. The relative phases are now fixed and are encoded in

the entanglements and further phase measurements do not corrupt these.

Of course, we could carry on and measure the relative phase between a fourth

condensate and our phase standard. We know that this measurement will not

destroy the entanglements with the other condensates, so we could then predict the

relative phases between this condensate and the other two. The only limitation on

how many times this phase reference can be used is the number of atoms it contains.

Provided that the initial number of atoms is very large, many measurements can

be made before the standard is depleted. As our simulations show, only a small
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fraction of the atoms need to be removed to make a measurement, which means

our sample is not destroyed in the process. Such an arrangement demonstrates all

the properties that we require in a phase standard.

The existence of a phase standard for Bose-Einstein condensates is of con-

siderable importance. It gives us a clear and precise definition of the phase of

a condensate. We can now speak sensibly of a condensate’s phase in the same

pseudo-absolute sense that we speak of direction, implicitly interpreting it to mean

‘relative to a well-defined standard’.

The analogy between direction and phase, however, is not perfect and there

are some subtle differences. In particular, direction does not require a procedure

to standardise it, whereas we need to make specific measurements on condensates

to standardise their phase. In the next chapter we will discuss how relative phase

can naturally arise between condensates without the need for any measurements.
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Chapter 4

Establishment of phase between

coupled condensates

4.1 Introduction

In this chapter, we want to extend our analysis of phase to systems of coupled

condensates. This is of special interest due to recent experimental advances in

creating superpositions of condensates in two hyperfine levels [71] and chains of

coupled trapped condensates [72]. In particular, we want to study how phase

information is established and transferred between the condensates, both with and

without the effects of dissipation.

We begin in Section 4.2, by studying how a relative phase can be established

between two condensates by a Josephson-like transfer between them. This differs

from the measurement-induced phase that we discussed in Chapter 3 since the evo-

lution is unitary and therefore the phase generated is deterministic. We will discuss

how the phase of the transferred component may be predicted and controlled. In

Section 4.3, we investigate how phase is transported along a set of coupled con-

densates if we make measurements which establish a phase at one site. Finally, in

Section 4.4, we extend this idea to demonstrate how dissipation and interactions

can naturally give rise to phase. This has been inspired by a recent experimental

demonstration of a mode-locked atom laser [72], in which the output from a lattice

of coupled condensates is observed as a train of atomic pulses, providing a clear

demonstration of phase locking of the condensate modes.

41
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4.2 Phase of Josephson-transferred condensates

We begin by discussing the form of the coupling. Josephson coupling [56] of con-

densates can be achieved by allowing them to tunnel through a potential barrier

or, equivalently, by coupling them with laser fields. It is equivalent to Raman

transfer, i.e. a stimulated transfer to another internal atomic state, which can be

brought about by applying two laser fields to a condensate [73]. This preserves the

coherence and can be used for atomic beam splitters [74] and output couplers for

atom lasers [75].

Hall et al. [64, 76] used Raman pulses to create an interferometer by trans-

ferring half the population in a condensate to another trapped state. They then

allowed the system to evolve before recombining the two components and study-

ing the interference pattern in their region of overlap. Among other things, they

demonstrated that the relative phase between the two components is fixed and

repeatable. This means that one should be able to transfer a condensate into a

number of different modes, all with the same phase relationship to the original.

The question arises whether we can go one step further and predict the value of

the relative phase. It may seem obvious to some that the phase of the transferred

component be identical to that of the original. In fact, we shall show that it is

not always so. In this section, we discuss simulations of the transfer process and

investigate the reproducibility of the relative phase as well as its value. We also

investigate how the phase depends on the system parameters and how to prepare

condensates with a given phase relative to its mother. This is of particular interest

in relation to the output pulses from atom lasers, since they rely on Josephson-like

transfer as the output coupling mechanism [77].

4.2.1 Phase preparation

The first step in our scheme is to establish and measure a relative phase between

the condensate and the phase standard. We follow a procedure similar to that

outlined in Chapter 3.

We consider two condensate modes, identified in turn with the annihilation

operators a and b. Initially a and b are taken to be in number states with N

atoms, and we allow outputs from these modes to be incident on the ports of a

50:50 beam splitter (see Figure (4.1)). Detecting atoms at the two output ports

entangles the modes which leads to the establishment of a relative phase between

them.



4.2. Phase of Josephson-transferred condensates 43

Figure 4.1: (i) In the first stage, we record the detection times at the output ports of
a beam splitter which has condensates a and b as the inputs. (ii) In the second stage,
part of mode b is Raman transferred to mode c which is initially empty. (iii) Finally, we
measure the relative phase between a and c and also between a and b and compare with

the result of the phase measurement in (i).

The state vector at the end of this process is given by Equation (3.20),

|ψc〉 =
N∑

i=N−l

di |2N − l − i〉a|i〉b, (4.1)

where l is the total number of atoms detected (l < N), and {di} are the coefficients

determined by the numerical simulation.

A plot of φba(t) is shown in Figure (4.2a) for a system which initially has 1000

atoms in each trap and for which we detect about 10% of the atoms in the mea-

surement process. As expected, the relative phase stabilises to an approximately

fixed constant value. This value is random and varies for measurements made on

identically prepared systems.

4.2.2 Phase transfer

In the second part of this scheme, we coherently transfer a fraction of mode b, now

entangled with the phase standard, a, to a third mode c, which is initially in a

vacuum state. Finally, we measure the relative phases between each of modes b
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Figure 4.2: The time evolution of the relative phase between a and b for N = 1000
and 10% of the atoms detected. The relative phase is plotted against the dimensionless
quantity κt, where κ is the rate of detection of atoms. A phasor diagram of the relative
phases of the three modes after the Raman transfer for δ = 0 is also shown. Mode a is

used to set the zero of phase.

and c with the phase standard a, and thereby determine the relative phase between

b and c.

The Hamiltonian for the transfer may be written as

H = ωbb
†b+ ωcc

†c+ Γ
(
bc† e−iωt + b†c eiωt

)
, (4.2)

where ω is the driving frequency and the coupling strength, Γ, is real. For the

sake of simplicity, in this section we neglect interactions between atoms. However,

these interactions, which lead to interesting effects such as collapses and revivals

of the condensate phase [69, 78], can readily be included in this formalism and we

will reintroduce them in Sections 4.4.2 and 4.4.3. In the interaction picture, we

can write the Hamiltonian as

HI =
1

2
∆(b†b− c†c) + Γ(c†b+ b†c), (4.3)

where ∆ = ωc−ωb−ω is the detuning between the driving and transition frequen-

cies.
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We can find the Heisenberg equations of motion for b and c directly from (4.3),

ḃ(t) =
i

2
∆b(t)− iΓc(t) (4.4)

ċ(t) = − i
2
∆c(t)− iΓb(t). (4.5)

These can be solved by differentiating both equations and substituting. The result

is,

b(t) =
[
cos(Ωt) +

i∆

2Ω
sin(Ωt)

]
b(0)− iΓ

Ω
sin(Ωt) c(0) (4.6)

c(t) =
[
cos(Ωt)− i∆

2Ω
sin(Ωt)

]
c(0)− iΓ

Ω
sin(Ωt) b(0), (4.7)

where Ω2 = (∆/2)2 + Γ2.

We can now use (4.6) and (4.7) to directly calculate the moments of the system.

In particular,

〈c†(t)b(t)〉 = 〈b†(0)b(0)〉 iΓ
2Ω

[
sin(2Ωt)− i∆

2Ω
(cos(2Ωt)− 1)

]
, (4.8)

since the moments other than 〈b†b〉 vanish at t = 0. The phase of b relative to a is

then given by,

φbc(t) = arg
{
〈c†(t)b(t)〉

}
(4.9)

= arg
{
iNb sin(2Ωt) +

i∆

2Ω
Nb(cos(2Ωt)− 1)

}
, (4.10)

where Nb is the mean number of atoms initially in mode b.

4.2.3 Results

To begin with, we consider the case where the transition between modes b and c

is driven on resonance, ∆ = 0. In this case, our simulations show that mode b

always leads mode c by π/2. An example of this is shown in the phasor diagram

of Figure (4.2b), where we have used a to fix the zero of phase, as is the role of the

phase standard. As expected, the relative phase between a and b varies randomly

from realisation to realisation, however, there is always a fixed phase difference

of π/2 between b and c. This is consistent with the fact that resonant Raman

coupling is formally equivalent to the action of a beam splitter (see Appendix C).

The two outputs from a beam splitter acquire a relative phase of π/2 due to the
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phase shift on reflection.

We can see how this result arises by setting ∆ = 0 in (4.10). This gives Ω = Γ

and

φbc(t) = arg {iNb sin(2Γt)} . (4.11)

This agrees with the result (2.14) we obtained in Section 2.4. We see that, for no

interactions, all the atoms undergo independent Rabi oscillations, which is what

we might expect. It is clear from (4.11) that |φbc| has the value π/2, for all times

other than integer multiples of t = π/(2Γ), at which times the phase is undefined.

For 0 < t < π/(2Γ), c always lags b by π/2, which is in agreement with our

simulations.

We can also explain the times for which the phase is undefined as being when all

the population is in one mode. For odd multiples of t = π/(2Γ), mode b is empty

and mode c is in the number state |N〉, the converse is true for even multiples

of t = π/(2Γ). Clearly each of these situations has no phase information. The

relative phase arises as soon as there is any entanglement between the modes.

We can consider (4.10) to be the function of two variables: Ωt and ∆/Ω. A

plot of how φbc varies with Ωt and ∆/Ω is shown in Figure (4.3). In (4.3a), we set

Ωt = π/4, which is that value that corresponds to transferring half the population

to c in the case of zero detuning, and we plot how φbc varies with ∆/Ω. In (4.3b),

we fix ∆/Ω = 0.5 and investigate how φbc varies with Ωt. Since we are neglecting

interactions, these plots are independent of the total number of atoms.

We find that the phase difference between modes b and c tends to π/2 (with

mode b leading) independently in the limit of ∆/Ω → 0 or Ωt→ 0. The first limit

corresponds to a detuning much smaller than the coupling strength. The second

limit corresponds to the case that only a very small fraction of the population is

transferred to mode c.

For realistic systems, the interactions play an important role and we would

need to include the effect of them in our calculation before making an accurate

prediction of experimental results. However, keeping this in mind, we would like

to get a feel for the expected phase difference by substituting parameters from a

recent experiment.

Hall et al. [64, 76] have carried out a transfer of population and presented

results for detunings of ∆1 = 2π × 200Hz and ∆2 = 2π × 350Hz. The coupling

strength in their experiment was Γ = 2π × 625Hz and half the population was

transferred in each step, so Ωt ≈ π/4.

Neglecting the effect of interactions, for Ωt = π/4 and ∆1/Ω1 = 0.32, our
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Figure 4.3: Plot of how the relative phase between b and c, φbc varies with (a) ∆/Ω when
Ωt = π/4, and (b) Ωt when ∆/Ω = 0.5.

calculation predicts a relative phase between b and c of φbc/π = 0.55. For Ωt = π/4

and ∆2/Ω2 = 0.54, we predict a relative phase of φbc/π = 0.58. Experimentally, the

detuning can be varied readily, allowing control over the phase of the transferred

component. With a careful choice of the parameters Ωt and ∆/Ω, we should be

able to transfer condensate components with the phase we want.

4.3 Measurement-induced phase-locking

We would now like to investigate how phase information is communicated along

a chain of coupled condensates. This is of particular interest due to the recent

experimental demonstration of a mode-locked atom laser [72]. In this experiment,

condensates were trapped in the antinodes of an optical standing wave, and each

site in this chain was coupled with its neighbours by quantum mechanical tun-

nelling. The output from the lattice was observed as a train of “mode-locked”

atomic pulses, demonstrating that each site has identical relative phases.

We investigate condensates on spatially separated sites, coupled to their nearest

neighbours. By inducing a phase at one of the end sites, we can see whether phase

information is transported along the chain. In particular, we wish to see whether

each mode acquires a fixed and predictable phase relationship with the end mode.

Recently, a study of a coupled two-mode system has been carried out using
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a semiclassical (mean field) approach [79] which predicts, among other things,

phase-locking of the condensate modes. Here, we perform a quantum calculation

which also deals with the issue of how the phase symmetry is broken, rather than

assuming a priori that each condensate can be assigned a phase.

4.3.1 Simulation of phase-locking

The system we consider consists of two condensates, b and c, which are Josephson-

coupled. We make measurements which entangle one site with a phase reference

condensate as discussed in Chapter 3. Our arrangement is very similar to the one

shown in Figure (4.1). In the present case, however, all the modes are in number

states with the same number of atoms, and we measure the interference pattern

between a and b in the presence of Josephson coupling between b and c. In the

previous section, we established a relative phase between a and b and, only after

that was done, did we couple modes b and c.

Our simulation in Section 4.2 can easily be modified for this system by including

a Josephson coupling term in the system Hamiltonian. The coupling takes the

same form as (4.3) with δ = 0. With this inclusion, the system Hamiltonian in the

interaction picture becomes

H0 = ωaa
†a+ ωbb

†b+ ωcc
†c+ Γ

(
b†c+ c†b

)
, (4.12)

We need to perform a three mode calculation rather than two two-mode calcula-

tions as in Section 4.2. This slows down the calculation considerably and for this

reason we consider only small atom numbers. For the simulations shown here, we

consider 50 atoms in each trap. Halfway through each of the simulations, we turn

the detections off and observe how the relative phase evolves under the influence

of the Josephson coupling alone.

4.3.2 Results

Results are shown in Figures (4.4) and (4.5). For our simulations, we consider

modes b and c to be degenerate with ωb = ωc = 5Γ. We take the frequency

difference between a and b to be 40 times larger than the atomic detection rate,

ωb − ωa = 40κ, and we detect about 30 atoms in each realisation.

In (4.4a) and (4.5a) the relative phases between each of the condensates in the

chain and the phase standard, φba and φca, are plotted as a function of time. In each
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case, we see that the relative phases jump around for a while before settling down

to a regular periodic pattern demonstrating a linear relationship between relative

phase and time. This dependence is established while the detections are being

made and continues after they are turned off. The discontinuities in Figures (4.4a)

and (4.5a) are simply due to the fact that we have plotted the relative phases

modulo 2π.

The striking difference between these two results is that in (4.4a) the phases

of b and c lock to the same value relative to the phase standard whereas in (4.5a)

they are completely out of step. This is illustrated more clearly in Figures (4.4b)

and (4.5b), where we have plotted the relative phase between modes b and c as a

function of time, φbc(t) = φba(t)− φca(t). We see that in (4.4b), φbc oscillates for a

while before settling to the constant value φbc = 0, and in (4.5b) |φbc| settles to π,

i.e. the modes are exactly out of phase. All our simulations randomly give one of

these two results: the phases of the two modes in the chain always either lock or

antilock.

We can understand these results if we consider the eigenstates of the system.

For a two mode system with linear coupling and no interactions between atoms,

the eigenstates are simply the symmetric and antisymmetric superpositions of the

trap modes. If we write the trap wave functions for modes b and c respectively as

ψb and ψc, then the eigenfunctions are ψsym = ψb + ψc and ψasym = ψb − ψc. We

can write this as

ψ = ψb + eiφ ψc, (4.13)

where φ = 0 for the symmetric mode, ψsym, and φ = π for the antisymmetric mode,

ψasym. The eigenstates correspond to the phases of the two traps either being in

phase or antiphase. An analogy can be drawn with two coupled pendulums. The

normal modes for this system are the ones where the pendulums swing perfectly

in step or half a cycle out of phase.

The tendency for the system to occupy one of the eigenstates is shown in Fig-

ures (4.4c) and (4.5c). In these, we have plotted the populations of the symmetric

and antisymmetric eigenstates as a function of time. In (4.4c), we see that the

population of the antisymmetric mode vanishes and all the atoms occupy the sym-

metric mode. This is consistent with the fact that the relative phase between

modes b and c tends to zero. The converse is true in (4.5c): all the atoms occupy

the antisymmetric mode and the relative phase between b and c tends to π.

It is not surprising that a phase relationship develops between the modes. The

coupling between b and c, when we measure the interference pattern between a
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Figure 4.4: Demonstration of phase locking. (a) Plot of the phases of modes b and c
relative to the phase standard, φba (full curve) and φca (broken curve), as a function of
time. (b) Plot of φbc = φba − φca against time. (c) Time variation of the populations in

the symmetric and antisymmetric superpositions of the trap modes.

and b, means that we cannot know from which of the three modes a detected atom

has come. This leads to entanglement between all three condensates.

4.3.3 Comparison with a semiclassical model

A useful way to understand these results is to perform a semiclassical analysis of

the system. Such an approach is only approximate and requires that we make

certain assumptions, such as each condensate initially having a well defined phase.

Nonetheless, it is a powerful technique for understanding the dynamics of the

system and has allowed previous authors to predict interesting features such as

π-oscillations and macroscopic quantum self trapping [80].

The Hamiltonian for the system is given by

H = ωbb
†b+ ωcc

†c+ Γ
(
b†c+ c†b

)
, (4.14)

where ωb = ωc. We can make a semiclassical approximation by making the re-

placements

b(t) =
√
Nb(t) eiθb(t) (4.15)
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Figure 4.5: Demonstration of phase anti-locking. (a) Plot of the phases of modes b and
c relative to the phase standard, φba (full curve) and φca (broken curve), as a function of
time. (b) Plot of |φbc| = |φba − φca| against time. (c) Time variation of the populations

in the symmetric and antisymmetric superpositions of the trap modes.

c(t) =
√
Nc(t) eiθc(t). (4.16)

where Nb,c corresponds to the number of atoms in mode b, c and θb,c corresponds

to the phase of b, c.

Next we define the new quantities of fractional population imbalance,

z(t) ≡ 〈b†b〉 − 〈c†c〉
〈b†b〉+ 〈c†c〉

=
Nb(t)−Nc(t)

N
, (4.17)

where N = Nb +Nc is the constant total number of atoms, and relative phase

φ(t) ≡ arg
{
〈c†b〉

}
= θb(t)− θc(t). (4.18)

In Appendix B, we derive semiclassical equations of motion in terms of these new

quantities [80]. These can be written as

ż(t) = −2Γ
√

1− z2(t) sin(φ(t)) (4.19)

φ̇(t) = 2Γ

 z(t)√
1− z2(t)

 cos(φ(t)). (4.20)
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The stationary solutions are, φ = 2nπ, z = 0, and φ = 2(n+ 1)π, z = 0, where

n is an integer. We see that the two stationary solutions are when the populations

in each trap are equal and the phases (modulo(2π)) are either in step or half a cycle

out of step. That is, the stationary solutions are the symmetric and antisymmetric

eigenstates of the system. This is in agreement with the results of our simulations.

We can perhaps see this more clearly by taking the time derivative of (4.20)

φ̈(t) = −2Γ2

(
1 + z2(t)

1− z2(t)

)
sin(2φ(t)). (4.21)

If we now linearise (4.21) in z we obtain

φ̈ = −2Γ2 sin(2φ(t)) +O(z2). (4.22)

This is justified since, for non-interacting atoms, our simulations show that if the

traps initially have equal populations, the populations remain very nearly equal

for all time, i.e. |z(t)| � 1. Following the argument of Raghavan et al. [80],

this suggests a mechanical analogy in which a particle, of mass unity, with spatial

coordinate φ moves in the potential, V , given by φ̈ = −∂V/∂φ. This gives

V (φ) = −Γ2 cos(2φ) +O(z2), (4.23)

which has local minima at φ = 0 as well as φ = ±π, and confirms the results of

our simulations that the phases either lock or antilock.

Our simulations show that for non-zero interactions between atoms, the rela-

tive phase between the traps depends on the sign of the interaction. For attractive

interactions, the system tends towards the symmetric mode with zero phase differ-

ence between the traps (a typical trajectory looks like Figure (4.4)). Conversely, for

repulsive interactions, the system tends to the antisymmetric mode with π phase

difference (a typical trajectory looks like Figure (4.4)). We can see why this is by

introducing an interaction term to the Hamiltonian, HI = U
(
b†2b2 + c†2c2

)
, where

U is the interaction strength. With this additional term, the equivalent potential

(4.23) becomes,

V (φ) = 4ΓUN cos(φ)− Γ2 cos(2φ) +O(z2). (4.24)

For repulsive interactions (U > 0), the dip at φ = π is enhanced and the dip at

φ = 0 is reduced. The converse is true for attractive interactions. This is what
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we might expect if we again consider two coupled pendulums. If the two bobs

have repulsive interactions we might intuitively feel that they would be happiest

oscillating in antiphase so as to maximise their mean separation and conversely for

attractive interactions.

4.4 Natural phase locking

In the previous section, we discussed phase locking along a chain of condensates

when a phase was established between the end sites by measurement. In the

experiment of Anderson and Kasevich [72], however, no such measurement was

made. We would like to understand the mechanism by which the phases could

lock in this case.

Such an investigation also has a deeper significance: so far, we have required a

measurement procedure to create a relative phase. We pointed out in Chapter 3

that this was a subtle difference between a phase standard and other standards. In

this section, we show that such a measurement is not necessary, but that phase can

arise due to natural processes. We begin by considering the effect of dissipation at

one of the sites. In the following sections, we will consider interactions and then

the combined effect of interactions and loss.

4.4.1 Dissipation

We begin by calculating the relative phase for a two mode system with no loss and

with each mode initially in the same number state. The phase between modes a

and b is given by

φba(t) = arg
{
〈N |〈N |U †

ab(t) a
†b Uab(t) |N〉|N〉

}
, (4.25)

where

Uab(t) = exp
[
−iΓt

(
a†b+ b†a

)]
, (4.26)

if the modes are degenerate. This can be simplified, using (2.13), to give,

φba(t) = arg
{
〈N |〈N |

[
i(b†b− a†a) sin(2Γt) + (a†b− b†a) cos(2Γt) + a†b+ b†a

]
|N〉|N〉

}
= arg{0}, (4.27)
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Figure 4.6: Chain of coupled condensates. Each pair of adjacent condensates is coupled
by quantum mechanical tunnelling and there is dissipation from mode a

which is undefined for all time, i.e. the system has no phase information. In fact,

a more general definition of phase [50] shows that phase information does exist for

this system, but cycles with time. At odd multiples of π/4Γ, the relative phase

between the modes is zero, and at even multiples of π/4Γ, the relative phase is

undefined. We are only interested in the case where the phase stabilises with time.

However, when dissipation is introduced at one site (or both sites), the number

symmetry of the system is broken and, as we shall see below, a stable relative

phase can develop between the modes.

For our simulations, we consider a chain of three condensates, all initially in

number states with the same number of atoms. Each mode is coupled to its

neighbours by quantum mechanical tunnelling (see Figure (4.6)).

We use a quantum jump method (as outlined above) to simulate the loss process

from mode a. A phase will not be established if the modes are degenerate. For

simplicity, we take the mode frequencies to be in the ratio ωa : ωb : ωc = 1 : 2 : 3.

We take the ratio of the mode couplings to the trap frequencies as, Γ/ωa = 0.1

and the ratio of the detection rate to the trap frequencies as, κ/ωa = 0.01. This

means that the loss rate is much smaller than the coupling frequency which is, in

turn, much smaller than the trap frequencies. We take N = 50, i.e. each trap is

initially in a number state with 50 atoms. Typically about 30 atoms are lost from

mode a for each trajectory. To begin with, we ignore interactions between atoms.

The result of a simulation for a single trajectory is shown in Figure (4.7). In

(4.7a) we have plotted the relative phase between modes a and b. As expected, the
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Figure 4.7: Phase locking due to dissipation. In each figure we have plotted phase against
the dimensionless quantity κt: (a) φba, (b) φba with the deterministic part removed,
(c)φbc, (d) φbc with the deterministic part removed. There are initially 50 atoms in each

mode.

phase is initially undefined, which corresponds to the time before an atom is lost

from the trap. However, once an atom has been lost, a phase develops between the

modes. We see in (4.7a) that this is initially unstable and fluctuates for a while

before settling down to a steady linear relationship with time. The discontinuities

are again an artifact of plotting the phase modulo 2π.

The linear relationship in the plot is due to the fact that there is a frequency

difference between modes a and b. We would expect there to be a deterministic

component of the relative phase dependent on ωb − ωa, which allows us to write

the time dependence of the relative phase as

φba = (ωb − ωa) t+ Φba, (4.28)

where Φba accounts for the stochastic non-deterministic part and can be thought

of as the φba-axis intercept if we were to fit a line to the linear part of the plot.

In Figure (4.7b), we have plotted the time dependence of Φab. This fluctuates for

a while before settling to zero. The corresponding results for modes b and c are

shown in (4.7c) and (4.7d) and we see that we get very similar results.

In this case, we do not detect atoms as they are lost from the condensate and so
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do not know the times at which they escape. This means that, unlike previous cases

which deal with direct detection [81], we need to average over all trajectories. This

is equivalent to using a density matrix description which formalises our uncertainty

of the escape times.

The relative phase between the condensate modes is given, in terms of the

density matrix, as

φba(t) = arg
[
Tr
{
ρ(t)a†b

}]
. (4.29)

It is straightforward to show that the time dependence of the phase of our system

is given by simply averaging over the relative phases of individual trajectories.

We might expect that each trajectory will settle to a well defined phase, but

that this phase will vary randomly from run to run. This would mean that on

the ensemble average the phase information would be wiped out, which was the

interpretation of the results in the papers for which a relative phase was established

by measuring the interference pattern between two condensates [47]. In our case,

however, a remarkable thing happens. In Figures (4.7a) and (4.7c), the results

of each trajectory are random and different for the initial fluctuating time, but

then they always overlap in the linear region. This is seen more clearly in (4.7b)

and (4.7d) when the deterministic part of the phase has been removed. We see

that, although random to begin with, every trajectory rapidly settles to zero phase

difference between the modes.

Since all the trajectories settle to the same value, we have an example of a

system for which the phase persists even in the ensemble average. This is a re-

markable result: our uncertainty in the times of the loss of the atoms does not

wipe out the phase.

The establishment of phase can be explained in a similar way to that of Ja-

vanainen et al. [47]. Although all the atoms are removed from a, the modes are all

coupled, so we do not know which mode the atom has come from. This uncertainty

leads to entanglement and the establishment of a relative phase.

4.4.2 Interactions

Up until now, we have ignored an effect that will be present in any realistic system:

nonlinearities in the Hamiltonian due to the interactions between atoms. In this

section, we neglect dissipation and consider the effects of interactions alone.

This is easily simulated within the existing framework by setting the rate of

loss to zero and introducing nonlinear terms to the system Hamiltonian. The full
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three mode Hamiltonian including interactions and coupling becomes,

H0 = ωaa
†a+ ωbb

†b+ ωcc
†c+ Γ

(
a†b+ b†a+ b†c+ c†b

)
+ U

(
a†2a2 + b†2b2 + c†2c2

)
(4.30)

where, U is the interaction strength. For simplicity, we have assumed that the

coupling strength is the same between both pairs of modes and that the same is

true of the interaction within each mode. We will take the modes to be degenerate

ωa = ωb = ωc ≡ ω. The evolution for this system is deterministic and so we can

evolve a state in time by direct integration.

The validity of the Hamiltonian (4.30) is discussed in detail elsewhere [82, 83]

and essentially rests on the assumption that the many-body interactions produce

only small modifications of the ground state properties of the individual potentials.

In the weakly interacting limit we can ignore the cross interaction terms. Our

results do not rely on this assumption, but it is a convenient one to make as it

simplifies our calculations.

We use the experimental parameters of the experiment of Anderson and Ka-

sevich [72]. In this case, the kinetic energy per particle is E = kB × 157nK, the

interaction energy per particle is U/N ≡ Ũ = kB × 4nK, and the wavelength of

the optical standing wave that forms the lattice is λ = 850nm. From these, we can

determine the ratio of the interaction energy per particle to the kinetic energy per

particle, Ũ/E ≈ 0.03. If we make the same assumption as Anderson and Kasevich,

that the well depth, ε, is approximately equal to the kinetic energy per particle,

E, we can estimate the coupling rate per oscillation

Γ

ω
≈ exp

(
−λE2

8h̄2g

)
≈ 0.01, (4.31)

where g is the acceleration due to gravity. This exponential sensitivity to the accel-

eration due to gravity suggests that this scheme may have a useful application as a

sensitive detector of g. We now have realistic experimental parameters for our sim-

ulations, we take U/Nω = 0.03 and Γ/ω = 0.01. As was shown in Equation (4.27),

we need to start with a different number of atoms in each of the modes.

The result of a simulation, for modes a, b, and c initially having 50, 49, and 48

atoms respectively, is shown in Figure (4.8). We see that the relative phase between

each pair of modes rapidly damps to zero. For the parameters we use here, it takes

about 30 trap oscillations to stabilise to zero relative phase. Other simulations

demonstrate that the rate of damping increases with the interaction energy. For
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Figure 4.8: Phase locking due to atomic interactions. In each case, the phase is plotted
against ωt (i.e. number of trap oscillations).

repulsive interactions, the modes lock in phase and for attractive interactions, the

modes anti-lock. This is consistent with the results for measurement-induced phase

establishment.

Our results show that interactions (as well as dissipation) when combined with

Josephson coupling between condensates, establish a phase. This can be explained

by the modes becoming entangled due to the coupling. Interactions have the

advantage of establishing a phase for degenerate modes. Unlike the case of dissi-

pation, however, there must be a number asymmetry between the modes in the

initial state. Ideally, we would like a scheme that supports both, so that a phase

“naturally arises” for the most symmetric initial case.

4.4.3 Dissipation and interactions

In a full realistic model, there will be interactions between atoms as well as dis-

sipation from the condensate modes. In this section, we wish to see whether,

by including both effects, phase locking arise for all cases: notably for the most

rigorously symmetric case of degenerate modes in equal number states.

Our simulation process is the same as in Section 4.4.1, but with the nonlinear

terms included in the Hamiltonian, as in (4.30). We take the experimental param-

eters as outlined in Section 4.4.2, with the one additional parameter of dissipation
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Figure 4.9: Phase locking due to interactions and dissipation. There are initially 50
atoms in each mode and the system parameters closely match experiments (see text).

The phase is plotted against the unitless quantity κt.

rate. It was noted in [72] that this rate was much smaller than the coupling rate.

So, for our simulations, we take κ/ω = 0.001.

When we include dissipation as well as interactions, we can start with degen-

erate modes each in the same number state. The result for one trajectory, with 50

atoms initially in each mode, is shown in Figure (4.9). For repulsive interactions,

the modes lock in phase for each trajectory. This means that the phases lock on the

ensemble average and we do not have to make a measurement for this process to

occur. For attractive interactions, the phases of adjacent modes antilock. Again,

this is consistent with our previous results.

We see that the phase locking is not as rapid or as clean as for the case of in-

teractions alone. For the parameters used here, it takes about 300 trap oscillations

for the phases to lock as compared with about 30 for no dissipation. This can be

explained by the fact that the dissipation corrupts the entanglements between the

modes and so degrades the phase relationship between them.

Since we have shown that phases lock (or antilock) for the most symmetric sys-

tem, we know that this is true for all initial states. We have shown that Josephson

coupled condensate modes with repulsive interactions and dissipation will always

lock in phase, independent of the initial state. This is a powerful result and explains

the experimental observations of the mode-locked atom laser [72].
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4.5 Conclusions

We have seen that a transfer of population between two modes leads to a relative

phase between them due to entanglement. This phase is π/2 for resonant coupling

which is consistent with its correspondence with a beam splitter. For non-zero

detunings, the relative phase can take different values. A study of this transfer

process shows how we could predict and control the phase of the output pulses from

an atom laser and the position of interference fringes in interferometry schemes

involving condensates.

By extending these ideas, we have studied the effect on a chain of coupled

condensates of making measurements which establish a phase at one of the lat-

tice sites. Our simulations show that the system always relaxes into one of the

eigenstates of the system and which eigenstate this is depends on the sign of the

interatomic interactions. These results should be able to be extended to a long

chain of condensates.

Finally, we have considered mechanisms by which a phase naturally arises for

the case of degenerate modes initially in equal number states. We have found that

phase locking occurs for all systems where dissipation and interactions are present.

Our findings in this last section are three-fold. Firstly, by considering a model

that closely matches the mode-locked atom laser of Anderson and Kasevich, we

have demonstrated a mechanism by which the phases of the condensate modes

lock and that this is completely independent of the initial state of the system.

Secondly, we have demonstrated a system where the phase persists even on the

ensemble average. Thirdly, we have provided an example of a system for which we

would expect relative phases to occur naturally due to dissipation and interactions.

This is in agreement with observation of such systems and is a significant advance

on previous proposals which have required a measurement on a pair of condensates

to create a relative phase between them.
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Phase resolution

We have discussed two different ways that a relative phase may be established

between Bose-Einstein condensates. One way is to measure an interference pattern

between them in their region of overlap [47, 48, 84]. Another is to allow them to

exchange atoms by coupling them. These two methods are distinct, but both rely

on creating an entanglement. Up until now, we have considered only the mean

value of the relative phase. In this chapter we investigate the resolution of the

phase produced by these two methods. We want to see whether these methods can

be distinguished by the nature of the phase of the final state.

The fact that the interference pattern measured between two condensates, ini-

tially in number states, cannot be distinguished from the interference pattern that

would be measured if the two condensates were initially in coherent states [55]

suggests that the phase developed by such a measurement is ‘classical’ in nature.

We would like to investigate this further and to see if it is also true for condensates

which have been entangled by coupling. In particular, we would like to see whether

coupling can lead to better phase resolution than can be obtained by measurement.

5.1 Measurement resolution

Let us begin by considering the case of measurement. We consider two condensates,

a and b, both initially in number states with n atoms, |ψ0〉 = |n〉|n〉. We allow

atoms from the two traps to fall onto a detector and record the times at which

atoms are detected.
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Figure 5.1: (a) The number probability distribution for mode a for a measurement-
induced entanglement (dashed line) and for entanglement due to coupling (bar graph)
for a state with 50 atoms. (b) The relative phase distribution for the same two states

(dashed line for measurement and solid line for coupling).

In the Heisenberg picture, when an atom is detected at time, t, the state, |ψ0〉,
is acted on by

C =
1√
2

(
a e−iωat + b e−i(ωbt−φ)

)
, (5.1)

where ωa and ωb are the frequencies of traps a and b. The additional phase factor,

φ = 2πδ/λdB, depends on the path length difference, δ of the two traps from the

detector, and the de Broglie wavelength of the atoms, λdB. For equal path lengths,

φ would vanish. Each detection contributes a different value of φ depending on

where the atom is detected. This leads to a random mean relative phase. The

phase resolution, however, does not depend on where the atoms are detected so,

without loss of generality, we set φ = 0.

If the modes are degenerate, ωa = ωb, and we transform (5.1) to a frame rotating

at the same frequency, this can be written as C = (a+ b) /
√

2. For simplicity, we

consider that a total of n atoms are detected (i.e. half of them). The final state,

|ψ〉, is then given by

|ψ〉 ∝
[

1√
2

(a+ b)

]n

|n〉|n〉
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∝
n∑

m=0

(
n!

m! (n−m)!

)3/2

|n−m〉|m〉. (5.2)

As we would expect, this is an entangled state and so there is a phase relationship

between the modes. The probability distribution for there being na atoms in mode

a is shown as the dashed line in Figure (5.1a) for n = 50. The number distribution

has acquired a finite width due to the entanglement.

We would now like to examine the nature of the phase distribution of this state.

To do this, we make use of the Pegg-Barnett basis of states of well-defined phase

[49, 50, 51] that we introduced in Chapter 2. A straightforward calculation of this

distribution yields,

P (∆θ) ∝

∣∣∣∣∣∣
n∑

m=0

(
n!

m! (n−m)!

)3/2

eim∆θ

∣∣∣∣∣∣
2

. (5.3)

This phase distribution is shown as the dashed line in Figure (5.1b) for n = 50.

This function can readily be calculated, allowing us to extract the dependence

of the phase resolution on the total number of atoms, N = n, in the final state. We

determine the full width at half maximum (FWHM), σθ, of the phase distribution

(5.3) for a range of values of N and then plot log10(σθ) against log10(1/N). The

result, shown in Figure (5.2a), is a straight line with slope 0.50. This means that

the phase resolution of the state varies with N as σθ ∝ 1/
√
N . This is the so-called

‘standard limit’ and supports the discussion of Cirac et al. [55] as it is the same

resolution that would be obtained if the two condensates were initially in coherent

states.

5.2 Coupling resolution

5.2.1 Coupling to a vacuum state

With this as our benchmark, we would now like to see whether better phase reso-

lution can be achieved when the condensates are entangled by coupling. We begin

by considering the case of coupling a number state, |n〉, to a vacuum state, |0〉. We

consider that the coupling takes the form of resonant Raman coupling as discussed

in the previous chapter.

Bouyer and Kasevich have shown that the operation of passing two photon

modes, a and b, through a 50:50 beam splitter is formally equivalent to coupling
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Figure 5.2: Variation of the phase resolution, σθ, with total atom number, N , for (a)
measurement-induced entanglement, and (b) entanglement due to coupling of number

correlated pairs.

condensate states with resonant Raman pulses for time t = π/4Γ, where Γ is the

coupling strength [85] (see Appendix C). The unitary operator for this procedure

is,

U = exp
[
i
π

4

(
ab† + a†b

)]
. (5.4)

In Appendix A, we derive the output of passing the state |ψ〉 = |n〉|0〉 through

a 50:50 beam splitter. The result is

|ψ〉 =
1√
2n

n∑
m=0

 n

m

1/2

e−imπ/2|m〉|n−m〉. (5.5)

The two modes are entangled by the coupling and, as discussed in Chapter 4, a

relative phase of π/2 is naturally introduced between the modes.

We would now like to examine the relative phase distribution. Instead of cal-

culating the probability distribution directly, we can obtain an analytical estimate

of the phase resolution by calculating the fidelity, F , of (5.5) with the state shifted

by a relative phase ∆θ, |ψ∆θ〉. We take the phase resolution to be the value of ∆θ
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for which F = 1/2. From (5.5), the fidelity is given by

F (∆θ) = |〈ψ∆θ|ψ〉|2 =

∣∣∣∣∣∣ 1

2n

n∑
m=0

 n

m

 e−im∆θ

∣∣∣∣∣∣
2

= cos2n (∆θ/2) , (5.6)

where the last step follows from recognising that the sum is in the form of a

binomial expansion.

We now set F = 1/2 and solve for ∆θ. We use the result that, for n � 1,

(0.5)1/2n ≈ 1− ln(2)/2n. This allows us to write

1− ln(2)

2n
≈ cos

(
∆θ

2

)
≈ 1− 1

2

(
∆θ

2

)2

. (5.7)

Solving for ∆θ we obtain

∆θ ≈ 2

√
ln(2)

n
, (5.8)

and we recover the same n-dependence of the phase resolution as for the measurement-

entangled state described in Section 5.1, ∆θ ∼ 1/
√
n.

5.2.2 Number correlated condensates

In both the methods for entangling condensates described in this chapter so far we

have seen that the relative phase resolution is governed by the standard quantum

limit. We would now like to see whether it is possible to surpass this limit. As our

guide, we turn to a closely related study of optical interferometry.

It has been shown that by using correlated number states as the inputs, the

phase resolution of a Mach-Zehnder interferometer can reach the Heisenberg limit,

σθ ∝ 1/N [86, 87, 88, 89]. We take an analogous approach to discuss how a

Heisenberg limited relative phase between condensates may be able to be achieved.

In the optical case, if two identical number states are fed into the input ports of a

50:50 beam splitter, the relative phase between the two output modes is Heisenberg

limited. The beam splitter can be considered to rotate the state in phase space in

such a way that the phase fluctuations are transferred to the amplitude quadrature

and vice versa [87]. A state with minimal amplitude fluctuations before the beam

splitter will have minimal phase fluctuations afterwards.

This suggests that for condensates we can follow a scheme similar to that for

correlated optical interferometry, by using Raman coupling as the equivalent of
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the beam splitter. To make an accurate comparison with the measurement case,

we start with the state, |ψ0〉 = |n〉|n〉. We then turn on two laser fields which

resonantly Raman couple the condensates for time t = π/4Γ. The entangled state

after this step is,

|ψ〉 = exp
[
i
π

4

(
ab† + a†b

)]
|n〉|n〉

=
1

2n

n∑
m=0

√√√√(2(n−m))!

(n−m)!2

√
(2m)!

m!2
|2(n−m)〉|2m〉. (5.9)

The full derivation of this result is shown in Appendix A.

The probability distribution of the number of atoms, na in mode a of (5.9)

is shown as a bar graph in Figure (5.1a) for 2n = 50. There are two notable

features. Firstly, the probability vanishes for odd numbers of atoms in each mode.

Secondly, and more importantly, the uncertainty in the number of atoms in each

mode is much greater than for measurement-induced coupling. In fact, the width

of the number distribution in this case is as large as the total number of atoms

in the system. This is encouraging since, by the uncertainty principle, an increase

in the width of the number distribution may be compensated by a commensurate

decrease in the width of the phase distribution.

We would now like to study this phase distribution for this state and compare

it with the result for measurement-induced entanglement. Making use of (5.9) and

following the same technique as before, the relative phase distribution is

P (∆θ) =
1

22n(2n+ 1)

∣∣∣∣∣∣
n∑

m=0

√√√√(2(n−m))!

(n−m)!2

√
(2m)!

m!2
e2im∆θ

∣∣∣∣∣∣
2

. (5.10)

The same result has been derived for photons passing through a beam splitter [86].

The phase distribution for a state of this form with a total number of 50 atoms

is shown as the solid line in Figure (5.1b). We see that there is indeed a narrowing

of the phase distribution relative to the comparable measurement-induced state.

An additional way in which the two distributions differ is that for the coupled

state the relative phase is only known modulo(π). There are additional peaks

in the phase distribution at relative phases ∆θ = ±π. This is a feature which

turns out to be very useful when it comes to exploring the possibility of creating

Schrödinger cat states in Bose condensates. We shall revisit it in Chapter 7 when

we consider how such states may be made. This is also consistent with our findings
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in Chapter 4 that the relative phase always settles to ∆φ = 0 or ∆φ = π.

As for the measurement case, we find theN -dependence of σθ by calculating this

distribution for different values of N = 2n. A plot of log10(σθ) against log10(1/N)

is shown in Figure (5.2b). As was the case for the results shown in Figure (5.2a),

this is a straight line which indicates that σθ has the same functional form as

for the measurement case, ∆θ ∝ 1/N r. However, we immediately notice two

differences from the result in (5.2a). Firstly we see that the phase resolution

is much better than for the measurement case: for 160 atoms, the resolution is

roughly an order of magnitude better. Secondly, the slope of (5.2b) is greater than

(5.2a), which indicates that σθ has a stronger N -dependence. A fit through the

points gives a value very close to r = 1, which means that σθ ∝ 1/N , i.e. the

phase is Heisenberg limited. This is an important result as it shows that we can

achieve the fundamental limit of phase resolution (as governed by the uncertainty

principle) by coupling condensates.

To achieve the Heisenberg limit, it is important that the initial number states

are correlated in order to minimise amplitude fluctuations. This may be able to

be achieved by amplitude squeezing the initial joint state [90, 91] or by creating

correlated atom pairs by a process such as four-wave mixing [92, 93]. In the

next chapter, we present a straightforward scheme for how such relative number

squeezing may be able to be achieved.

Our starting state, |ψ0〉 = |n〉|n〉, is highly squeezed and non-classical. We see

from the results in the first part of this chapter that, by measuring the phase of

this state, we degrade the quality of the phase information that it can contain to

the standard limit. In general, however, our initial state will not be squeezed but

will qualitatively be like Equation (5.2), i.e. it will be an entangled state which

allows the total number of atoms to be fixed but the number in each condensate

to be uncertain. In this latter case, the measurement process doesn’t degrade

the quality of the phase as it has already been brought down from the squeezed

Heisenberg limit. Classical states of the form of Equation (5.2) are attractors of

phase measurements and so further measurements will not disrupt them. This

tells us that if we start with a non-classical squeezed state, we should perform the

operations we want with this state (e.g. as the input to an interferometer) and

extract information from it only at the end. As soon as measurements are made

on the state, the useful phase information that it can contain is degraded until it

reaches the classical level.

In summary, we have demonstrated that the nature of the relative phase be-



68 Chapter 5. Phase resolution

tween condensates depends on the method of entangling them. The entanglement

that arises when we measure an interference pattern between condensates, leads

to a phase resolution given by the classical standard limit, σθ ∝ 1/
√
N . This is

the same resolution that is achieved when a condensate is coupled to a vacuum

mode. However, when number correlated condensates are entangled by coupling,

the nature of the phase is very different and the phase resolution can reach the fun-

damental Heisenberg limit, σθ ∝ 1/N . These Heisenberg limited states may have

important consequences for applications such as interferometry and frequency stan-

dards where phase resolution is of utmost importance. They may also provide a

valuable tool for investigating the nature of entanglement. We will discuss further

uses for them in the following chapters.



Chapter 6

Relative number squeezing in

condensates

6.1 Introduction

In the previous chapter we saw that number correlated condensates are a powerful

quantum resource. They can be used to generate states with Heisenberg-limited

relative phase [85, 94] which may be of great importance in interferometry schemes

[86, 91]. In this chapter we describe how number correlated pairs of condensates

may be created. The method we outline does not depend strongly on knowing

the number of atoms in the initial condensate and works even in the presence of

large losses. It may therefore prove to be a practical technique for generating this

resource.

We begin with a quantum calculation for small numbers and show that, using

only light pulses, it is possible to generate states that are strongly squeezed in their

relative number. This enables us to validate a semiclassical model and derive some

analytical results. We then use the semiclassical model to predict the scaling for

large numbers. Finally, we consider the effects of dissipation and show that this

method is relatively robust to the loss of atoms.

6.2 Quantum analysis

The model we use is similar to one proposed by Cirac et al. for creating su-

perposition states of Bose condensates [95]. We consider two condensate modes

69
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represented by the annihilation operators a and b. Mode a is initially in a num-

ber state, |N〉 and b is initially in the vacuum state, |0〉. We then couple these

two modes with resonant Raman pulses to create a pair of condensates with a

relative phase defined to the standard quantum limit. If this step is very fast com-

pared with the timescale of the nonlinear evolution, we can ignore the effects of

interactions. After a quarter Raman cycle, the state is given by

|ψ〉 = eiπ(a†b+b†a)/4 |N〉a|0〉b =
1√
2N

N∑
k=0

 N

k

1/2

e−iπk/2 |k〉a|N − k〉b. (6.1)

This is a superposition of states with different relative numbers of atoms in the two

modes. The relative phase, ∆θ, of this state scales with number in the same way as

the broken symmetry state that can be produced by measurement, ∆θ ∼ 1/
√
N ,

as discussed in Chapter 5. The number correlation between the modes in (6.1) is

weak and we would like to squeeze the relative number distribution.

To do this, we first apply an intense far detuned light pulse to one or both

modes to shift the phase of a relative to b by −π/2 [96]. This pulse shifts the zero

point of the energies and, provided that the pulse interacts with each mode with a

different coupling strength, will result in a fast phase evolution which changes the

relative phase between the modes. Another scheme for achieving this phase shift

is outlined by Gordon and Savage [96] and involves shifting the phase of the light

fields that provide the Josephson coupling in creating state (6.1). The state after

this step is

|ψ〉 =
1√
2N

N∑
k=0

 N

k

1/2

e−iπk |k〉a|N − k〉b, (6.2)

which we take to be the initial state of our squeezing procedure.

Next we couple the two condensate modes with resonant Raman pulses, which

is equivalent to Josephson coupling the modes, and we allow them to evolve under

the influence of the nonlinear interactions. The Hamiltonian for this evolution is

taken to be

H = U
(
a†2a2 + b†2b2

)
+ Γ

(
a†b+ b†a

)
, (6.3)

where Γ is the coupling strength and U is the interatomic interaction strength

which, for simplicity, we take to be the same for each mode. For convenience, we

have taken the cross interactions to vanish [83]. This is not a necessary assumption

for this scheme to work. We also take the trap frequencies to be the same for the

two modes and have removed them by transforming to a rotating frame. The
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Figure 6.1: (a) Time variation of the variance of (Na − Nb) as a function of Ωt, where
Ω = 2

√
ΓUN + Γ2 (b) Number distribution of mode a at the optimum squeezing time

(bar graph) compared with the initial number distribution (broken curve).

parameter U depends on the intrinsic atomic interactions and the shapes of the

traps. This can be tuned in principle [97], but for a given experiment is fixed. The

coupling rate, Γ, can be controlled by the experimentalist by varying the strength

of the coupling laser.

In Figure (6.1), we have plotted how the relative number distribution of (6.2)

evolves for the parameters N = 100, U = 0.5, and Γ = 1 where, for convenience,

U and Γ are unitless quantities scaled by Γ. In Figure (6.1a), we have plotted

the variance of Na − Nb as a function of Ωt, where Ω = 2
√

ΓUN + Γ2. This is

a measure of the width of the relative number distribution and we see that it

undergoes oscillations. To begin with, the distribution gets narrower with time

which is precisely the result we want. For the parameters used here, the maximum

squeezing occurs at Ωt = 1.67 and it is encouraging how strong the squeezing

is. For the present parameters, a reduction in the variance by a factor of 25 is

observed.

The number distribution of mode a at the optimum squeezing time is shown

in Figure (6.1b). This is identical to the number distribution of mode b since the

total number of atoms in the system is fixed. The original number distribution is
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also shown as a dashed line for comparison and we see that the modes are strongly

number squeezed around the mean value of N/2. In other words the two modes

are strongly number correlated. Of course, it would be possible to have number

squeezing with different a mean number of atoms in each mode. However, the

symmetry of the system ensures that the modes are number correlated.

6.3 Semiclassical model

In order to understand these results, we perform a semiclassical analysis of the

system [80, 82]. Our results do not depend on this analysis, but we believe it gives

considerable further insight into them. The Hamiltonian for the system is given by

(6.3) and we can make a semiclassical approximation by making the replacements

a(t) =
√
Na(t) eiθa(t) (6.4)

b(t) =
√
Nb(t) eiθb(t). (6.5)

where Na,b corresponds to the number of atoms in mode a, b and θa,b corresponds

to the phase of a, b. This is a reasonable approach to take since, if we look at the

form of (6.2), we see that each mode has the form of a coherent state. We can

replace the operators with complex numbers containing the mean amplitude and

mean phase of each mode.

Next we define the new quantities of fractional population imbalance,

z(t) ≡ 〈b†b〉 − 〈a†a〉
〈b†b〉+ 〈a†a〉

=
Nb(t)−Na(t)

N
, (6.6)

where N = Na + Nb is the constant total number of atoms, and relative phase

shifted by π,

φ(t) ≡ arg
{
〈a†b〉

}
− π

= θb(t)− θa(t)− π. (6.7)

We introduce this shift since we shall see that it is convenient if the initial value of

(6.7) is zero when we come to linearise the system. This transformation in no way

changes our results. In Appendix B, we derive semiclassical equations of motion
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Figure 6.2: Solutions of the semiclassical equations for different initial conditions as a
function of Ωt. The z(t) solutions are shown as the full curves in (a) and the correspond-
ing φ(t) solutions are shown as the full curves in (b). The dashed and dotted curves are
corresponding z(t) and φ(t) solutions of the linearised equations for two different initial

conditions.

for this system [80] in terms of these new quantities. These can be written as

ż(t) = 2Γ
√

1− z2(t) sin(φ(t)) (6.8)

φ̇(t) = −2UNz(t)− 2Γz(t)√
1− z2(t)

cos(φ(t)). (6.9)

In Figure (6.2), the solid lines show numerical solutions of (6.8) and (6.9)

for different initial conditions. We set the parameters to be the same as for the

quantum calculation, U = 0.5, Γ = 1, and N = 100. Each trajectory corresponds

to z(0) ∈ {−0.12,−0.04, 0, 0.04, 0.12} and, since the initial state has a relative

phase of π between the modes (see Equation (6.2)), we take φ(0) = 0 for each

trajectory.

The quantum state can be thought of loosely as a superposition of these classical

realisations. Here we interpret each trajectory to represent part of the initial state

and, in particular, a few adjacent terms in (6.2), i.e terms with similar numbers of

atoms in mode a. The way that the state is split up into trajectories is arbitrary
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and does not affect our results. The parameters z and φ now respectively represent

the mean number difference between modes and the mean phase for each of these

parts. The evolution of the whole state can be seen by observing the evolution of

each of its parts or trajectories.

We notice that z and φ both undergo oscillatory motion, which is what we

observed in the full calculation. Importantly, at certain times, z vanishes indepen-

dent of the initial value of z. We see in Figure (6.2a) that the first focus is sharp

and that subsequent focus points become more and more blurred. This means

that if we started with an initial state that was a relatively broad superposition of

different values of z, and allowed this to evolve under the Hamiltonian (6.3), after

some time, the state would be strongly squeezed about z = 0. The predictions of

the semiclassical model agree well with the full calculation.

Firstly, we would like to understand the times at which the squeezing is opti-

mised. To do this, we assume that |z(t)| � 1 and sin(φ(t)) ≈ φ(t). The second

assumption is accurate to within a few percent for φ(t) < 0.5. We will justify these

assumptions later.

Linearising (6.8) and (6.9) allows us to write

ż(t) ≈ 2Γφ(t) (6.10)

φ̇(t) ≈ −2(UN + Γ)z(t) (6.11)

These equations are very straightforward to solve and give the result

z(t) ≈ z(0) cos (Ωt) (6.12)

φ(t) ≈ − Ω

2Γ
z(0) sin (Ωt) , (6.13)

where Ω = 2
√

ΓUN + Γ2. We see that the conditions |z(t)| � 1 and |φ(t)| < 0.5

hold for |z(0)| � 1 and (Ω/Γ) z(0) < 1.

If we assume that our initial relative number distribution is Gaussian (as is the

case for the full calculation) then |z(0)| <∼ 1/
(
2
√
N
)
, and (Ω/Γ) z(0) <∼

√
U/Γ.

This means that the system is well described by the linear equations (6.10) and

(6.11) for N � 1 and U/Γ < 1. These conditions are satisfied by the parameters

we use here.

In Figure (6.2), we have plotted the solutions of (a) z(t) and (b) φ(t) for

(z(0), φ(0)) = (0.12, 0), dashed line, and (z(0), φ(0)) = (0.04, 0), dotted line. For

the dotted solution, max(z(t)) = 0.04 and max(φ(t)) = 0.28 and our two conditions
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are satisfied. We see that this approximate solution is very close to the solution of

the full equations and it is hard to distinguish the two trajectories in Figure (6.2).

For the dashed line, max(z(t)) = 0.12 and max(φ(t)) = 0.86, the two conditions

are not satisfied and we see that this approximate solution is not very good for

long times. It does, however, still predict the first squeezing time quite well. We

can conclude that the linearised equations should provide a good description of

the full model. This allows us to write down an analytical approximation for the

optimal squeezing time

tsq =
π

2Ω
=

π

4
√

Γ(UN + Γ)
. (6.14)

This is in agreement with the result shown in Figure (6.2) and agrees with the

quantum prediction of Ωt = 1.67 to within a few percent.

6.4 Effect of loss

In any realistic physical system, there will be some degree of loss due, for example,

to collisions. In this section we consider how loss affects our ability to create states

with squeezed relative number by including some random loss from modes a and

b in the quantum model.

We consider a system with the same parameters as before, N = 100 and

U/Γ = 0.5, and consider the rate of damping to be the same from each mode.

In Figure (6.3a) we show the number distribution for mode a at the optimum

squeezing time and compare it to the initial distribution. For this particular tra-

jectory, 9 atoms were lost from a and 8 from b. We see that the mean number

of atoms in a is reduced to around 41 as we might expect, but interestingly the

distribution is still strongly squeezed.

In fact, the variance of this number distribution is as small as for the lossless

case. The variance of the two modes must be identical since the total number of

atoms is equal to some particular value. This means that even for large losses (in

this case 17%) the relative number distribution will be strongly squeezed by this

method. In realistic cases we would expect the loss to be much less than this.

The variance of the number distribution of mode a as a function of Ωt is shown

in Figure (6.3b). It exhibits the same behaviour as the lossless case and an almost

identical optimum squeezing time. In Figure (6.3c) we show the time variation of

the difference of the mean number of atoms in modes a and b. Owing to the loss,
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Figure 6.3: (a) Number distribution of mode a at the optimum squeezing time (bar
graph) compared with the number distribution of the initial state (dashed curve). (b)
Variance of (Na −Nb) as a function of Ωt. (c) Mean value of (Na −Nb) as a function of

Ωt. For this simulation, 9 atoms were lost from a and 8 from b.

this is not necessarily zero and this effect introduces some additional uncertainty

into the number correlation between the two modes.

An estimate of the width of the distribution of the difference in mean number

is given by
√
Nloss, where Nloss is the total number of atoms lost. We can write

Nloss ≈ γNt ≈ γ

√
N

ΓU
, (6.15)

where γ is the rate of loss per atom per unit time and we have put in the optimum

squeezing time. This means that our uncertainty in the difference of the mean

numbers scales as
√
γN1/4. So, for large N or small γ, this is much smaller than

the uncertainty in the number difference of the original Gaussian state, which scales

as
√
N . This method for creating number correlated condensates therefore works

even in the presence of large losses. We have shown that dissipation has little effect

on the variance of the squeezed number state and that the relative mean number

uncertainty that is introduced is much smaller than the number uncertainty of the

original state.

It is not physically clear why this method should be so robust to loss. This
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seems like an important issue which requires further investigation. We can, how-

ever, gain some insight by referring to Figure (6.2a). If we imagine a solution

following one of the trajectories in Figure (6.2a), the loss of a few atoms will sim-

ply move us to a different trajectory. Since all trajectories focus at the same time,

our initial reaction is that it doesn’t matter if atoms are lost, there is still optimum

relative number squeezing at t = π/2Ω. The reason that the number correlation is

not as good as the lossless case is that when atoms are lost, although the z solution

is moved to another trajectory, the φ solution is unchanged. From (6.11) we see

that the phase of this new trajectory differs from what it should be for perfect

focusing by an amount proportional to the amount z is changed by the loss. From

(6.6), we see that the change in z scales as 1/N so, for large N , the disruption

to the phase of the trajectory is small even for significant losses. This is why this

method is relatively robust to loss.

An operational way of thinking of this is to ask how well it is possible to predict

the result of a measurement of the number of atoms in the second condensate given

the result of an accurate measurement of the number of atoms in the first one. As

we have mentioned, there are two effects which reduce the predictability of the

number in the second condensate. One is the width of the number distributions in

each mode. For the parameters used here, the width of the optimally squeezed state

in each mode is given approximately by
√
N/10. The second effect is due to the

distribution of the difference in mean numbers of atoms in the two modes, which

arises from the loss. As we have seen, this is given approximately by γ
√
N/(ΓU).

Combining these contributions, the variance of the distribution of possible values

of the number of atoms in the second condensate given an accurate measurement

of the first is

σ2 =
√
N

(
1

5
+

γ√
ΓU

)
. (6.16)

We see that for large N , there is a dramatic improvement over the result without

squeezing, σ2 = N , even for large losses.

So far things look good for the experimental feasibility of this scheme. However,

one practical difficulty that arises is that the optimum squeezing time depends on

the number of atoms in the system. This suggests that to implement optimum

squeezing, we would need to know how many atoms were in the system to begin

with. It is very unlikely that we would have this information. Fortunately, the

squeezing is relatively insensitive to evolution time. We can see this in Figure (6.1).

For example, even if we underestimated N by a factor of 2 and so allowed the
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system to evolve for t = topt/
√

2, where topt is the optimum squeezing time, the final

relative number distribution would still be strongly squeezed. For the parameters

used here, the final variance would be about 4.5, which is about 5.5 times smaller

than the original state.

For improved correlation, we can imagine a two (or more) step process. In

this we could estimate the number of atoms, allow the system to evolve for the

estimated optimum squeezing time and then perform a destructive measurement of

the number of atoms in one condensate. This would give us an accurate estimate of

the number of atoms in the other condensate without destroying it. We could then

use this condensate as the starting point for a second relative number squeezing

process. This time, however, our improved knowledge of the total number of

atoms in the system would allow us to predict the optimum squeezing time more

accurately and so create better number correlated condensates.



Chapter 7

Schrödinger cat states in Bose

condensates

7.1 Introduction

The theory of quantum mechanics, which successfully describes the physical world

on a microscopic level, allows systems to exist in a coherent superposition of differ-

ent states. When this is scaled up to macroscopic systems, however, an apparent

contradiction arises. Our experience is that if a system has several macroscopically

distinguishable states available, it will always be in one of them. This anomaly was

pointed out in the well-known Schrödinger cat paradox [98]: a thought experiment

in which a cat is prepared in a superposition of being alive and dead. Such a state

defies our sense of reality.

Despite this, under special conditions which carefully avoid decoherence [99],

so-called Schrödinger cat states can be produced in the laboratory. They have been

demonstrated in a number of systems including the spatial coordinates of a single

atom [100], the internal state of four ions [101], and the current in a superconductor

[102].

A Bose condensate consists of a macroscopic number of particles in a single

quantum state and so seems to be an ideal system to create similar macroscopic

superpositions. There have been some proposals for how approximate cat states

may be produced [95, 96, 103], however no such states have been observed yet.

In this chapter, we make use of the understanding of phase and entanglement

developed in this thesis to demonstrate a practical way of creating “ideal” cat

79
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states in Bose condensates and suggest how they may be observed. The scheme

we present is straightforward and all the steps could be performed with current

technology. We want to create states that are a coherent superposition of all the

atoms of the system being in one condensate mode (alive) and all the atoms being

in the other condensate mode (dead). We can write this as

|ψ〉 =
1√
2

(
|N, 0〉+ eiη|0, N〉

)
. (7.1)

States of this form are of great theoretical interest since they may allow us to

probe the boundary between quantum and classical physics and perform controlled

studies of quantum measurement. They may also have important applications in

interferometry [104], frequency standards [105], and quantum information [106,

107].

Our technique is based on the fact that the output from a interferometer can

be controlled by varying the relative path length of the two arms. In particular, it

depends on the fact that, by introducing a phase shift to one arm, we can arrange

for all the atoms (or photons) to emerge from one output port or, conversely, for

them all to emerge from the other. We begin by discussing this result.

7.2 Interferometer scheme

In Figure (7.1), we show an interferometer scheme. We consider the input at a to

be a number state, |N〉, and the input at b to be a vacuum, |0〉. We will find it

convenient to use the usual angular momentum commutation relations,

Jx =
1

2

(
b̂†â+ â†b̂

)
(7.2)

Jy =
i

2

(
b̂†â− â†b̂

)
(7.3)

Jz =
1

2

(
â†â− b̂†b̂

)
, (7.4)

where â and b̂ are the annihilation operators of modes a and b respectively. These

satisfy the commutation relations

[Jx, Jy] = iJz [Jy, Jz] = iJx [Jz, Jx] = iJy. (7.5)

The first step of the scheme involves passing the initial state through a 50:50
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Figure 7.1: Interferometry scheme.

beam splitter. The analogue of this for atoms is to Raman couple the two modes

resonantly for a time t = π/4Γ, where Γ is the coupling strength. These two

operations are formally identical (see Appendix C) and we will refer to them in-

terchangeably. The operator for this step is exp(iπJx/2).

As we saw in Section 4.2, this introduces a relative phase of π/2 between

the arms of the interferometer. We can think of this as the phase shift on the

component which experiences a reflection at the beam splitter. We wish to keep

track of the relative phase throughout, and so we define the phase of the lower arm

relative to the upper arm as ∆θ. After this step ∆θ = −π/2.

Next we introduce a phase shift, φ, to mode a. The operator for this step is

exp(iφâ†â). However, since we are considering a case where the total number of

atoms in the two arms is fixed, we can write this (apart from an irrelevant global

phase factor) as exp
[
iφ(â†â− b̂†b̂)/2

]
= exp(iJzφ). The relative phase is now,

∆θ = φ− π/2.

The final step of the interferometer is to recombine the two components with

an identical operation to the first step. We can now draw all these steps together

and write the full operation of the interferometer as

eiπJx/2 eiφJz eiπJx/2 |N〉a|0〉b = eiφJy eiπJx |N〉a|0〉b
= −eiφJy |0〉a|N〉b. (7.6)

This last step follows since exp(iπJx) corresponds to a half-cycle Raman pulse
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which coherently transfers all the population from one mode to the other.

If no phase shift is introduced, φ = 0, (i.e. the relative phase of the two

arms entering the second beam splitter is ∆θ = −π/2), the output state from the

interferometer is

|ψ〉 = −|0〉c|N〉d, (7.7)

and if φ = π, (i.e. ∆θ = π/2) the output state is

|ψ〉 = −eiπJy |0〉a|N〉b = −e−iπJz/2 eiπJx eiπJz/2 |0〉a|N〉b. (7.8)

The last step can be checked using the operator theorem [52]

eξBeAe−ξB = exp
(
A+ ξ[B,A] +

1

2!
ξ2[B, [B,A]] + . . .

)
. (7.9)

Operating on the state, (7.8) becomes

|ψ〉 = −|N〉c|0〉d. (7.10)

Comparing (7.7) and (7.10) we see that, by varying the relative path length of the

two arms, we can arrange for all the atoms to emerge from port c or for them all

to emerge from port d.

In order to create our desired Schrödinger cat state (7.1), we wish to form a

superposition of these two outcomes. This suggests a possible way to proceed. If we

were able to create a state entering the second beam splitter that is a superposition

of the two relative phases ∆θ = −π/2 and ∆θ = π/2, the output should be a

superposition of the two outcomes (7.7) and (7.10), i.e. it should have precisely

the form of (7.1).

Yurke and Stoler have studied such phase superpositions [108]. In particular,

they have shown that an optical coherent state passing through an amplitude

dispersive medium can evolve into a superposition of two coherent states π out

of phase with one another. We would like to form an analogous state for Bose

condensates. Conveniently, in condensates the dispersion arises naturally and is

due to the nonlinear interactions between atoms. A coherent state of a condensate

will undergo collapses and revivals of the phase due to this nonlinearity [69] and

midway between these revival times, the state will be a superposition state of

precisely the form we want.

We now draw all these ideas together into a practical proposal for creating
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Figure 7.2: Scheme for creating Schrödinger cat states.

Schrödinger cat states of the form of (7.1). Our motivation throughout is for all the

steps of this scheme to be relatively straightforward to perform in the laboratory.

7.3 Schrödinger cat scheme

The proposal is depicted schematically in Figure (7.2). Our initial state is a Bose

condensate in a number state, |N〉. However, we do not need to know the number

of atoms in the state. We stress the fact that this is a readily available resource in

the laboratory.

The first step is to couple the condensate to a vacuum mode with resonant

Raman pulses. As discussed above, if the modes are coupled for a time t = π/4Γ,

where Γ is the coupling strength, this is mathematically equivalent to the operation

of a 50:50 beam splitter, and so we depict it as one in Figure (7.2). Importantly,

Hall et al. have already demonstrated this step in the laboratory [64, 76]. In

fact, they have experimentally demonstrated a complete condensate interferometer

scheme which is very similar to our proposal. This is very encouraging for the

practical feasibility of our scheme.

We consider that this step is very fast compared to the timescale of the evolution

due to the nonlinear interaction. This is given by the condition, Γ � UN , where

U is the strength of the nonlinear interaction. This means that we can ignore
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interactions during the coupling and the state after this step is [96]

|ψ〉1 = eiπJx/2 |N〉|0〉 =
1√
2N

N∑
k=0

 N

k

1/2

e−iπk/2 |k〉|N − k〉. (7.11)

We now wish to create a superposition of the relative phases ∆θ = ±π/2 for

this state. Here the proposed scheme differs from the interferometer depicted in

Figure (7.1). Following the work of Yurke and Stoler discussed above, we can

achieve this by allowing the state to evolve naturally under the influence of its

interatomic interactions for time t = π/4U , where U is the interaction strength.

To begin with, we consider that U has the same value for each arm of the in-

terferometer and that there are no interactions between the two arms. It turns

out that this gives a superposition of two phase states as required. However, this

superposition is either of ∆θ = 0, π or ∆θ = −π/2, π/2 depending on whether the

total number of atoms in the two arms is even or odd. This means that we would

need to know whether the number is even or odd so that we could introduce an

appropriate phase shift to create the state with ∆θ = ±π/2. It’s not clear how this

could be done experimentally. We need to find a method that creates the correct

superposition independent of the total number of atoms.

We can achieve this by considering different interaction strengths in the two

arms. In particular, we consider the case where the interaction strength in mode

b is an integer multiple of the strength in a, U . The state after an evolution time

of t = π/2U is

|ψ〉2 = exp
[
i
π

2

(
â†2â2 +m b̂†2b̂2

)]
|ψ〉1, (7.12)

where m is an integer. If m is even, m ∈ {...,−2, 0, 2...}, and we apply a light

pulse to advance the phase of one arm by π/2, the state can be written as

|ψ〉2 =
1√
2N

N∑
k=0

 N

k

1/2

eiπ[(m+1)k2+(m−1)k]/2 |k〉|N − k〉, (7.13)

We see that the relative phase is no longer N -dependent. For convenience, we set

m = 0 in the remainder of this chapter, though identical results hold for any even

value of m.

Cornish et al. have shown how magnetic fields may be used to tune the in-

teraction strength over several orders of magnitude [97]. This would allow the

interaction strength of the two arms to be adjusted to the required values and may
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Figure 7.3: Relative phase distribution.

be important in a practical implementation of this step.

Let us now take a moment to examine the phase distribution of (7.13) and to

check that it is a superposition of two relative phase values. The relative phase

distribution, P (∆θ), of the state |ψ〉2 is given by

P (∆θ) =
∣∣∣〈θl−∆θ/ε, θl|ψ〉2

∣∣∣2 , (7.14)

where |θl〉 are the states of well defined phase [49, 50, 51] , which take the form,

|θl〉 =
1√
N + 1

N∑
p=0

eiplε|p〉, (7.15)

where {|p〉 : p = 0, ..., N} denotes the Fock states, and ε = 2π/(N + 1) is the

rotation between adjacent phase states.

The phase distribution of this state is shown in Figure (7.3) for N = 20. We see

that it is a superposition of the two relative phases ∆θ = −π/2, π/2 as required.

This form of the state holds for all values of N which is a very satisfying feature

since no knowledge of N is required.

Finally, we complete the interferometry scheme by recombining the two com-

ponents. This is done with Raman pulses identical to those used in the first step.
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Once again, this is performed much faster than the nonlinear evolution. The final

state is then

|ψ〉3 = eiπJx/2 |ψ〉2. (7.16)

After some algebra, this can be written as

|ψ〉3 =
N∑

r=0

Cr |r〉|N − r〉, (7.17)

where

Cr =
√
r!(N − r)!

N∑
s=0

t2∑
t=t1

 N

s

 s

t

 N − s

r − t

 eiπ(s2+r−2t), (7.18)

and t1 = max (0, r+s−n) and t2 = min (r, s). The derivation of this result is shown

in Appendix D. A plot of these coefficients for N = 20 is shown in Figure (7.4).

We see that the coefficients all vanish apart from C0 and C20. The final state is

then

|ψ〉3 =
1√
2

(
|20〉|0〉+ eiη|0〉|20〉

)
, (7.19)

where η is an unimportant phase. This is precisely the form we want. In fact, this

process will work for any value of N , giving (7.1).

7.4 Frequency standard

Huelga et al. [105] investigated how cat states could be used to improve frequency

standards. In their scheme they considered creating a cat state using a theoretical

control-not (CNOT) gate. They then allowed this state to evolve freely for some

time before disentangling the cat with another CNOT gate.

They showed that the final population of the two modes oscillates with a fre-

quency enhanced by a factor of N for cat states and pointed out that this should

allow for greatly enhanced resolution of the difference in frequencies of the two

modes over the free evolution time. In this section, we show how this scheme may

be implemented.

Our scheme for creating cats described above is equivalent to the quantum gate

process for generating cats. It makes the transformation

|N, 0〉 −→ 1√
2

(i|N, 0〉+ |0, N〉)) (7.20)
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Figure 7.4: Plot of the coefficients |Cr| given by (7.18) for N = 20.

|0, N〉 −→ 1√
2

(i|0, N〉+ |N, 0〉) . (7.21)

If we create a cat by this method (let’s say of the form (7.20)) and then allow the

state to evolve for time, t, where the two modes experience different frequencies,

the state is

|ψ〉 =
1√
2

(
ie−iNωt |N, 0〉+ |0, N〉

)
(7.22)

where ω is the difference in mode frequencies. Since our method (apart from any

loss) is deterministic, we can disentangle the modes simply by passing the state

back through the interferometer. The sign of the nonlinear interaction needs to be

reversed and this may be achieved by adjusting the magnetic fields [97].

The state back at the start of the interferometer is now given by transforming

(7.22) by the inverse of (7.20) and (7.21). This gives, apart from an irrelevant

global phase factor,

|ψ〉 = cos
(
Nωt

2

)
|N, 0〉+ sin

(
Nωt

2

)
|0, N〉. (7.23)

This is still a superposition of two macroscopically distinct states, but the ampli-

tudes of the two possible outcomes differ and depend on the frequency difference
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of the modes during the free evolution. Importantly, this frequency is enhanced

by a factor N , which is potentially very large.

If we were to measure which mode the atoms are in (they should all be in one

or all in the other), the probability they are in mode 1 is

P1 =
1

2
(1 + cos(Nωt)). (7.24)

We see that the frequency of oscillations is enhanced by a factor of N . Measuring

this for different values of t allows one to determine ω much more accurately than

for coherent states. This could therefore be used as a very precise way of comparing

frequencies. The N -fold enhancement of the population oscillations may also prove

to be a clear signature of the presence of a cat state. This means that it may also

be able to confirm that the method we have outlined does indeed produce cat

states, and not just mixtures of the two outcomes.

This system allows us to measure phase differences with a resolution that scales

with N as 1/N . This is reminiscent of Chapter 5, where we showed that Heisen-

berg limited phase resolution could be achieved with number correlated conden-

sates. We will compare and contrast the relative merits of cat states and number

correlated states in the next chapter.

7.5 Effects of loss

The main enemy of cat states is decoherence [99] and is the reason we don’t see

macroscopic superpositions in everyday life. Any decoherence will destroy the

final cat state. However, here we would like to consider the effect of loss during

the preparation of the cat.

It is straightforward to investigate the effect of the loss of an atom during the

interferometry scheme. Let’s say each mode has the same rate of loss and an atom

is lost from mode a at time ft, where 0 ≤ f ≤ 1 is the fraction of the total

nonlinear interaction time, t, at which the loss occurred. The state at the end of

the interaction time is then given by

|ψ〉2 =
1√
2N

Ñ∑
k=0

 Ñ

k

1/2

eiπ[k(k−1)]/2 eiπfk |k〉|Ñ − k〉, (7.25)

where Ñ = N − 1. We notice that, apart from the obvious fact that there is one
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atom fewer in this system, the only difference is the second exponential factor. This

factor simply shifts the relative phases of the modes by the stochastic amount fπ.

The system is still in a superposition of two relative phases differing by π. However,

both these relative phases are shifted by the same random amount between 0 and

π.

If we consider the case f = 0, there is no shift of the relative phases and

similarly for f = 1. This means that if there is any loss between the beam splitters

either before or after the nonlinear interaction, it will have no effect on the cat

state. It is only loss during the nonlinear interaction that introduces randomness.

The random phase shift is readily generalised to multiple losses. If n atoms are

lost at respective fractions of the total interaction time, f1, f2, . . . , fn, the relative

phase shift is π(f1 + f2 + . . . + fn). Since the relative phase is a superposition

of two values differing by π, this phase shift can be recast in the form πf̃ , where

0 ≤ f̃ ≤ 1. In other words, the effect of many losses is the same as the effect of

one.

The problem with a shift of the relative phase is that it degrades the quality of

the cat state. As we have seen, a perfect cat state is only obtained when the state

just before the second beam splitter is a superposition of ∆θ = ±π/2. For ∆θ =

0, π the number distribution of the output is singly-peaked and so not cat-like at

all. For all values of the relative phase between these two extreme cases, the output

has varying degrees of ‘cattiness’. However, for ∆θ = η, π+η, two macroscopically

distinct peaks in the number distribution are clear for η ≈ 0.1π−0.5π. This means

that about 80% of trials will produce a cat-like state regardless of how much loss

there is during the preparation.

To produce ideal cat states consistently, however, no loss can be supported.

This places a restriction on the maximum size of cat states that can be produced

by this method. In the next section, we present a method to produce cat states

even when relatively large losses are present.

7.6 Overcoming loss

We have seen that loss doesn’t destroy the superposition of relative phases, but

only introduces random shifts. It is the fact that the phase evolves nonlinearly with

atom number that these random shifts arise. If we could find a way of creating

relative phase superpositions without requiring the nonlinear evolution, atom loss

should not destroy our method.
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We have already seen how relative phase superpositions of precisely the form

we want may be generated without a nonlinearity. In Chapter 5 we saw that,

by Raman coupling two number-correlated condensate modes for a quarter cycle,

the relative phase distribution consists of a superposition of peaks at ∆θ = 0,±π
(see Figure (5.1b)). Furthermore, in Chapter 6 we have demonstrated how good

approximations to number-correlated condensates may be generated.

We take the squeezed state shown in Figure (6.1b) as our starting point and

then resonantly Raman couple the modes for a quarter cycle. The relative phase

distribution of the state after this step is shown as the dotted curve in Figure (7.5a).

As expected, this consists of a superposition of peaks at ∆θ = 0,±π.

In order to create a cat state we require a state of the form (7.13), i.e. the

number distribution should be Gaussian and the relative phase peaks should be

centred at ∆θ = ±π. The current state has a number distribution similar to the

bar graph shown in Figure (5.1a). We can transform this to the required Gaussian

simply by allowing loss from both modes. After the loss of a few times
√
N atoms,

the number distribution has the required form. The peaks in the relative phase

distribution also broaden as a natural consequence of this loss. The solid curve in

Figure (7.5a) shows the relative phase distribution of the state after 3
√
N = 30

atoms have been lost. In this case 16 were lost from mode a and 14 from mode b.

Unlike the method outlined in the previous section, loss doesn’t introduce a

random shift in the position of these peaks, it simply broadens them. The reason

there is no phase shift is that, in this case, there is no nonlinearity present during

the evolution. This is probably unrealistic, there will always be some interatomic

interactions. We now consider how small these need to be for this scheme to work.

If we consider that there is some small nonlinearity of strength δU , the evolution

operator of the state is

exp
[
i δU t

(
â†2â2

)]
. (7.26)

As we have seen above, the time of evolution, t, is the time required for ∼
√
N

atoms to be lost from the system. For large N , this is given by

t =
1

γ
√
N
, (7.27)

where γ is the loss rate. If we now consider the loss of a single atom at a random

fraction 0 ≤ f ≤ 1 of this evolution time, the phase shift introduced is ∆φ =

2δUf/γ
√
N . However, we need to consider the phase shift introduced by the loss

of
√
N atoms. This has an upper bound of |∆φ| = 2δU/γ, though in practice for
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Figure 7.5: (a) Relative phase distribution for the number squeezed state shown in
Figure (6.1b) (dotted curve) and the phase distribution after the loss of 30 atoms (solid
curve). (b) The final number distribution of mode a after phase shifting and Raman

coupling. Despite significant loss, this is still a good approximation to a cat state.

largeN it will be much less than this since all the phases will not add constructively.

If we consider the distribution of phase shifts due to the loss of
√
N atoms, it will

be centred on ∆φ = 0 and have a width of N1/4. So, we can reasonably take

|∆φ| ≈ 4δU

γN1/4
. (7.28)

This gives us a condition on the result that the relative phase peaks are not sig-

nificantly shifted by the loss. This will be the case for all N if δU/γ � 1. This

should be able to be arranged experimentally and it is pleasing to note that this

condition becomes less stringent for large N , e.g. for N > 10000, δU and γ can be

comparable in size.

The final step in generating the relative phase distribution that we want is to

apply a far detuned light pulse to one mode to shift the phase by π/2. The phase

distribution is now very similar to the one shown in Figure (7.3).

The cat state can now be produced, as in Section 7.3, by Raman coupling the

modes for a quarter Raman cycle. The number distribution of mode a after this

step is shown in Figure (7.5b). We see that this is a very good approximation to
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an ideal cat state even though there were large losses present. This demonstrates

a method of generating cat states which is not destroyed by the presence of loss,

but actually requires loss to work.

The natural question to ask next is whether the amount of loss needs to be

carefully controlled. In Figure (7.6a), we show the final number distribution of

mode a for the case where 5
√
N = 50 atoms were lost. Again we see that this is

a good approximation to an ideal cat state. We conclude that this method is not

sensitive to the amount of loss so long as it is greater than about 2
√
N and the

rate of loss from each mode is the same.

For completeness, we ask how well the initial state needs to be squeezed for

successful generation of cat states. This question comes in two parts: firstly, how

is the cat state affected if the initial state is not optimally squeezed, and secondly,

what happens to the cat state if loss is present during the preparation of the

number-correlated pair. In Figure (7.6b) we show the final number distribution

of mode a for loss of 30 atoms (i.e. the same as in Figure (7.5)), but where the

initial state is not optimally squeezed. In this case the initial state was allowed to

be squeezed for time t = topt/
√

2, where topt is the optimum squeezing time. This

corresponds to underestimating the number of atoms in the original condensate by

a factor of two. We see that, although degraded relative to Figure (7.5b), the final

state is still a good approximation to an ideal cat state.

In Figure (7.6c), we show the final number distribution of mode a for loss of

30 atoms (i.e. the same as in Figure (7.5b)), but where there is some loss during

the preparation of the initial number squeezed pair. For the case shown here, 8%

of the atoms were lost during the squeezing. We see that the final state is still

a good approximation to an ideal cat state even though there is loss in all stages

of its preparation. This method is only weakly sensitive to loss and is a great

improvement over the first scheme we outlined which may be destroyed by the

loss of a single atom. Furthermore, the fact that it is relatively insensitive to our

knowledge of the number of atoms in the original system may make it a strong

candidate for the experimental generation of cat states in BECs.

7.7 Conclusion

In summary, we have demonstrated two methods by which Schrödinger cat states

may be generated. The first amounts to condensate interferometry where each

component evolves due to different interaction strengths. The initial state is a
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Figure 7.6: The final number distributions for mode a after the cat state generation
scheme for (a) loss of 50 atoms after squeezing; (b) squeezing the initial state for only
1/
√

2 of the optimum time and then loss of 30 atoms; (c) loss of 8% of the atoms during
the squeezing time, then loss of a further 30 atoms afterwards.
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readily available resource and all the steps should be able to be performed experi-

mentally. The size of the cat states that can be created by this technique, however,

are limited by loss.

We have also demonstrated a second technique which not only tolerates loss, but

requires it. This involves creating a number correlated pair of condensates, allowing

losses in both modes, phase shifting one component, and then recombining. Such

a method should allow for the creation of much larger cat states and could prove

to be a useful method for producing cat states in the laboratory.

Schrödinger cat states are not only of great theoretical interest, but may be

valuable experimental tools in probing the boundary between classical and quan-

tum physics. They may also have many useful applications such as improved

accuracy in interferometry schemes and frequency standards.



Chapter 8

Cat states versus number

correlated states

In Chapters 6 and 7, we showed how two different types of entangled states may

be created, each with a relative phase defined to the Heisenberg limit. In this

chapter, we would like to compare the relative merits of the these two states. In

particular, we would like to investigate their usefulness in terms of a specific task

which depends on their relative phase resolution.

Experimentally we can test their merit by posing the question: given a certain

number of atoms, what entangled state should we form to give the best possible

phase resolution in an interferometry scheme? At first sight, this may not appear

to be a useful way to proceed since we know that both these states give the same

phase resolution when there is no loss. Loss, however, is an important and intrinsic

part of any system and, as we shall see, the two states behave very differently in

its presence.

Another way to compare the two states is in terms of their entanglement: which

state is ‘more entangled’ or contains more information? In quantum information

literature, cat states are often referred to as maximally entangled states (e.g. in

[101, 109]) in the sense that as soon as the state of one atom is measured, the

states of all the others are projected into a state known with certainty. However,

entangled states with flat distributions over all outcomes (such as the state gen-

erated after passing a number correlated pair through a beam splitter) are also

called maximally entangled. The definition in this latter case relies on finding the

state which maximises the entropy of entanglement [110, 111].

95
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States of either sort are characterised by having Heisenberg limited relative

phase, which highlights the link between relative phase and entanglement. How-

ever, we would like to know which of these two states contains more information.

In Chapter 7 we saw that we could form cat states from number correlated states in

the presence of dissipation. Since dissipation corresponds to a loss of information,

this suggests that a number correlated state is more information-rich than a cat

state.

Defining the relative merits of the two states in terms of their sensitivity in

an interferometer is a useful way to resolve this issue. After all, their eventual

usefulness must be gauged in terms of what we can do with them experimentally.

It turns out that number correlated states are far more robust to loss than cat

states, which cannot support the loss of even a single atom. This suggests that

they would be far more useful in interferometry (or clock) schemes where loss is a

limiting process on their accuracy.

In this chapter, we will begin by considering how the phase resolution of cat

states and number correlated states is affected by loss. We will use a Gaussian

entangled state as a benchmark since this exhibits standard quantum limited phase.

8.1 Cat state

We now calculate the relative phase resolution of a cat state in the presence of

dissipation. This state is

|ψ〉 =
1√
2

(|N, 0〉+ |0, N〉) . (8.1)

In Chapter 2, we showed that we could find the phase distribution of this state by

calculating

P (∆θ) = |〈θs, θs−∆θ/ε|ψ〉|2. (8.2)

When considering loss, however, we must think in terms of the density matrix,

ρ = |ψ〉〈ψ|, (rather than the state) of the system [112]. It is straightforward to

write (8.2) in terms of density matrices,

P (∆θ) = Tr [ρ∆θρκ] , (8.3)
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where ρκ is the density matrix for the system with a rate of dissipation, κ, which

we take to be the same for both modes, and

ρ∆θ = |θs, θs−∆θ/ε〉〈θs, θs−∆θ/ε|

=
∞∑

p,q=0

∞∑
p′,q′=0

exp [i(p− p′)sε+ i(q − q′)(sε−∆θ)] |p, q〉〈p′, q′|. (8.4)

We defined |θs〉 and ε in Equation (2.23).

We would now like to calculate the density matrix, ρκ, for the cat state with

loss. Barnett and Radmore [52] show that the density matrix can be written as

ρ(t) = exp
(
2κtL̂

)
exp

{
[1− exp(−2κt)] Ĵ

}
ρ(0), (8.5)

where the superoperators Ĵ and L̂ are defined in terms of their action on the

density matrix as

Ĵρ(t) = aρ(t)a† + bρ(t)b† (8.6)

L̂ρ(t) = −1

2

[
(a†a+ b†b)ρ(t) + ρ(t)(a†a+ b†b)

]
. (8.7)

Using (8.1), (8.4), and (8.5), we can write

P (∆θ, t) = Tr [ρ∆θ(t)ρ(t)]

∝ 2
N∑

l=0

 N

l

 (1− e−2κt)l(e−2κt)N−l + 2e−2Nκt cos(N∆θ)

= 2
(
1 + e−2Nκt cos(N∆θ)

)
, (8.8)

where the last line follows from identifying the sum as a binomial expansion.

We now define the phase resolution of this state to be the value of ∆θ for which

Tr{ρ∆θρ}
Tr{ρ0ρ}

=
1

2
. (8.9)

A simple calculation yields

cos (N∆θ) =
1

2

(
1− e2Nκt

)
. (8.10)

In the limit of no loss, κ = 0, the solution is ∆θ = π/(2N). As discussed in

Chapter 7, we see that the phase resolution of this state scales as ∆θ ∼ 1/N . If,
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Figure 8.1: Variation of the relative phase resolution with 2κt for (a) a cat state (b)
a number correlated state, and (c) a Gaussian entangled state. In each case the total
number of atoms in the system is N = 40. The dotted line indicates the point at which

the cat state no longer contains any phase information.

however, the loss is non-vanishing, we see that (8.10) has no solution for Nκt >

ln(3)/2 ≈ 0.5. This means that the phase information is completely wiped out if

more than half-an-atom is lost from each mode. This is what we would expect since

a macroscopic superposition state is completely destroyed by the loss of a single

atom. We can infer from this that the cat state has a lifetime of t ≈ 1/(2Nκ).

In Figure (8.1a) we have plotted how the solution, ∆θ, of (8.10) varies with 2κt

for N = 40. We see that the resolution rapidly worsens as κt is increased and, as

predicted, the relative phase is undefined for 2κt > ln(3)/40.

We conclude that, although cat states have excellent phase resolution prop-

erties, they are extremely fragile. Huelga et al. showed that when it comes to

usefulness for a frequency standard these two effects exactly cancel and that a cat

state does not give better phase resolution than a standard quantum limited state.

8.2 Number correlated state

We now turn our attention to number correlated pairs. Intuitively, we might feel

that these states contain more information than cat states since we have shown that
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we can form a cat state from a number correlated pair when there is loss present

and we know that loss corresponds to a reduction of coherence or information. We

now investigate this more formally.

We show in Appendix A that Raman coupling a number correlated state for a

quarter cycle gives

|ψ〉 =
1

2n

n∑
m=0

√√√√(2n− 2m)!

(n−m)!2

√
(2m)!

m!2
|2m〉|2(n−m)〉, (8.11)

where the total number of atoms is N = 2n. This distribution is plotted in

Figure (5.1a) and we see that, apart from near the ends, it is very flat. We can

formalise this by using the Stirling approximation [113],

α! ≈
√

2πα
(
α

e

)α

, (8.12)

for large positive values of α. This approximation breaks down near the edges

of the distribution, but the region over which it is not valid scales as 1/n, so for

large values of n, we can neglect the regions where it is not valid. Substituting

(8.12) into (8.11) allows us to write the probability distribution of mode a as

P (2m) ∝ 1/
√
m(n−m), which is flat away from the edges. This means that a

good approximation to this state is

|ψ〉 =
1√
n

n∑
m=0

|2m〉|2(n−m)〉, (8.13)

which we shall use for convenience. As before, the density matrix is given by

ρ = |ψ〉〈ψ|. Using this along with (8.4) and (8.5) we can write the relative phase

distribution as

Tr{ρ∆θρ} ∝
∑
l,r

(
e2κt − 1

)l+r

∣∣∣∣∣∣∣
n∑

m=0

 2m

l

1/2 2(n−m)

r

1/2

e−2im∆θ

∣∣∣∣∣∣∣
2

. (8.14)

If we consider the lossless limit, we can set κ = 0 and l = r = 0. The phase

resolution is then given by solving

Tr{ρ∆θρ}
Tr{ρ0ρ}

=
1

n2

∣∣∣∣∣
n∑

m=0

e−2im∆θ

∣∣∣∣∣
2

=
1

2
. (8.15)
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Recognising that the sum is a geometric series, we can write this as

∣∣∣∣∣ sin(n∆θ)

n sin(∆θ)

∣∣∣∣∣
2

=
1

2
, (8.16)

which, for large n, can be solved to give the phase resolution as ∆θ ≈ 1.4/n =

2.8/N . We see that, as discussed previously, this has the same number scaling as

the cat state. However, the phase resolution is a factor of about 1.8 worse than

for a cat state, ∆θ = π/2N . In the lossless limit, therefore, cat states are the best

states for interferometry.

A completely lossless situation is not realistic and we would like to compare the

two states in the presence of dissipation. In Figure (8.1b) we plot ∆θ for different

values of 2κt for N = 40. ∆θ is given by the solution of (8.9) and Tr{ρ∆θρ} is given

by (8.14). We can compare this with Figure (8.1a) which shows the corresponding

relationship for a cat state.

We notice firstly that, for no loss, the number correlated state has ∆θ ≈ 0.07

in agreement with our prediction. In the lossless case, the phase resolution of this

state scales with N in the same way as for the cat state. Their behaviour differs

markedly, however, when loss is present.

The loss of a single atom destroys all the phase information in a cat state.

However, in Figure (8.1b), we see that for the number correlated state this is not

the case. The loss of a single atom only slightly degrades the phase resolution. As

the loss is increased, the phase resolution is smoothly degraded but, even for large

losses, a well defined relative phase still exists between the modes.

8.3 Gaussian state

Finally, we would like to compare these two states with a Gaussian state, i.e. one

that is formed by coupling a number state |N〉 with a vacuum mode |0〉 for a

quarter Raman cycle. We showed in Chapter 5 that this state has the form

|ψ〉 =
1

2N/2

N∑
m=0

 N

m

1/2

e−imπ/2 |m〉|N −m〉, (8.17)

and that its phase resolution is given by the standard quantum limit ∆θ ∼ 1/
√
N

when there is no loss.

Following a similar calculation to that described in Sections 8.1 and 8.2, the
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relative phase distribution of this state is

Tr{ρ∆θρ} ∝
∑
l,r

(
e2κt − 1

)l+r

∣∣∣∣∣∣∣
N∑

m=0

 N

m

1/2 m

l

1/2 N −m

r

1/2

e−im∆θ

∣∣∣∣∣∣∣
2

.

(8.18)

In Figure (8.1c) we plot how the phase resolution, ∆θ, of this state varies with 2κt

for N = 40. As expected, for no loss the phase resolution is worse than for the

cat state and the number correlated state. As more and more loss is introduced to

the system, the width of the relative phase distribution increases. Over the range

we have plotted, we see that the phase resolution of the number correlated state

is always better than the Gaussian state.

8.4 Conclusion

We are now in a position to answer the question that we posed at the beginning

of this chapter: given N atoms, what entanglement should we create in order to

achieve the best possible phase resolution in an interferometry scheme?

The answer comes in two parts if we consider the cases where loss is present

or not. In the lossless case, we have seen that both the cat and number correlated

states have phase resolutions that scale as 1/N . By contrast, the phase resolution

of the Gaussian state scales as 1/
√
N . This means that, even for modest numbers

of atoms, the phase resolution of cat states and number correlated states is signifi-

cantly better than for Gaussian states. For a completely lossless system, however,

cat states give a phase resolution that is better than for number correlated states

by about a factor of 1.8.

The situation changes, however, when loss is present. In Figure (8.1) we see

that the Gaussian and number correlated states are affected relatively ‘gently’

by loss. This is not the case for cat states for which the loss of a single atom

wipes out all the phase information. This was pointed out by Huelga et al. who

demonstrated that a cat state gives N -enhanced phase sensitivity but, due to its

fragile nature, can only be evolved for a much shorter time [105]. They showed

that these two effects exactly cancel giving no improvement over the Gaussian

entanglement case. Here however, we show that, by using number correlated states,

we can also get the N -enhanced phase sensitivity but with much reduced loss

sensitivity. In this case the loss of atoms does not destroy the phase information of

the entangled state but only slightly degrades it. This means that, unlike cat states,
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number correlated states are not subject to strict limits on how long they can be

evolved. We see in Figure (8.1) that even for large losses, the phase resolution of

the number correlated state is better than that for the Gaussian state. This is an

important result as it suggests that using number-correlated pairs may allow for

much improved frequency standards.

Our conclusion is that the best entangled state we can create for use in in-

terferometry is a number correlated state. In Chapter 6 we described a scheme

for how such states may be able to be generated which may allow their phase

properties to be experimentally verified. We also conclude that number correlated

states are more strongly entangled or more information-rich than cat states. This

is consistent with our findings in Chapter 7 that a cat state can be generated from

a number correlated state when loss is present.



Chapter 9

Entanglement concentration in

Bose condensates

In the previous chapter, we highlighted the link between entanglement and phase.

In this chapter, we develop this correspondence further by showing how we can

apply our knowledge of phase to a scheme for concentrating the entanglement

between Bose-Einstein condensates.

9.1 Introduction

Entanglement shared between distant parties is an important resource in various

communication protocols [114, 115, 116]. Since entanglement cannot be created by

local operations on separate systems, entangled pairs of systems need to be created

at a source and then distributed to distant parties. It is therefore important to be

able to distribute entanglement faithfully.

One scheme which aids in this distribution is entanglement concentration. This

converts a large number of less entangled pairs into a smaller number of more en-

tangled pairs using only local operations [117]. The concentrated pairs can then

be used to perform the communication protocol faithfully. One such protocol,

quantum teleportation [116], exploits priorly shared entanglement to transfer an

unknown (or even partially unknown [118]) quantum state to a distant location.

Teleporting one particle of an entangled pair results in the exchange of entangled

partners across a distance, a process known as ‘entanglement swapping’ [116, 119].

Two of the particles which become entangled have not directly interacted at any

103



104 Chapter 9. Entanglement concentration in Bose condensates

stage, and therefore the swapping can be used as a means of entanglement distri-

bution. Both teleportation and entanglement swapping have been experimentally

demonstrated [120, 121, 122, 123], in the domain of microscopic systems. Demon-

strations of such schemes with macroscopic objects would be of fundamental in-

terest.

As we have seen in this thesis, an increasingly controllable macroscopic quan-

tum system is a Bose-Einstein condensed state of a trapped dilute gas [25, 124].

Bose condensates have already been used to demonstrate quantum features, like

superposition, in the macroscopic domain [39]. More recently, there have also been

suggestions for creating specific types of entangled atomic beams, and multiparticle

entangled states from Bose condensates [125, 126, 127] and in Chapters 6 and 7 we

showed how two specific entangled states can be created. However, no scheme for

entanglement swapping or concentration has been yet demonstrated with BECs.

In this chapter, we propose a method for achieving entanglement swapping,

using techniques which are experimentally feasible. This opens up the possibility

of entanglement-aided communications using Bose condensates. We also show that

a theoretical proposal for entanglement concentration by entanglement swapping,

[128] is feasible, using exactly the same measurements.

9.2 Entanglement swapping scheme

We begin by presenting a general entanglement swapping protocol for Bose con-

densates. We consider four condensates labelled by the modes a, b, c, and d (see

Figure (9.1)). Modes a and b are entangled and contain a total of n atoms between

them

|ψab〉1 =
n∑

p=0

cp |n− p〉a|p〉b (9.1)

where
∑n

p=0 |cp|2 = 1. Later we will choose the form of this entanglement to be

that given by a simple measurement of an interference pattern. The second two

modes, c and d, are also entangled with a total number of n atoms

|ψcd〉1 =
n∑

q=0

dq |q〉c|n− q〉d (9.2)

with
∑n

q=0 |dq|2 = 1. We will discuss specific ways of entangling these condensates

later. The total state of the system after this first part of the scheme is, |ψ〉1 =

|ψab〉1 ⊗ |ψcd〉1, and contains a total of 2n atoms.
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Figure 9.1: The entanglement swapping scheme. (a) Modes a and b are entangled as are
modes c and d. (b) An interference pattern is then detected between modes b and c,

completely draining both traps.

In the second part of the scheme, we allow atoms to leak out of b (now entangled

with a) and c (now entangled with d). We completely drain the two traps and

detect all the atoms in both of them in such a way that we do not know which

trap a detected atom has come from. We need to be able to measure this number

accurately, which limits the number of atoms each condensate can contain to small

values. The details of this step can be very general. Any method which measures

a spatial or temporal interference pattern in the overlap region will work [39, 47,

48, 84]. We can write this step as the operation

O(p, q) |ψ〉1 = δr,(p+q)

[
1√
2

(
b̂+ ĉ eiξ

)]p+q

|ψ〉1, (9.3)

where b̂ and ĉ are annihilation operators for modes b and c respectively, δr,(p+q)

is the discrete delta function, and r is the outcome of the measurement of the

total number of atoms. The phase, ξ, varies stochastically from trial to trial [47]

since it has contributions from the position or time of each detection, and these

detections are random events. The value of this phase, however, is not important

to our scheme. In fact, detecting an interference pattern not only creates a phase,

but measures its value, [81], so we could easily correct for it at the end. For this

reason and without loss of generality we set ξ = 0.

Considering just modes b and c, we get

O(p, q) |p〉b|q〉c =
(p+ q)!√
p!q!

δr,(p+q) |0〉b|0〉c. (9.4)
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Modes b and c have been completely drained and so we will omit these modes from

the expression for the total state.

Making the replacements y = n− p and k = 2n− r, the final state of modes a

and d can be written as

|ψ〉 = N
y2∑

y=y1

 2n− k

n− y

1/2

cn−y dn−k+y |y〉a|k − y〉d, (9.5)

where y1 = max(0, k− n) and y2 = min(n, k). N is an unimportant normalisation

factor which has absorbed the additional factor of
√

(2n− k)!. Modes a and d are

now entangled, though they have never directly interacted.

This completes the entanglement swapping protocol. The physical basis of the

swapping is the lack of knowledge of the source of the detected atoms. This is also

the principle on which a recent proposal for entangling atoms in distant cavities is

based [129].

9.3 Entanglement concentration

The fact that entanglement swapping is possible leads us to investigate whether

it could be used for entanglement concentration, as indicated in [128]. Such a

scheme depends on the choice of initial states (9.1) and (9.2). We investigate the

circumstances under which the entanglement of the final state (9.5) may be greater

than that of the original state (9.1).

In this case, mode a may be taken to belong to Alice and modes b, c and d to

belong to Bob. The detection, a local action on Bob’s side, then serves to increase

the entanglement between Alice and Bob. Entanglement concentration is thus

demonstrated in principle between Alice and Bob, who may not necessarily be far

apart in practice.

To compare the entanglement of the initial and final states, (9.2) and (9.5),

we will use a standard measure of entanglement for pure states, namely the Von

Neumann entropy of one subsystem [117]. For state (9.5), the entanglement is then

given by

E = −Tr {ρa log ρa} = −Tr {ρd log ρd} , (9.6)

where ρa = Trd {|ψ〉〈ψ|} and ρd = Tra {|ψ〉〈ψ|} respectively denote the reduced

density matrices for modes a and d.

The range of possible initial states is limited by the specific practical methods of
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entangling the initial pairs of condensates. A number of theoretical schemes could

be proposed for which the entanglements and measurements are not practical.

However, all the operations in our scheme could be performed in the laboratory.

We consider that a and b have been entangled by measuring an interference

pattern between them. This is a very natural form of the entanglement and such

a state has been widely studied [47, 48, 84] and experimentally observed [39]. For

simplicity and convenience, we consider each mode initially to be in a number state

with n atoms with identical trap frequencies, ω, and that we detect n atoms (i.e.

half of them) in the entanglement process. Such a procedure gives the unnormalised

coefficients in (9.1) as

cp =

 n

p

3/2

e−iζp, (9.7)

As above, this result holds for any measurement of an interference pattern between

the condensates and ζ can be set to zero without loss of generality.

We would now like to find an experimentally feasible form of the entanglement

between modes c and d (held by Bob) that can give rise to purification of the

entanglement between Alice’s mode a and Bob’s mode b.

We know that the final state has the form of (9.5) and for simplicity we take

r = k = n (i.e. the final state has the same number of atoms as the initial state).

Substituting the coefficients from (9.7), we obtain

|ψ〉 ∝
n∑

y=0

 n

y

2

dy |y〉a|n− y〉d. (9.8)

We would now like to find the form of the coefficients {dy} such that (9.8) has a

flatter number distribution than the initial entanglement between modes a and b,

|ψab〉1 ∝
n∑

p=0

 n

p

3/2

|p〉a|n− p〉b. (9.9)

Comparing (9.8) and (9.9), we see that if {dy} had a perfectly flat distribution, the

final state would more more peaked (and hence less entangled) than the original.

Our scheme would fail in this case. However, if the distribution {dy} were dipped

in the middle, we might be able to concentrate the entanglement. In particular, if

dy =

 n

y

−1/2

, (9.10)
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we would ‘break even’, in the sense that the final state would be identical to the

original. Furthermore, if the distribution {dy} were even more strongly dipped, we

should be able to arrange things so that the final state is more entangled than the

original. For,

dy =

 n

y

−2

, (9.11)

the final state (9.8) would be maximally entangled. It’s not clear how we could

generate an entanglement of this form, instead we look for states (9.2) with dipped

number distributions that could be experimentally realised.

We have already seen how entanglements of this form may be created. In

Chapter 5 we showed that if number correlated pairs of condensates are Raman

(or Josephson) coupled for a quarter cycle, the resulting number distribution is

dipped in the middle (see Figure (5.1)). Unfortunately, however, this has a very

flat middle section which dominates and, as we saw above, a flat distribution does

not allow for entanglement concentration. We need to be able to generate states

that are more strongly dipped.

We now outline how an appropriate distribution may be produced. The scheme

we describe is interesting in its own right and is very similar to the Schrödinger cat

state scheme in Chapter 7. We start by entangling c and d in just the same way

as we produced the entanglement between a and b. It is assumed that this process

takes place much faster than the evolution due to the nonlinear interactions and

so we can ignore the interactions during this time. The system is then allowed

to evolve naturally due to the interactions between atoms. We take the modes

to have the same interaction strength, U , and assume that there is no interaction

between the two modes. Cornish et al. [97] have shown how the scattering length

may be tuned, which may be useful in a practical implementation of this step. The

system is allowed to evolve for time t = π/4U . The operator for this step is

Uevolve = exp
[
i
π

4

(
ĉ†2ĉ2 + d̂†2d̂2

)]
, (9.12)

and is equivalent to the ‘one-axis twisting’ described by Kitagawa and Ueda [130].

Next we advance the phase of one condensate by φπ/2. This can be achieved

by applying a suitable far-detuned light pulse. The state after this step is, ignoring
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Figure 9.2: Plot of the coefficients |dq| against q, for n = 30 and φ = 0.8.

the global phase, is

|ψcd〉1 ∝
n∑

q=0

 n

q

3/2

eiπq (q−n−φ)/2 |q〉c|n− q〉d. (9.13)

Finally, we resonantly couple modes c and d (by tunneling through the barrier

between the traps) for time t = π/4Γ, where Γ is the strength of the coupling [82],

(this Hamiltonian is identical to that generated by Raman coupling [64, 76]). The

resulting unitary operator is

Ucouple = exp
[
i
π

4
(ĉ d̂† + ĉ†d̂)

]
. (9.14)

Operating on (9.13) gives us the form of (9.2). After some algebra, the unnor-

malised coefficients are given by

dq =
√
q!(n− q)!

n∑
s=0

t2∑
t=t1

 n

s

2 s

t

 n− s

q − t

 e
iπ
2

(q−2t)e
iπ
2

s(s−n−(φ−1)), (9.15)

where t1 = max (0, q+s−n) and t2 = min (q, s). The details of this step are shown

in Appendix D. A plot of these coefficients for n = 30 and φ = 0.8 is shown in
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Figure (9.2). We see that this has the form of the number distribution that we

require.

As described in the entanglement swapping scheme above, once the two en-

tangled pairs have been created, we can measure an interference pattern between

modes b and c, detecting the total number of atoms in both. An expression for the

final state is then given by substituting the coefficients given by (9.7) and (9.15)

into (9.5). The final state depends on three parameters: the total number of atoms

detected, r, the angle φ introduced in creating (9.15), and the number of atoms in

each entangled pair, n.

In fact, the last parameter should really be the number of atoms in (9.1) and

the number of atoms in (9.2). We have set these numbers to be the same for

convenience, but they need not be. To simplify calculations further, we will not

investigate this n-dependence but will set it to the value n = 30 throughout the

remainder of this discussion. All the features of the results presented here hold for

different values of n and for different n in the two initial entangled pairs. We are

not so much interested in presenting the best case of entanglement purification,

but rather demonstrating that it is possible. We will, however, examine how the

entanglement of (9.5) varies with r and φ.

We begin by investigating the optimum value for φ. In Figure (9.3), the maxi-

mum value of the entanglement of (9.5) that can be achieved for any measurement

result, r, is plotted as a function of φ. For comparison, the dashed line is the

entanglement of the initial state (9.1). We see immediately that the entanglement

is purified over a wide range of values of φ: φ ∈ [0.47, 0.97]. This is an important

result and demonstrates a means of purifying the entanglement of macroscopic

objects. For n = 30 the best entanglement of the final state is achieved when

φ = 0.9. We now set φ to this optimum value and investigate how the entangle-

ment of the final state depends on the outcome of the measurement of the total

number of atoms in modes b and c. In particular, we would like to study the range

of outcomes that give rise to entanglement purification.

In Figure (9.4), we plot E against the total number of atoms remaining in the

final state, k = 2n−r. We see that the final state is purified if k ∈ {n−1, n, n+1},
i.e. the measurement outcome lies in the range r ∈ {n− 1, n, n+ 1}. If any other

measurement result is obtained, the trial has failed to purify the entanglement and

we would need to try again.

A problem that arises is that one would need to accurately know the number

of atoms in each entangled pair. This is probably the most severe limitation on
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Figure 9.3: The maximum entropy over all possible measurement outcomes, r, of the
final state (9.5) as a function of φ. The dashed line is the entropy of the initial state

(9.1).

carrying out this scheme. However, we have seen in Chapter 6 how it is possible to

generate pairs of number correlated condensates. We can make use of this scheme

in the present context as follows. We could take a condensate and generate a

number correlated pair using the technique outlined in Chapter 6. We could then

destructively measure the number of atoms in one of these pairs. This would give

us accurate information about the number of atoms in the remaining condensate,

which we take to be our starting point. The next step is to generate a number

correlated pair from this condensate, and then to generate number correlated pairs

from each condensate in this pair. The result of all this is that we are left with

four condensates which are all number correlated and, since we knew the number

of atoms in the original condensate (i.e. the total number of atoms in the system),

we know the number of atoms in each mode. This is precisely the starting point

we require.

We see from Figure (9.4) that if we were to average over all measurement

outcomes, the entanglement would be degraded. However, conditional on a small

range of measurement outcomes, it is possible to concentrate the entanglement.

This is precisely the idea of entanglement concentration: from a large number of
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Figure 9.4: Entropy of the final state (9.5) as a function of the total number of atoms in
the state, k. The dashed line is the entropy of the initial state (9.1). The entanglement

is purified over the range k ∈ [n− 1, n + 1], with a maximum for k = n = 30.

entangled pairs, we can distill a set with enhanced entanglement.

In this chapter, we have not been so much concerned with obtaining the best

possible concentration or indeed with demonstrating a scheme with great prac-

tical advantages Rather, the interest lies in the fact that, by demonstrating a

feasible scheme for carrying out this protocol, we have shown that entanglement

concentration is possible. The ability to manipulate and, in particular, purify the

entanglement of macroscopic objects is of fundamental importance. Techniques

for manipulating entanglement are progressing rapidly and improved purification

schemes should follow. In particular, schemes which could generate maximally

entangled condensates would be very desirable. The ability to concentrate the

entanglement of Bose condensates suggests that they may be a valuable tool in

quantum information experiments.



Chapter 10

Concluding remarks

10.1 Introduction

In this final chapter, we take a step back and provide an overview of the main results

of this thesis and how they fit together. We also look ahead to how this work

could be extended and discuss some of the exciting developments and practical

applications that should soon be within technological reach.

The subject of this thesis, the quantum phase of BECs, has long caused con-

fusion and debate. Sometimes this unease has been due to the fact that it raises

difficult and subtle issues such as symmetry breaking. Often, however, it is the

result of unclear terminology: for example, how can a number state condensate,

which has no phase, be phase coherent? This lack of clarity is not helped by the

fact that assumptions, which are valid in one area of BEC theory, can lead to

incorrect conclusions in another. For example, while it is valid to assume that

the condensate is in a coherent state when studying condensate dynamics, if taken

literally, this assumption leads to the incorrect conclusion that a condensate has

an absolute phase.

In the early part of this thesis, we set about clarifying these issues and provid-

ing a solid platform for our subsequent investigations. The remainder of the thesis

extended our understanding of phase and can broadly be divided into four inter-

linked categories: the properties of the phase of BECs, the relationship between

phase and entanglement, schemes for creating specific interesting entanglements,

and a comparison of the practical merits of these entanglements. We begin by

discussing each of these in turn.
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10.2 Main results

Our discussion of the properties and nature of phase began in Chapter 2 where

we established some key axioms. We used phase coherence as a definition of BEC

and showed that it is a consequence of the atoms all sharing a single macroscopic

wave function and does not depend on the quantum state of the condensate. We

also showed that absolute phase is a valid concept only for infinite condensates and

that all condensates produced in the laboratory must be thought of in terms of

relative phase. This relative phase is due to an entanglement between condensate

modes and can be created by a measurement.

In Chapter 3, we turned the idea of relative phase on its head, by showing how

it is possible to define a phase standard for BECs. A phase reference, against which

we can compare the phase of other condensates, allows of us to think of phase as

if it were absolute. This is an important result which gives a clear and precise

definition to the phase of a condensate. In the following chapter, we showed that

phase could arise naturally between coupled condensates due to interactions and

loss. Such a scheme does not rely on measurements to create a phase and was used

to explain the results of an experimental demonstration of a mode locked atom

laser.

The second area we treated was the link between phase and entanglement. This

was first introduced in Chapter 2 to explain how measurements could establish a

phase. In Chapter 3, we extended this idea to show that once an entanglement

has been established, it is robust. This robustness comes in two forms: subsequent

measurements of the phase between condensates will give the same result and the

existing entanglements are not destroyed when other condensates are entangled

with the phase standard. This robustness is the essence of how the phase standard

works. We also discussed how entanglements and hence relative phase may be

established by coupling condensates. Chapter 5 provided an important insight by

demonstrating that different entanglements could lead to different natures of the

phase. In particular, we showed that when number correlated pairs are passed

through a beam splitter, the resulting state has Heisenberg limited phase. This

suggested that the more entangled a state is, the better its phase resolution.

The link between entanglement and phase was further highlighted in Chap-

ter 9, where we discussed a scheme for concentrating the entanglement in a pair of

condensates. The improvement in entanglement may be modest, but it serves to

demonstrate that entanglement swapping is possible in BECs and that they could
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become a valuable tool in quantum information.

Our discussion of the link between phase and entanglement led us to consider

schemes for creating specific interesting entanglements. We were interested primar-

ily in creating entangled states that could give the best improvement in practical

tasks over states that are not entangled. The two candidates we treated were the

Schrödinger cat state and the number correlated state which, when passed through

a beam splitter, has the approximate form,

|ψ〉 =
1√
N + 1

N∑
i=0

|2i〉|2(N − i)〉. (10.1)

We chose to study these states since they are each commonly referred to in the lit-

erature as maximally entangled states. This means that they should have the best

possible phase resolution and so should give the best improvement in performance

over classical states.

In Chapter 6, we outlined a straightforward scheme to create states of the

form of (10.1). The scheme presented relies on coupling condensates with the

right balance between the interaction and coupling strengths and should be within

current technological capabilities. In Chapter 7 we considered how Schrödinger

cat states may be generated in condensates by manipulating their phases. We

presented two schemes: one is a simple scheme based on interferometry and the

other is a more complex scheme that has the advantage of being relatively robust

to loss during the creation process. Interestingly, we found that we could create

cat states from number correlated states when there is loss present. The fact that

these two states should be able to be created relatively easily is very exciting. Not

only do they have great potential in practical applications, but they may provide

a valuable tool for studying the nature of measurement and entanglement.

Finally, our fourth area of interest was to compare the merits of these two en-

tangled states. We did this by comparing their performance as the input states

to an interferometer and seeing which one could detect the smallest path length

difference. For the lossless case, they both delivered the same performance, which

is the best possible allowed by quantum mechanics. However, when dissipation was

introduced to the system, they differed dramatically. In particular, the cat state

was completely destroyed by the loss of a single atom, which severely restricted

its practical usefulness. By contrast, the number correlated state was only gently

degraded by loss. This is a remarkable result, not just for practical applications

(some of which we outline below), but also from a theoretical perspective as it sug-
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gests that the number correlated state is more information-rich, or more entangled,

than the cat state.

10.3 Proposals for future work

One of the most exciting prospects for practical applications of this work is to

investigate how we can make use of the number correlated state (10.1). The fact

that this state has Heisenberg limited phase resolution and is relatively robust to

loss means that it should be able to be used in a variety of schemes to give greatly

enhanced sensitivity over its classical counterparts. We briefly discuss two such

possibilities below: an improved frequency standard, and a scheme for making

accurate force measurements.

We also discuss how our ability to manipulate phase and entanglement should

allow us to create other useful entangled states. Two specific entanglements are

highlighted. Finally we suggest how the semiclassical treatment of the dynamics

of the number squeezed state, developed in Chapter 6, could be extended to other

systems. This is potentially a very powerful technique that could be used to great

effect when studying systems such as the Bose-Hubbard model.

10.3.1 Frequency standard

In Chapter 8 we commented on the fact that the favourable phase and robust-

ness properties of the number correlated state may make it useful as a frequency

standard or clock.

It was Wineland and co-workers who first proposed that the accuracy of fre-

quency standards could be improved by using entangled states instead of uncor-

related particles [91, 131]. By using a cat state, the frequency resolution can be

enhanced by a factor equal to the total number of particles, N . This can be very

large for BECs and so the potential gain is considerable. The excitement was

short-lived, however, when it was shown that any advantage is lost when there is

dissipation [105]. The explanation is that, although cat states have much better

phase resolution than uncorrelated particles, they are extremely fragile to loss.

Their fleeting existence means that any gain due to the enhanced resolution is

lost by the uncertainties introduced by being able to compare frequencies only for

short times. Interestingly, these effects precisely cancel. At first sight this might

suggest that the uncorrelated limit, in which the accuracy scales as 1/
√
N , is a
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fundamental limit that cannot be surpassed. This is not the case, however, and

Huelga et al. [105] have shown that an improvement in the resolution by a factor

of 1/
√
e can be achieved by using certain partially entangled states. Although this

improvement is relatively modest, it is an important result as it shows that the

classical limit can be surpassed. By using number correlated states, however, even

better improvements in resolution may be able to be achieved.

The two driving factors of the accuracy of a clock are the phase resolution of

the state and how long it can be evolved before being destroyed. Cat states excel

in the former criterion but not in the latter and conversely for uncorrelated states.

However, as we can see in Figure (8.1), number correlated states do not have the

same trade off and excel in both areas. The resolution of the number correlated

state is better than the uncorrelated (Gaussian) state and remains so even after a

large number of the atoms have been lost. This means that the number correlated

state can be evolved for times comparable to the Gaussian state and yet retain

better phase resolution throughout. Such a state is therefore the perfect candidate

for creating an improved frequency standard. An interesting area of study would

be to carefully design a scheme by which this could be put into action.

10.3.2 Force measurements

Closely related to the frequency standard is a scheme for accurately measuring

forces. Corney et al. have proposed a scheme which makes use of BECs to detect

very weak differences in forces such as gravity [132]. The scheme is essentially an

interferometer in which the two arms experience slightly different frequency shifts

due to the different forces acting on them. Following the precedent set by clock

schemes, they realised that the accuracy of such a scheme could also be enhanced by

using entangled condensates. However, much like the frequency standard schemes,

their attention has focused on cat states.

We propose that better performance may be able to be achieved by using

number correlated states. The same advantages should be able to be achieved

as for the frequency standard. In particular, the evolution under the influence of

the force should be able to take place over a longer time, which will improve the

sensitivity of the detector.

Corney et al. considered the limitations on the accuracy of their scheme due

to interactions and external coupling. They did not, however, consider loss which,

due to the fragile nature of cat states, may well be the limiting process. By using
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number correlated states instead of cat states, however, the effects of loss should

be gentle and the scheme should work in the way originally outlined.

10.3.3 Creating exotic entanglements

Our knowledge of manipulating phase and entanglement provides us with the tools

to create other interesting entangled states. There are a lot of exciting prospects

and many unexplored avenues. In this section, we suggest two possibilities that

are feasible: a maximally entangled superposition of correlated condensates, and

four-fold number correlated condensates.

We begin by discussing how a maximally entangled superposition of number

correlated condensates may be formed. Our starting point is a single number

correlated pair. We have described how such a state can be created in Chapter 6.

If we pass this state, |ψ〉 = |N〉|N〉, through a 50:50 beam splitter, the resulting

state can be written approximately as

|ψ〉 =
1√
N + 1

N∑
i=0

|2i〉|2(N − i)〉. (10.2)

Assuming N is even, each mode can only have an even number of atoms. If we

now take one of these modes, couple it to a vacuum state, and once again carry

out the number correlating procedure as outlined in Chapter 6, the resulting state

is,

|ψ〉 =
1√
N + 1

N∑
i=0

|i〉|i〉. (10.3)

We see that we now have a equally weighted superposition over all number corre-

lated pairs. We don’t just have even numbers because all the even pairs have been

split in half. This is an interesting state as it is maximally entangled. It may be

of great use in teleportation or entanglement swapping schemes for condensates.

Another exotic state that could be studied is a higher order version of the

number correlated state. We first suggested this in Chapter 9 as a means of

carrying out the entanglement concentration scheme in BECs. This state could

be formed by creating a number correlated pair, |ψ〉 = |2N〉|2N〉, in the now-

familiar way and then coupling each of these modes to a vacuum state and number

squeezing again. This creates four number correlated condensates,

|ψ〉 = |N〉|N〉|N〉|N〉. (10.4)



10.3. Proposals for future work 119

Of course this process could be continued to form a longer chain of condensates

all in the same number state. The strong correlations in this state make it a

powerful quantum resource. We have seen how it could be useful in entanglement

concentration and it would be interesting to study how its potential could be

exploited in other practical applications.

10.3.4 Bose-Hubbard model

In Chapter 6, we discussed a method for creating number correlated pairs of BECs.

This result is interesting in its own right. However, an intriguing and slightly sur-

prising spin-off is how well we were able to describe this process using a semiclas-

sical model. The system we are dealing with is highly entangled and non-classical

and it is not usually possible to describe such systems with semiclassical mean

field theory. However, we showed how we could apply it to model the squeezing

procedure and predict the timescales accurately. The key was using different tra-

jectories to represent groups of a few superposed terms of the state. By splitting

the state up into parts each represented by a unique trajectory, we were able to

study the evolution of the distribution. This proved to be a surprisingly accurate

and powerful technique.

It would be interesting to see what other systems it could be applied to. Of

particular interest is the Bose-Hubbard model [133, 134], which consists of a bo-

son gas hopping through a multidimensional lattice, and is simply a higher order

generalisation of the number squeezing scheme. This model is of great interest as

it exhibits rich structure including a phase transition from the superfluid to the

Mott insulator phase at low temperature. The full model, however, is extremely

complicated since it is a quantum mechanical system with many modes on a mul-

tidimensional lattice. To make any headway with calculations or understanding,

it is therefore crucial to be able to make gross simplifications whilst still retaining

the key features of the system.

The behaviour of the Bose-Hubbard model has been investigated by a number of

theoretical techniques, from mean field, variational and perturbative approaches,

to quantum Monte Carlo techniques. The present technique may add another

valuable weapon to the armoury. Semiclassical techniques allow us to describe the

vastly complicated quantum state with a few c-numbers. This simplification allows

for considerable insight to be gained and it is currently under investigation how

this could be done for a lattice of coupled BECs. There may well be many other
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entangled systems for which this technique could also be applied and it would be

of great interest to investigate these.

10.3.5 Other thoughts

This thesis has progressed from a discussion of the phase of a BEC to issues of

entanglement and information. It would be natural for future work to continue

to forge links between BEC and quantum information. We have already shown in

Chapter 9 a scheme by which the entanglement between a pair of condensates may

be concentrated. Such a procedure is crucial for teleportation via noisy channels.

The interest lies not so much in the fact that this could be used as a practical

scheme, but in the fact that it shows that entanglement concentration in BECs

should be possible. Further work could develop improved entanglement concentra-

tion schemes, eventually even ones that produce maximally entangled pairs. This

work would naturally move towards eventually developing faithful entanglement

swapping or teleportation schemes for condensates.

Entanglements play an important part in this discussion: both how to create

them and how to quantify them. We have already discussed how work may progress

in the former. Quantifying entanglement has received a lot of recent theoretical

attention and the theory is well established for two modes [110, 111]. In Chapter 8,

we showed how the entanglement of a state could be quantified by testing its

performance in an interferometer both in the presence and absence of dissipation.

It would be interesting to develop this technique further and, in particular, to see

whether it can be generalised to more than two modes. This is something that as

of now cannot be done theoretically.

10.4 The last word

During the course of this thesis, we have developed an understanding of quantum

phase and entanglement. We have cleared up some conceptual issues and discussed

how phase may be defined, created, manipulated, and controlled. We began with

very theoretical discussions of issues such as symmetry breaking and have pro-

gressed through to practical and useful schemes that could be carried out in the

laboratory.

This progression may reflect the interest in the field itself. BECs are a wonderful

testing ground for many theories, and since their discovery they have been studied



10.4. The last word 121

in their own right. As time goes by, however, it seems BECs will become not

only an object of academic interest, but also a valuable tool to be used in various

practical schemes. The indications are that one of their main uses will be to create

states with useful multiparticle entanglements. This may allow them to be used

in quantum information schemes and should allow for a considerable improvement

in the accuracy of measurement and other schemes.

The study of phase and entanglement in BECs is a relatively new field of study.

However, the signs are good that it is a fertile one and will lead to many exciting

developments for quite some time yet. It seems that the excitement generated in

1995 when BECs were first observed in dilute gases is well and truly justified.
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Appendix A

Derivation of beam splitter

outputs

In this appendix, we derive the output from a 50:50 beam splitter for two different

input states. We consider a beam splitter with input modes labelled by a and b

and output modes labelled by c and d. The beam splitter transformation is given

by

c = ta+ rb (A.1)

d = ra+ tb, (A.2)

where t and r are respectively complex transmission and reflection coefficients.

Boundary conditions at the surface of the beam splitter yield the following condi-

tions,

|t|2 + |r|2 = 1 (A.3)

rt∗ + r∗t = 0. (A.4)

Without loss of generality, we take t to be real and r to be imaginary. This allows

us to parametrise t and r as: t = cos(θ/2) and r = i sin(θ/2).

We now consider the cases of two different inputs. The first is a number state

|n〉 at mode a and a vacuum state at mode b. This can be written as

|n〉a|0〉b =
1√
n!

(
a†
)n
|0〉a|0〉b. (A.5)
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We can find the output state simply by transforming the operators into those for

modes c and d,  a

b

 =

 cos θ
2

−i sin θ
2

−i sin θ
2

cos θ
2

 c

d

 , (A.6)

which simply corresponds to a rotation of θ between the input and output modes.

This gives

a† = cos
θ

2
c† + i sin

θ

2
d†. (A.7)

For a 50:50 beamsplitter, |r|2 = |t|2 = 0.5, which gives θ = π/2. Substituting into

(A.7), we can write the output state (A.5) as

|out〉 =

[
1√
2

(
c† + id†

)]n

|0〉c|0〉d. (A.8)

Expanding the square brackets using the binomial distribution, we get

|out〉 =
1√
2nn!

n∑
m=0

 n

m

(c†)m (
id†
)n−m

|0〉c|0〉d. (A.9)

Operating on the kets and rewriting i as exp(iπ/2) we get

|out〉 =
1√
2n

n∑
m=0

 n

m

1/2

e−imπ/2|m〉c|n−m〉d, (A.10)

where we have ignored the overall global phase. This is the result shown in Equa-

tion (5.5)

The second case we would like to consider is the output from a beam splitter

for number correlated inputs. The input state, in this case, can be written as

|n〉a|n〉b =
1

n!

(
a†b†

)n
|0〉a|0〉b. (A.11)

Proceeding as before, we can transform to the output operators,

a†b† = i sin
θ

2
cos

θ

2

(
d†d† + c†c†

)
+

(
cos2 θ

2
− sin2 θ

2

)
c†d†. (A.12)

This allows us to write the output state for a 50:50 beam splitter as

|out〉 =
1

n!

[
i

2

(
d†d† + c†c†

)]n
|0〉c|0〉d. (A.13)
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Expanding the square brackets using the binomial distribution, we get,

|out〉 =
1

n!

n∑
j=0

n!

(n− j)!j!

(
i

2

)n

(d†)2j(c†)2(n−j) |0〉c|0〉d. (A.14)

Ignoring the irrelevant global phase, we can write this as

|out〉 =
1

2n

n∑
j=0

√√√√(2n− 2j)!

(n− j)!2

√
(2j)!

j!2
|2(n− j)〉c|2j〉d, (A.15)

which is the result shown in Equation (5.9).



Appendix B

Semiclassical equations for

coupled condensates

We consider two coupled condensates denoted by the annihilation operators a and

b. The Hamiltonian governing this system is

H = ωaa
†a+ ωbb

†b+ U
(
a†2a2 + b†2b2

)
+ Γ

(
a†b+ b†a

)
, (B.1)

where h̄ ≡ 1, U is the interatomic interaction strength which is assumed to be the

same for each mode, Γ is the coupling strength, and ωa and ωb are the frequencies

of modes a and b respectively.

We can now write down the equations of motion for these two operators. These

are given by

iȧ(t) = ωaa+ 2Ua†a2 + Γb (B.2)

iḃ(t) = ωbb+ 2Ub†b2 + Γa (B.3)

Next we make the semiclassical approximation which involves replacing the

operators with

a(t) =
√
Na(t) eiθa(t) (B.4)

b(t) =
√
Nb(t) eiθb(t), (B.5)

where Na and Nb correspond to the number of atoms in modes a and b and θa and

θb correspond to the phases of modes a and b respectively. We substitute these
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into (B.2) and (B.3) and equate the results with

i
d

dt

(√
Na eiθa

)
=

iṄa

2
√
Na

eiθa − θ̇a

√
Na eiθa (B.6)

i
d

dt

(√
Nb eiθb

)
=

iṄb

2
√
Nb

eiθb − θ̇b

√
Nb eiθb . (B.7)

By then equating the real and imaginary components of each side of each of

these equations, we obtain the following four equations

Ṅa = 2Γ
√
NaNb sin (θb − θa) (B.8)

Ṅb = −2Γ
√
NaNb sin (θb − θa) (B.9)

θ̇a = −ωa − 2UNa − Γ

√
Nb

Na

cos (θb − θa) (B.10)

θ̇b = −ωb − 2UNb − Γ

√
Na

Nb

cos (θb − θa) . (B.11)

For convenience, we now define the new quantities of fractional population

imbalance,

z(t) ≡ (Nb(t)−Na(t)) /N, (B.12)

where N = Na + Nb is the total number of atoms and is a constant, and relative

phase

φ(t) ≡ θb(t)− θa(t). (B.13)

We can write our equations in terms of these relative quantities by taking the

differences of (B.8) with (B.9) and (B.10) with (B.11). The resulting equations are

ż(t) = −2Γ
√

1− z2(t) sin(φ(t)) (B.14)

φ̇(t) = −∆ω − 2UNz(t) +
2Γz(t)√
1− z2(t)

cos(φ(t)), (B.15)

where ∆ω = (ωb − ωa). These equations are a very useful tool for analysing the

dynamics of coupled Bose condensates. If we substitute ∆ω = 0 and U = 0, we

recover Equations (4.19) and (4.20). We can obtain Equations (6.8) and (6.9) by

making the replacements ∆ω = 0 and φ→ φ− π, since sin(φ− π) = − sin(φ) and

cos(φ− π) = − cos(φ).



Appendix C

Equivalence of Raman coupling

and a beam splitter

We consider a beam splitter with input modes labelled by a and b and output

modes labelled by c and d. The beam splitter transformation is given by

c = ta+ rb (C.1)

d = ra+ tb, (C.2)

where t and r are respectively complex transmission and reflection coefficients.

Boundary conditions at the surface of the beam splitter yield the following condi-

tions,

|t|2 + |r|2 = 1 (C.3)

rt∗ + r∗t = 0. (C.4)

Without loss of generality, we take t to be real and r to be imaginary. This allows

us to parametrise t and r as t = cos(θ/2) and r = i sin(θ/2). This means that the

beam splitter transformation is

c = cos

(
θ

2

)
a+ i sin

(
θ

2

)
b (C.5)

d = i sin

(
θ

2

)
a+ cos

(
θ

2

)
b. (C.6)

For a 50:50 beam splitter, θ = π/2.
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Now we consider the form of the resonant Raman coupling operator,

U = exp
[
1

2
iθ
(
a†b+ b†a

)]
, (C.7)

where θ ≡ Γt, where Γ is the coupling strength and t is the coupling time.

We now investigate how the input mode operators are transformed by this

operation,

c = U †aU = e−iθ(a†b+b†a) a eiθ(a†b+b†a). (C.8)

If we make use of the operator identity

eξBAe−ξB = A+ ξ[B,A] +
1

2!
ξ2[B, [B,A]] + . . . , (C.9)

we can rewrite (C.8) as

c = a+ i
θ

2
b− 1

2!

(
θ

2

)2

a− i

3!

(
θ

2

)3

b+ . . . (C.10)

= cos

(
θ

2

)
a+ i sin

(
θ

2

)
b. (C.11)

Similarly,

d = i sin

(
θ

2

)
a+ cos

(
θ

2

)
b. (C.12)

Comparing (C.11) and (C.12) with (C.5) and (C.6), we see that Raman coupling for

time, t, and coupling strength, Γ, is equivalent to passing the two modes through

a beam splitter with reflectivity,

r = cos
(

Γt

2

)
. (C.13)

So, coupling for a quater Raman cycle, t = π/(2Γ) is equivalent to passing through

a 50:50 beam splitter.
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Derivation of Equations (7.18)

and (9.15)

We wish to find the form of the entangled state

|ψ〉 ∝
n∑

q=0

 n

q

ζ

eiπq(q−1)/2 e−iπqm(n+φ−1)/2 |q〉|n− q〉, (D.1)

after passing it through a 50:50 beam splitter. If we set ζ = 1/2 and m = 0, we

get Equation (7.13). If we set ζ = 3/2 and m = 1, we get Equation (9.13). This

means that by finding the result of passing (D.1) through a beam splitter we can

derive both Equation (7.18) and Equation(9.15).

As discussed in Appendix (A), we can find the effect of the beam splitter by

first writing the initial state (D.1) in terms of the input mode operators, a and b,

|ψ〉 ∝
n∑

q=0

 n

q

ζ+1/2

eiη
(
a†
)q (

b†
)n−q

|0〉|0〉, (D.2)

where η = πq [q − 1−m (n+ φ− 1)] /2. We next transform a and b to the output

operators, c and d. Using (A.6) with θ = π/2 for a 50:50 beam splitter, we can

write (D.2) as

|ψ〉 ∝
n∑

q=0

 n

q

ζ+1/2

eiη
(
c† + id†

)q (
ic† + d†

)n−q
|0〉|0〉. (D.3)
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Next, we expand the operator products using the binomial distribution

|ψ〉 ∝
n∑

q=0

 n

q

ζ+1/2

eiη
q∑

r=0

 q

r

(c†)r (
id†
)q−r

×
n−q∑
s=0

 n− q

s

(ic†)s (
d†
)n−q−s

|0〉|0〉. (D.4)

Operating on the kets, this state becomes

|ψ〉 ∝
n∑

q=0

q∑
r=0

n−q∑
s=0

 n

q

ζ+1/2 q

r

 n− q

s

 eiηeiπ(q+s−r)/2

×
√

(r + s)!(n− r − s)! |r + s〉|n− r − s〉, (D.5)

where we have put iq−r+s = exp [iπ(q − r + s)/2]. We now make the substitution

t = r + s

|ψ〉 ∝
n∑

q=0

q∑
r=0

n−q+r∑
t=0

 n

q

ζ+1/2 q

r

 n− q

t− r

 eiηeiπ(q+t−2r)/2

×
√
t!(n− t)! |t〉|n− t〉. (D.6)

Finally, we change the order of summation of the second and third sums,

q∑
r=0

n−q+r∑
t=r

−−−−→
n∑

t=0

r2∑
r=r1

, (D.7)

where r1 = max{0, t+ q− n} and r2 = min{t, q}. This allows us to write the final

state as

|ψ〉 ∝
n∑

t=0

Ct |t〉|n− t〉, (D.8)

where

Ct =
√
t!(n− t)!

n∑
q=0

r2∑
r=r1

 n

q

ζ+1/2 q

r

 n− q

t− r

 eiηeiπ(q+t−2r)/2. (D.9)

With this general result, we can now recover the results for the two cases that we

are interested in. Substituting ζ = 1/2 and m = 0, we get η = πq(q − 1)/2 and
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recover the result (7.18) for a cat state,

Ct =
√
t!(n− t)!

n∑
q=0

r2∑
r=r1

 n

q

 q

r

 n− q

t− r

 eiπ(q2+t−2r)/2. (D.10)

Finally, if we substitute ζ = 3/2, m = 1, we get η = πq(q − n − φ)/2 and

recover the result (9.15) for the purification state,

Ct =
√
t!(n− t)!

n∑
q=0

r2∑
r=r1

 n

q

2 q

r

 n− q

t− r

 eiπq(q−n−(φ−1))/2eiπ(t−2r)/2.

(D.11)
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