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Abstra ct

This thesis is concernedwith the dynamics of Bose-Einsteincondensatesn
optical lattices in the presenceof an externally imposedforce. We are especially
interestedin the responseof the systemasa probe of the Mott insulator - super uid
phasetransition and usenumerical simulations to study it.

To this end, we rst discusspossibleindicators of the Mott insulator and the
super uid phases.We then employ the Bose-Hubbardmodel in an exact numerical
study of the equationsof motion of bosonscortained in a one-dimensionalattice.

We usethesemethods to study the e ect of a static force acrossthe lattice on
the particles and the consequencesf this dynamical ewolution of the systemon a
number of obsenables.

We cortrast theseresults from a static perturbation with the results of a time
dependert excitation of the system. We also discusspossibilities for experimertal
indications of the phase(i.e. Mott insulator or super uid) of the systembasedon
our numerical results for static and time dependen excitations.

In the last part of the thesis, we study the quasi-periodical nature of the dy-
namical behaviour of the systemunder a static force. In addition to the well known
Bloch oscillations,we nd related, but distinct, oscillatory structures that are de-
penden on which phasethe systemisin. We discusspossiblecauseof thesee ects
and presen an analysisof our numerical results with a view to their experimental
relevance.

Throughout this thesis, our aim has beento examinea wide range of system
conditions. This hasturned up novel dynamical featuresand suggestssomefuture
experimertal possibilities.
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Chapter 1

Intr oduction

In this introductory chapter, we shall rst give a brief overview of the historical
dewelopmen of the theory of Bose-Einsteincondensation. We then descrite the
route to experimertal realization and brie y touch upon the many exciting aspects
that can be studied with the help of Bose-Einsteincondensate$BEC). Lastly, we
will give an overview of the speci ¢ work presetted in this thesis.

1.1 Brief intro duction to BEC

1.1.1 General theory

The theory of BEC hasa long history: it all beganin the early days of quarntum
medanicswith the discovery that idertical quantum medanical particles do not,
in cortrast to their classicalcourterparts, have well-de ned trajectoriesin phase
spaceand are thus not individually distinguishable. Indeed, should we de ne a
many-body wave function wheremathematical labelsare assignedo ead particle,
an exchangeof theselabels could lead to di erent physical outcomes.

In order to obtain unambiguous physical obsenables, certain symmetriesre-
garding the exdange of particles had to be imposedon the many-body wave
function. It turns out that there are two possiblesymmetries- the many-body
wave function  must be either symmetric or antisymmetric under the excdange
of particle labels. In mathematical terms, this is equivalert to

(rnXiprinXsin) = (CrrnXg s X i) (1.2)
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Symmetric exdhange, i.e. invariance under particle label exdange, trivially
fullls the condition of indistinguishability. The possibility of antisymmetric ex-
change, howe\er, is a direct consequenc®f the quartum medianical de nition of
obsenables. All experimertally accessiblezariablesA of the systemcan be written
sud that

A=h jOj i (1.2)

for someoperator O. Consequetly, antisymmetric exchangedoesnot changeany
experimertally obsenable variablesof the systemand is permissible.

Particles with symmetric wave functions are said to obey Bose-Einsteinstatis-
tics and are called bosonswhile sud with an antisymmetric wave function obey
Fermi-Dirac statistics and are termed fermions.

The property of symmetry or anti-symmetry is alsorelated to the intrinsic an-
gular momertum of the particles by the spin statistics theorem[1]. According to
this, bosonshave integer spin while fermions possesshalf-integer spin. Strictly
speaking, the spin statistics theorem applies only to elememary particles. Com-
positesof fermions (such as atoms) with a total integer spin, however, will behare
as bosonswhen energiesare su ciently low that their internal structures cannot
be resoled. For the atoms discussedn this thesis, sud low energieswill always
be assumed.

Oneconsequencefthe symmetry property is the marked di erence betweenthe
ground state occupation of fermions and bosons. While fermions are governed by
the Pauli exclusionprinciple that forbids sharing of the samequarntum state, there
isnolimit onthe number of bosonghat canoccupy aquartum state. Consequetly,
in equilibrium bosonicsystems,the energeticallylowest statestend to be multiply
occupied.

This behaviour of bosonsgs certral to the thermodynamic phasethat is known as
a Bose-EinsteincondensatgBEC). Underthe right conditions(mostimportantly of
density and temperature), the tendencytowards multiple occupation of statescan
lead to the macroscopicoccupation of one single quartum state (most commonly
the ground state) [2]. The atomsin this quartum state are then collectively called
a Bose-Einsteincondensateand, by de nition, shareall quantum properties.

For anideal (i.e. non-interacting) gas,the calculation of the interestingthermo-
dynamical properties is very well understood and can be found in most statistical
medanicstextb ooks[3]. Oneimportant result is the relation of the particle density
n to the de Broglie wave length 4z = 2 =mkgT (m is the particle mass,kg the
Boltzmann constart and T the temperature). For a three-dimensionalsystem,we
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nd that Bose-Einsteincondensationj.e. the phasetransition to a BEC, occursfor
n 3 2:612.In other words, condensationbecomegossiblewhen the de Broglie
wavelengthis comparableto the particle separationor, equivalertly, whenthere is
a signi cant overlap of the particle de Broglie wavelengths.

In general,the introduction of interaction changesthe behaviour of the many-
body system. By 1947,it was shown [4] that weak interactions do not profoundly
a ect the nature of the BEC itself. They do, howewer, changeobsenablessud as
the low-lying excitations and whether or not the systemis a super uid. Building
on thesefundameral results, BEC theory has ewlved to sud an extert over the
following decadesthat a comprehensie review would at least treble the length
of this thesis. More to this dewlopmernt can be found in the overview articles
[5, 6, 7, 8], books[9, 10,11, 12] and referencegherein.

1.1.2 Exp erimen tal review

Despiteits early theoretical beginnings,experimertal realization of a BEC wasonly
achieved quite recerly in 1995[13]. In fact, for a long time theorists felt that the
high densitiesand low temperaturesrequiredto ful ll the conditonn 3;  2:612
would newer be within experimertal readh. Part of the problem was the needfor
relatively weak interactions - even whensu cien t densitiesand temperatureswere
achieved in liquid helium, strong interactions mean that the resulting state was
not a pure BEC [14, 15. Theseexperimertal limitations changeddrastically with
the invertion of the laser- and with the realization of one of its applications, the
experimertal technique of lasercooling. From the 1980son, techniquesfor cooling
and trapping of (mostly alkali) atoms grew more and more re ned until success
in condensing®”Rb was reported by the group of Cornell and Wieman at JILA
in Boulder, Colorado [13] in 1995. Their successvas rapidly followed by that of
seweral other groups who reported the obsenation of BEC in 2Na [16], “Li [17]
and in atomic hydrogen[18].

Despitethe variation in the condenseclemerts, the broad outline of all of these
experimerts is rather similar. (For more detailed reviewsseee.g. [19, 20]). In order
for cooling to be possible,atoms needto be thermally isolated from all material
walls - consequetty, all trapping is donewith electromagneticelds. To avoid con-
tamination with other chemical elemens as much as possible,this trapping takes
placein ultrahigh vacuum chambers. Atoms are rst pre-comled with lasers,gain-
ing about six orders of magnitude in phasespacedensity, and then evaporatively
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cooled to condensationwith another phasespacedensity gain of about six orders
of magnitude.

Laser pre-cooling is usually carried out by superimposing pairs of courter-
propagating laser beams. Theselaser beamsare slightly red-detunedbelov the
atomic resonancewith opposite circular polarisation. The detuning is chosensud
that the laseropposingthe atom's motion is shifted towards the resonancen the
referenceframe of the particle by the Doppler shift. Atoms are thus morelikely to
absorba photon from the opposinglaserand will, on average,be sloved down.

This technique is known as \optical molasses"and is highly e ective up to
the Doppler-caoling limit (usually at a velocity of a few ms *, but dependern on
the type of atoms being cooled). The Doppler-caoling limit is a result of the
di usiv e heating that laserbeamscauseby the absorption and random re-emission
of photons. The e ciency of cooling using optical molassess thus determined
by the strength of cooling in comparisonwith di usiv e heating. At the point of
equilibrium, optical molassetave readed the limit of their usefulness.

Optical molassesan be usedin a variety of con gurations, most commonlyin
the magneto-opticaltrap (MOT). Someform of con nemernt of the atomic cloud
is usually necessaryto allow the slowing force of the optical molassedo cool the
atoms without them escapingimmediately. The MOT hasthe addedadvantage of
Zeemanshifting the atomic energylevels. The detuning of the atomic energylevel
to the laserbeamcanthen be madeposition dependen sothat the radiative force
acting on the atomsis weakin the certre of the trap, but growsincreasinglystrong
away from the certre. The cloud is then not only cooled, but also focussedinto
the certre.

After laserpre-cooling, atoms are typically cooledto temperaturesof the order
of K, but the phase spacedensity can still be up to six orders of magnitude
smaller than that required for condensation. The next step is then evaporative
cooling. This method is often comparedto blowing the steamo a co ee cup and
consistsof removing the high-energyend of the thermal distribution from the trap.
With the lossof theseatoms, morethan the averagethermal energyper atom is lost
from the trap sothat, after rethermalization, the temperature in the remaining gas
will be lower. In order for evaporative cooling to be e cien t, the lossrate from the
trap needsto be signi cantly slowver than the rethermalization rate. Under ideal
conditions, the gain in phasespacedensity is then about six orders of magnitude
at a cost of a factor of 1000reduction in the total number of atoms.

As with the laser pre-cmling, evaporative cooling hasits limitations. In addi-
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tion to the "good' elastic collisionswhich enablerethermalization, one nds "bad'
inelastic collisionsthat causetrap lossand heating. Thus, if the truncation of the
thermal energyby the evaporative cooling is chosentoo large, the increasein phase
spacedensity will be more than cancelledout by the decreasedue to (inelastic)
losses. Serendipitously the ratio of elastic to inelastic collisionswas found to be
favourable for the alkali atoms chosenin the JILA and MIT experimerts so that
BEC could be reathed with evaporative cooling. BEC in gaseswith lessfavourable
collision ratios sud as Cs took signi cantly longer to obtain [2]] - despite much
experimenrtal e ort, the rst experimertal obsenation was only in 2003.

1.1.3 Optical lattices

Once the techniques necessaryto reat Bose-Einsteincondensationwere well es-
tablished, more and more applications of BECs beyond the simple establishmem
of the condensedohasewere proposedand (in somecases)carried out. After all,
a BEC can be comparedto a magni ed view of the quartum world - the quan-
tum properties of one atom are now sharedby millions of others. Consequetly,
BECs are a wonderful playground for testing out fundamenal theoriesof quantum
medanics.

Someexamplesfrom the last few yearsinclude the creation of vortices [22], the
use of condensatesn an atom interferometer [23] and the construction of atom
lasers[24, 25, 26].

In this thesis, we shall explore the rich physics of Bose-Einsteincondensates
in optical lattices. Optical lattices are formed by courterpropagating laserbeams
that form standing waves. Atoms are then trapped at the nodesor anti-nodes of
the standing wave, depending on the polarization of the laserbeams,by the dipole
force. We shall discussthe theoretical badkground to the interaction of bosonswith
an electromagnetic eld in somemore detail in Chapter 2 and now proceedto give
an overview of experimertal progress.

The technique usedfor optical lattices is very similar to optical molasses they
weredewelopedtogetherwith the technology neededor Bose-Einsteincondensation
in the late 1980sand early 1990sto trap cold atoms [27, 28, 29, 3(]. The initial
experimerts [27] focussedon exploring the di raction of atoms by standing light
wavesrather than on trapping and cortaining them. With increasingexperimertal
sophistication, the focusshifted to the study of atomstrappedin an optical lattice
with a view to obtaining information about the dynamicsof the laser-cled atoms
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through the dependenceof their energyspectrum on the parametersof the optical
lattice. Over the following years,techniquesfor detectingatom dynamicsin optical
lattices grew increasingly more re ned [3]] leading to the dewelopmen of atom-
optical elemerts [32 aswell asto studiesof quartum chaos[33].

At the sametime, interest in the study of Josephson-e ectinterference was
growing, fuelled by the possibility of carrying out interferenceexperimerts with
coupled super uid He(3) resenwirs [34]. The possibility of observingsud phase-
dependert dynamicswith BECs in optical lattices attracted much theoretical in-
terest [35, 36] and was nally veri ed in the Kasevid group at Yale in 1998[37].

The exacttrapping con guration for BECs in optical lattices variesfrom exper-
iment to experimert, but the generalstrategy is asfollows. A dilute vapour is rst
cooledto condensationasdescribed above. With the condensateheld in a magnetic
trap, the optical lattice is then createdby gradually ramping up the intensity of a
standing wave of light. For two- and three-dimensionaloptical lattices, the neces-
sary number of beamsis usually created by splitting and re ection of one initial
beam. For a three-dimensionallattice, the interfering standing wavesthen form a
crystal-like structure with regular local potertial minima in which atoms can be
trapped. In a two-dimensionallattice, the e ect of the laser waves is to divide
the initial condensatanto regular tub e-like quasi one-dimensionakcondensatesA
one-dimensionalattice could be usedto divide the condensatento sheet-like two-
dimensional condensates.In these con gurations, it is thus possiblenot only to
explore the interaction of atoms trapped in various potential minima, but alsoto
createand study lower-dimensionalcondensates.

Oncethe possibility of BECs in optical lattices was established,a wide range
of experimerts followed (for a recen review see[38]).

In this thesis, we shall focus on one particular aspect of physics in optical
lattices: the Mott insulator (MI) - superuid (SF) transition, its signaturesand
excitational structure. In 1998,Jaksd and convorkers shoved that BECs in optical
lattices can be described by the Bose-Hubbardmodel (BHM) where the system
parametersare cortrolled by laserlight [39]. The BHM predicts a secondorder
guartum phasetransition from a Mott insulator to a super uid phase.The certral
parameter of this phasetransition is the dimensionlessratio g of the zero-range
onsiteinteraction constart U (causedby repulsion)to the tunneling matrix eleme
J. Forg= U=J << 1, atomsare delocalizedacrossthe lattice, their kinetic energy
is much larger than the potential energyderiving from interactions and they are
in the super uid phase. For g = U=J >> 1, in cortrast, atoms are so strongly
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localizedthat the occupation number of atomsper site is pinned at an integervalue
and the interaction energyis much higher than its kinetic energy We shall discuss
the de nitions of both super uidit y and the Mott insulator phasein more detail in

Chapter 3.

This phasetransition was realized experimertally three years after the theo-
retical prediction in a seminal experimert by the group of Immanuel Bloch and
Ted Hansd in Munich [40]. This was followed by an explosionof theoretical and
experimertal interestin the speci cs of the phasetransition, applications of the Ml
states, recreationin onedimension[41] and many other aspects.

1.2 Thesis outline

In this thesis, we are primarily interestedin the exploration of the dynamics of
BECs in optical lattices nearto the MI - SF phasetransition and in the strongly
interacting Mott insulator regime. In order to lay the foundation for this work, we
presen the theoretical framework for the Bose-Hubbardmodel in the secondchap-
ter. We beginwith a closerlook at the atom- eld interaction presein in an optical
lattice for single particles. We then presen the derivation of the BHM following
the method usedin [39] and discussthe possiblebasisstatesand assumptionsmade
in that model.

In the third chapter, we look at the MI - SF phasetransition in more detail.
Firstly, we considerthe characteristicsof quartum phasetransitions in general. We
then review the speci ¢ points of the two phases.In the last part of this chapter
we discusspossibleexperimertal signaturesof the Ml - SF transition.

Chapters 4, 5 and 6 represeh original researt that | have carried out during
the courseof my doctorate.

Motivated by the beautiful experimert of Greiner et al. [40], the fourth chapter
will be concernedwith the e ect of a static force on the dynamics of an optical
lattice. We will presen results of our numerical simulations. One of our main
interestsis the responseof states with various degreesof reducednumber uctu-
ations. Using an exact calculation, we nd evidencefor interesting excitational
structuresin addition to thosealready obsened experimertally. We alsostudy the
relation betweenthe number variance and the changein added energyas well as
in the interferencepattern and nd that the number variance can be a very good
indicator of excitations in the energyof the system.

In the fth chapter, we study the responseof bosonsn a one-dimensionalattice



1.2. Thesisoutline 8

for a dynamic excitation as it was realizedin, e.g., the group of Esslingerat the
ETH [4]]. We nd that sud excitations are indeeda very preciseinstrument for
exploring the energy eigervalues of the system and idertify featuresthat could
possibly be of usein tracking the Ml - SF phasetransition.

The sixth chapter is a study of the rich oscillatory spectrum we have found
for the excitation of a one-dimensionallattice by a static force. We identify the
predicted Bloch oscillationsand nd and interpret additional oscillationsthat could
be very usefulin a study of the resonancesf the system. We also nd adependence
of oscillation strength on the phaseof the system. As Bloch oscillations can be
presem ewen for a non-interacting, single-particle system, the relation of these
oscillationsto e ects causedby the “particle-like' nature of the Ml phasemay give
interesting insights into the state of the system.

In the sewenth chapter, we will give a summary of the work discussedn this
thesisand discusspossibilitiesfor future work. Details of the numerical procedures
usedfor Chapters4 to 6 will be setout in an appendix.

Note: we set~ = 1 throughout the thesis.



Chapter 2

Optical lattices and the
Bose-Hubbard model

In this chapter, we shall explain the interaction of bosonswith an electromagnetic
eld that is certral to the trapping by optical lattices. We then discusspossibilities
for basisstatesin an optical lattice. Finally, we derive the Bose-Hubbardmodel
that will be certral to all further work in this thesis.

2.1 Optical lattices

An optical lattice for BECs is produced by the interferenceof two or more laser
beams. The atoms are then subject to the so-calleddipole force. For an exceller
introduction to this force see[42] and, slighty more speci ¢ to experimenrtal proce-
dures, [43]. For a two-lewel atom, the Hamiltonian for a standing plane wave (i.e.
an interferenceof two laserbeams)can be written as[11, 44,45, 46, 47, 48|

| | |

Ec O pz 10 01
9 = € + + 2 cos( t) cosk, X 2.1
0 Eg 2m 0 1 ¢L0) coskux) 10 2.1)

wherem is the atomic mass,Eg4 and E, the ground and excited electronic states
of the atom and the Rabi frequencybetweenthesestates. ! | and k_ are the
frequencyand wave vector of the standing wave. We then substitute the ansatz

( x;t)=exp( i Lt) e(X;t)jei + (X D)jgi (2.2)
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into the Sdredinger equation for the Hamiltonian (2.1). In the rotating wave
appraximation, onethen obtains a systemof coupledequations

. X; t 2
Q) = ke e etk o6 @9)
@q(xt) _ PP . :
=g = am sxD* cogkux) (D) (2.4)
(2.5)
where =1, (Ee E) iscalledthe detuning. We can gain decoupledequations

by making a number of further assumptions[49]. For one, we assumethat the
detuning is much larger than the Rabi frequency . We also assumethat both
detuning and Rabi frequencyare much larger than the momerium cortribution
p2=2m. For the purposesof this thesis, we can also make the assumptionthat the
internal motion of the atom is instantly damped to equilibrium. As . carriesthe
internal motion, this implies that @ .=@= 0.

We can then simplify the rst excited state to

e(X;t)  —coskiLX) g(x;t): (2.6)

For this simpli cation, the Sdredinger equationthen hasthe more corvenien

form of @ (x 1) 02
. X;

IQT = % + Vlatt (X) g(X; t) (27)

wherethe optical lattice potential Vi is equalto

Viat (X) = Vocog(k x); Vo= 2=: (2.8)

2.2 Picturing a lattice - Bloch and Wannier func-
tions

For a periodic lattice, the eigenstatesof the single particle Hamiltonian derived
above,
Ry = pZ=2m + Vian (x); (2.9)

take the corveniert form of Bloch states 4. For this to hold, it is not even
necessaryfor Vo to take the form of Eq. (2.8). It only needsto be periodic so
that for all R = nja; + n,a, + nzas (n; 2 Z, a are the lattice basisvectors), the
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condition of Vig1 (r) = Viae (r + R) 8r 2 Risfullled. Bloch statescan be written
in the form
nq(r) = Ung(r)€a’ (2.10)

where unq(r) = ung(r + &), i.e. they are periodic, g is the quasi-mometum and
n the band index. It is clearfrom Eq. (2.10) that the Bloch statesare delocalized
and extend over the ertire lattice. Conceptually howewer, it can be easierto use
localizedstatesin order to study many-body interactions. We thereforeintroduce
localized Wannier statesw, (R;) for ead site R; which are de ned asthe Fourier
transform of the Bloch eigenstatesn the momertum represetation. They can be
found by summingover all Bloch statesin one Brillouin zone:

X .
W R) P e () (2.1)
q

In their most generalform, Wannier statesare Mathieu functions which are not
trivial to solve (an introduction is given in [50]). For the purposesof the theory
in this thesis, howewer, it hasbeenshavn [51, 52] that we can appraximate these
complexfunctions by the eigenstatesof the harmonic oscillator, e.g. for the rst
band by the Gaussianfunction

o+ = p—pl;exp( x2=2 ?) (2.12)

where is dependent on the height of the potertial barrier separatingthe sitesin
the optical lattice. A necessaryondition for this is the single-bandapproximation,
i.e. we assumethat only the rst Bloch band is populated. The approximation of
using the harmonic oscillator eigenstateof Eqg. (2.12) is then valid aslong asU >
Er/4 where

Er = k?=2m (2.13)

is the singlephoton recoil energywith k = 2 = and m is the atomic mass. We will
discusstheseappraximations and the exactform of the Wannier Gaussianfunction
for the BHM further in Chapter 5.

2.3 The Bose-Hubbard Mo del

Wannier functions are alsocrucial to the calculation of the secondguartized Hamil-
tonian that is certral to the Bose-Hubbardmodel (BHM) [53 54]. The starting
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point for the derivation of the BHM Hamiltonian is usually [39, 55| the many-body
eld Hamiltonian in secondquartization
z z
= dr YO+ Va8 0+ 50 dr MOM (1) () (214)

A derivation of this canbe found in most advancedquantum medanicstextb ooks,
seee.g. [56]. Here ™Y is the boson eld operator, Vey is an external potertial in
addition to Vi;x and g = 4 as=m is the interaction strength, with as the s-wave
scattering length and m the atomic mass. f'% = P?=2m + Viax (X) is motivated
by the single-particle Hamiltonian of Eq. (2.9) derived above. We have made the
assumptionthat both the de Broglie wavelength and the distance between lattice
sites are very large comparedto the range of interatomic forces. This allows us
to represem the interatomic potential Vi, in terms of the binary s-wave scattering
length as asVine = g (r 19 [57]. We now expandthe eld operator into a Wannier
basisw of the ground band

X
= wo(r R4 (2.15)

N

and make the so-calledtight-binding approximation, that is, we assumethat the
Wannier statesonly have signi cant overlap betweennearest-neighour sites. That
meansthat we can usethe scattering length description of the interaction as de-
scribed by [58]. The restriction of the basisto the rst band allows usto approxi-
mate the Wannier functions by the Gaussianfunction

o = pp—exp P2 ?) (2.16)

of Eq. (2.12) aslong asthe condition U > Egr=4is ful lled [51,52]. This condition
holds for the given valuesof U in the relevant experimerts [40, 59, 41] sothat the
restriction of our numerical model to U > Eg=4 should not limit its applicability.
Clearly, the restriction to the rst band is an approximation that can (and
does[6Q at times) fail in experimertal settings. Thesetransitions betweenBloch
bandsare known as Landau-Zenertunneling [61, 62]. The conditions under which
Landau-Zenertunneling setsin are strongly systemdependen. For the purposes
of this thesis, we will focuson systemsin which it doesnot play a signi cant role.
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With theseappraximations, the Hamiltonian of Eq. (2.14) reducesto
X X 1 X
1 I J a'a + & + EU aa'ay: (2.17)
hij i i i
h; ji indicates summation over all nearestneighbours. The transitional matrix
elemen J is de ned for adjacern sitesi andj as

y4
J= drw (r R)Mow(r R;): (2.18)

It canalsobe thought of asa measureof the "hopping' of atoms betweenadjacen
sites. The zero-range,on-site interaction strength U is de ned as
Z
U=4a, drjw(r R)j* (2.19)

The site-dependent local energy ; is equalto
Z
i dr wo(r  Ri)Vex(rwo(r Rj): (2.20)



Chapter 3

Quantum phase transitions

In this chapter, we will brie y discussthe characteristics of phasetransitions. We
will then explain speci ¢ featuresof the MI - SF quarntum phasetransition. Lastly,
we will usethis to discussexperimertal realisationsof Ml and SF phasesand the
possibleindicators for tracking the point of transition.

3.1 What are quantum phase transitions?

Generally a phasetransition is the sharp changeof a thermodynamic systemfrom
one phaseto another. A phasein a systemis a regionin the parameter spaceof
the system'sthermodynamic variablesin which the free energyis analytic. Equiva-
lently, if two statesof a systemcan be transformedinto ead other without abrupt
changesin their thermodynamic properties, they are in the samephase. Conse-
quertly, a phasetransition is characterizedby a suddenchangein somethermo-
dynamic property (a typical exampleis a suddenchangein heat capacity for a
uctuation in temperature at the solid-liquid phasetransition). Classicalphase
transitions are usually driven by thermal uctuations.

For a quantum phasetransition, the suddenchangein an obsenable is caused
by a quartum medanical uctuation. Indeed, quantum systemscan have uctu-
ations driven by, for example,the Heisefberg uncertainty principle, even at zero
temperature where classicalphaseswould be frozento the ground state.

More formally [54],a quartum phasetransition canbeidenti ed asany point for
which the ground state energybecomesnon-analytical. As this non-analyticity is
usually the result of competition betweentwo termsin the underlying Hamiltonian,

14
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it canalsobe thought of aseither an actual energylevel crossing(possiblein nite
and in nite systems)or an avoided level crossing(only possiblein the limit of an
in nite system).

A systemwith an avoided level crossingthus only has a proper phasetran-
sition in its in nite limit. After all, when the systemis nite, it doesnot have
a point of non-analyticity. The thermodynamic phases,howeer, are usually still
presen. For nite systems,the transition betweenthem will be gradual rather
than instantaneous- we get a cross-oer phase.

In this thesis we are interested in the Ml - SF transition which is a so-called
secondorder quartum phasetransition. This implies that a characteristic energy
scaleof uctuations above the ground state will vanish as the systemapproades
the non-analytical transition point.

3.2 The Mott Insulator - Superuid phase tran-
sition
The phasetransition from the Mott insulator to a super uid is commonly [63]

descriked by starting out from the atomic limit (wherethe tunneling matrix eleme
J is very small), i.e. the MI phase.The ground state is then given by

jNp; Oiport = ¥ p%(ay)ijOOO:::Oi (3.1)
i=1 '

whereN, is the number of particles per site and N5 the number of sites. jO0O: : : Oi
is the vacuumstate and jN; mi is takento meanthe mth eigenstatesothat jNp; Oi
is the ground state. We nd that the Ml phaseis incompressible,.e. there is an
integer number of particles N, N per site. The MI - SF phasetransition is then
found by studying excitations of the energy ground state. In the incompressible
MI phase,these excitations correspnd to a nite non-zeroenergy Eg, which is
generallytermed as showving an energygap, i.e. Eg, or being gapped. At the Ml -
SF transition, Eg ! 0 which is known asthe energyspectrum becominggapless.
For the MI phase,the excitations of the ground state are de ned by the addition
or removal of a particle with respect to a speci c site i and can be written as

. .. 1 . .
INp; Oslipare = p—aiyJNp;OI Mott (3.2)
Np+ 1
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. . 1. .
jNp; O;iipole = pT&JNp;OIMou: (3.3)
p

JNp; O;iipa denotesthe ground state with the addition of a particle at site i while
jNp; O;jinole represets the ground state with the addition of a hole (i.e. removal
of a particle) at site .

For J = 0, their energyrelative to the ground state of Eq. (3.1) is equalto

Epart = UNp (3.4)
EhoIe = U(Np 1)+ ; (3-5)

where U is the interaction strength as de ned in Eq. (2.19) and is the chem-
ical potential. Whether excitations are gapped or gaplessis determined by the
dierence  betweenthe energygained by an added particle and lost by a hole,
i.e.

( U;Jd) = jEpart] JEnhote]: (3.6)

mu

J/U crit for N_p=1

J/U

Figure 3.1: This plot illustrates the generalfeatures of the zero-temperature phasediagram for
the MI - SF transition [53, 64] schematically. The dashedblue lines in the SF phaserepresern
constart integer density N, = 1;2;3. They touch the Ml phasesat the tips of the lobesat a
critical value J=U which decreaseswith increasingdensity N.

For J = 0, we immediately seethat ( U;J) = U. With increasingJ, ( U;J)
decreaseantil, at the phasetransition, the energyto remove a particle and the
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energyto add a particle becomedegeneratesothat ( U;J) = 0 and the MI phase
vanishescompletely This dependenceof the transition point on energy uctuations
above the ground state shows that the MI - SF transition is a secondorder phase
transition.

The preciselocation of the point for which ( U;J) = 0, isnot easyto determine
and is strongly dependent on the dimensionality and total number of atoms of
the system. For a one-dimensionallattice, Quantum Monte Carlo studies [65],
renormalization group results [66], mean- eld approximations [67, 68 and strong-
coupling expansions[63] give (U=J). = 3:8 for N, = 1 (N, is the mean number
of atoms per site) and (U=J), = 2:2N, for N, >> 1. In the three-dimensional
lattice [53, 69, 70, 71], the MI - SF transition occursat (U=J). = 5:8z (z is the
number of nearestneigtbours) for N, = 1, and (U=J). = 4N,z for N, >> 1.
Fortunately for the applicability of results, the qualitative features of the phase
transition are not dependen on the dimensionewven though the quartitativ e values
sudh as the point of transition vary. Fig. 3.1 shows the qualitative structure of
the zero-temperature phasediagram schematically. We have already seenthat the
MI phaseis characterizedby an energygap. It is important to realize that this
alsoimplies non-compressibiliy. For J << U, onethus obtains a seriesof "Mott-
lobes'with xed integer lling N, = 1;2;::: The integer lling N, dependson the
chemical potertial . One consequencef this non-compressibiliy is that for a
state with non-integer lling, i.e. for Ny = m+ wherem 2 Nand0< < 1,
the systemcannot be in the MI phase. In other words, the ground state will be
super uid ewenfor J << U.

In nite systems,onestill nds the thermodynamic phasesbut the transition
betweenthem will be “soft'. The characteristic sharpnessf the transition (i.e. the
non-analyticity of the derivative of someoperator O, @=@ = 1) is lost. The
geometry of the con ning traps, e.g. an inhomogeneoudrap, can further change
the characteristicsand critical valuesof the phasetransition [72, 73].

3.2.1 Denitions of superuidit y

In the last section, we have found that the MI - SF transition can be descriked
by the energygap of the excitations of the ground state. Super uidit y is not just
the absenceof Mott insulation, howewer. In a situation where we already know
that the transition will be betweenan Ml phaseand a SF phase,the excitation
energygapwould be su cien t indication. Dependingon the systemcharacteristics,
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howewer, there can alsoexist other phasessut asthe Boseglassphase(insulating,
but gaplessand compressible usually presen only for disorder) [53].

Consequetly, we needto explore more speci ¢ signaturesof a super uid as
well. This is not ertirely trivial asthere are diversede nitions for the SF phase
[74,75, 76]. Their main di erence liesin the distinction betweenthe responseof the
super uid to a static perturbation versusa dynamic perturbation. The reasonfor
thesedivergencess possiblycausedoby the fact that the conceptof super uidit y can
betakento cover morethan onephenomenon.As explainedby Leggettin [77], there
are at leasttwo e ects which can causethe phenomenorof “frictionless o w' which
was the original motivation for the conceptof super uidit y. One phenomenonthe
so-calledHess-Rirbank e ect, is a manifestation of the equilibrium behaviour of
the systemwhile the other e ect is characterizedby metastability.

For the purposesof this thesis, both de nitions are equivalert aswe will study
the MI - SFtransition for T = O only. To emphasizehe link betweenBose-Einstein
condensationand super uidit y, we will de ne the super uid density asa coe cient
in the e ective long-wavelength action which governs phase uctuations. We can
immediately seethat a condensatewill always be super uid.

An alternative de nition of the super uid density can be found by using the
responseof the systemto moving boundaries[75, 76]. The super uid fraction is
then dependen on the kinetic energyof the super ow that is imparted by a twist
of the boundary condition.

The relation betweenthesetwo de nitions is discussedoy Roth in [76].

3.2.2 Experimental signatures of the Ml - SF transition

The BHM Hamiltonian appearsto be relatively simple but the physicsit givesrise
to isnot. Speci cally, it hasbeendi cult to obsenethe MI - SFtransition in areal
system,despitemuch theoretical and experimertal attention [40,41, 64, 73,76, 78,
79]. This may be partly due to the fact that the phasetransition is characterized
by an avoided level crossingrather than an actual level crossing. Consequetly,
for nite lattices, the transition will not be sharp. Mostly, though, the di cult y of
experimertal con rmation of the Ml - SF transition is simply down to the di cult y
of gainingindications of the transition from the experimertally accessiblevariables.

The experimertal procedure usedto obsene the MI - SF transition utilizes
the changein the momertum pattern as, for example,in the seminal experimert
by Greiner et al. [40]. This changein the momerium distribution is tracked by
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absorptionimaging[20] the cloud after a giventime of ight. Typically, all con ning
potentials (optical and magnetic)are switchedo sothat the cloud candrop onto a
screen.Switching o the con nement not only causeghe atomsto drop under the
in uence of gravity, it alsoallows the cloud to expand. The expansionof the cloud
brings with it that the localized wave functions of ead lattice site (assumingthe
tight-binding appraximation) overlap and thus form an interferencepattern which
revealsthe momenum distribution of the system. This interferencepattern can
then be imagedby a CCD camerawhen the atoms hit the screen.An exampleof
typical experimertal data for this method can be seenin Fig. 3.2.

For a shallov lattice, one nds so-calledBragg peaksin addition to the zero-
momertum peakthat is characteristic of a BEC in the absenceof an optical lattice.
TheseBragg peaks rst becomemore pronouncedwith increasinglattice depth and
then abruptly beginto weaken and evertually vanish altogether (seeFig. 3.2).

a b - | e . d e
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Figure 3.2: Reproduced with kind permission from Ref. [40]. It shows absorption images
of multiple matter wave interference patterns which were obtained after suddenly releasingthe
atoms from an optical lattice potential with di erent potential depths V, after atime of igh t of
15 ms. Valuesof Vy were: a, OER; b, 3ER; c, 7ER; d, 10ER; €, 13ER; f, 14ER; g, 16ER; and h,
20ER, where ER is the recoil energy of Eq. (2.13).

The relation of Bragg peaksto the MI - SF phasetransition is not ertirely
straightforward. As we mertioned earlier, the interferencepattern after expansion
of the cloud re ects the momerium distribution acrossthe lattice. This implies
that the presenceof Bragg peaksin the obsened pattern is an indicator of (o
diagonal) long-range coherenceacrossthe lattice. This implication is a result of
the fact that the momertum distribution n(k) for atoms con ned to the lowest
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band of the lattice can be expressedin terms of the exact one-particle density
matrix 1(xi;x;) = &8 [64 80],

X
n(k) = njw(k)j*  explik(x x9) 1(x;x9; (3.7)

x;x 0

wherew(k) is the Fourier transform of the assaiated Wannier wave function. The
summationis carried out for all separationsx x°that are equalto integermultiples
of the lattice basis vectors. The one-particle density matrix in turn descrites
coherenceacrossthe lattice. Consequetly, whenatomsare allowedto expandand
fall freely, the resulting interferencepattern shovs the momertum distribution.

In the extreme limits of zero phasecoherenceand maximal long-range phase
coherencethe interpretation of the presenceor lack of Bragg peakswith regardto
the MI - SF phasetransition is straightforward. No phasecoherencewvhatscever
implies a completelack of overlap of wave functions betweensites. This meansthat
the eigenstatesof the systemare now Fock states, an energygap has openedand
the systemis in the Ml phase. At the other end of the spectrum, phasecoherence
acrossthe ertire lattice allows the de nition of the condensateraction ng through
the maximal valueof ; by limy xqu 1= ne=n(nisthe total density). Whenthe
ertire systemhasa ‘common'condensatefraction, i.e. we can de ne a condensate
that extendsacrossthe lattice, it is in the super uid phase[81].

It has beenshawvn [76], howewer, that the change of phasecoherencearound
the MI - SF phasetransition does not correspnd exactly to the changein the
super uid fraction. In the MI regime,phasecoherencecanstill extend over seeral
lattice sitesewven though the long-rangecoherenceas gone. Consequetly, theseo -
diagonalelemerts in the one-particlematrix canstill causeBragg peaksto appear
in the interferencepattern. In other words, while Bragg peaksin the interference
pattern can indicate the phaseof the systemfor extreme conditions, they are not
in themsehesgood obsenablesfor tracking the transition point.

In the analysisup to now, we have assumeda homogeneousystemwherethe
atom density is constart acrosshe lattice. In experimerts, howeer, optical lattices
are usually createdinside a trap dueto the needfor additional con nemen of the
atoms. This additional potential causesa variation in the atom density across
the lattice sothat we now have a range of critical valuesfor (U=J)i; as this is
dependert on the MI phasedensity. Even more importantly, depending on the
strength of the perturbation through the additional trapping potertial, the nature
of the phasetransition itself can changeto the point whereit can no longer be
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characterizedby global behaviour [72, 73]. (For similar results regardingthe Bose-
Einstein phasetransition, see[872). Instead, a pattern of SF and MI \domains"
shouldform. The emergencef a domain of Ml phasewill then causerestructuring
of the spatial distribution of the super uid componert which in turn will resultin a
ne structure of the particle momenum distribution. This ne structure, visible in
the certral momertum peak, may be a more useful obsenable to locate the point
of the MI - SF transition, but hasnot beencon rmed experimenrtally yet.

So far, we have focussedon evidenceof super uidit y. As we discussedn the
previoussection,the other side of the coin, i.e. the Ml phase,has more properties
than simply the absenceof super uidit y. Most prominertly, for a homogeneous
system,the MI phaseis characterizedby an energygap. The existenceof this gap
has beenveri ed experimertally [40, 41] by applying a (static or dynamic) force
in the MI phase. After application, the systemis rapidly and non-adiabatically
transferred badk to the SF phase. The resulting excitations are then measured
by switching o all potertials, allowing the cloud to expand and measuringthe
resulting interferencepattern. The strength of these excitations is assumedto be
re ected in the full width at half maximum (FWHM) of the certral interference
peak. While this measureunderestimatessmall gains in excitational energy it
gives a good picture of the qualitative features of the excitation spectrum [41].
The dependenceof excitations on the applied forcethen shavs the extert of an Ml
energygap - for an exampleof experimertal data, seeFig. 3.3.
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Figure 3.3: Reproduced with kind permission from Ref. [41]. The gures showv the FWHM
of the certral interferencepeak for an array of gaseswith di erent dimensionalities (1D, 1D-3D
crosswer and 3D). Within ead plot, excitation spectra are comparedfor di erent lattice potential
strengths. The values for U=J in brackets were calculated using a band structure model with
tight-binding approximation.

This approad hasthe disadvantage of disturbing the systemwith an additional
perturbation. If the forceis too high or the perturbation time too long, the energy
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gap can be wiped out by heating beforeit can be measured.To avoid this e ect,
methods sud as Bragg spectroscopy that usevery weak perturbations have been
utilized experimertally. We shall discussthe details of the experimertal implemen-
tations of the energygap measuremenin the cortext of our results below.

In conclusion,we nd that there are a range of possibleindicators of the Ml -
SF transition. Due to the nite systemsize(both in experimerts and in theory),
a sharp transition point is not presem, but it should be possibleto seea gradual
change between phases. So far, the experimertal realizations of indicators of su-
per uidit y are fraught with di culties. Possiblealternativeshave beensuggested
in literature, but not yet tested experimertally. The MI phase,howewer, thanks
possiblyto its local character, can be establishedwith more con dence.



Chapter 4

\St atic" excit ations

In this chapter aswell asin Chapter 5 and 6, we will discussoriginal work carried
out by the author during the courseof her doctorate.

The experimental feasibility of adding a linearly varying component to the
lattice potertial, so-calledtilting, has openedup a new way to study the MI to
SF phasetransition. In this chapter, we will presem numerical simulations of this
techniqguewhich enableusto comparethe e ect of sud tilting on stateswith various
degreesof reducednumber uctuations. Our focusis on the region of the phase
transition wherethe repulsionbetweenatomsis larger than the hopping amplitude
and strong number squeezingresults. This work follows the generallines we set
out in [83].

4.1 Exp erimen tal interest

There are many interesting potertial applications that arise from adding a static
force to BECs in optical lattices. For one, there is considerableinterest in the
useof sut systemsfor high precisioninterferometry [84, 85. Other experimerts
are focussedon nding Bloch oscillations [59]. Most prominertly perhaps, static
excitations have beenemployed [40] to probe the MI - SF phasetransition.

As we discussedhe trapping of atomsin optical lattices in Chapter 1, we only
give a brief review here. Conceptually it is fairly simple. One rst createsa
condensatethrough laser cooling and evaporative cooling, holds the condensaten
a trap and then gradually ramps up the strength of the lattice potential created
by interferenceof laser beams. Obviously, this involvesa number of experimenrtal

23
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challengesn orderto be ableto carry out theseprocedureswith su cient e ciency,
but thesehave beenovercomeby a number of groups.

Oncethe lattice hasbeencreated,the questionarisesas how bestto probe the
atoms. In this chapter, we will ook at the application of a static forceto the lattice
in this cortext.

A number of di erent probesusing static forceshave beenusedin experimerts.
In one of the earliest experimerts [37], the optical \lattice” was positioned so
that gravity causeda potential di erence between sites. Other experimerts [40]
perturbedthe lattice within a harmonic magnetictrap. A variation in the trapping
eld canbe usedto producea gradiert in the forceon the atom. Moving the lattice
from the certre of the trap will thus createa static forcealongthe lattice. A third
approad [59]relieson a steady accelerationcausedby switching one of the lattice
beamson suddenly and ramping the intensity of the other up gradually. This so-
called chirping of the lattice is a very preciseway of imposinga force on the atoms
in the lattice.

4.2 Theory

As we discussedn Chapter 3, the MI phaseis characterizedby atoms being local-
izedin the wells. The further we proceedinto the MI phase,the closerthe ground
state is represeted by a Fock state with distribution = jNyNp:::Nyi where
Ny = Nt N is the number of atoms per site. As a consequencef this localiza-
tion, the signature of the MI phaseis more directly related to the obsenablesthat
have beenexperimertally accessiblesofar than signaturesof the SF phase.

In consequencewe focus on the characteristics of the Ml phaseand treat the
encroating features of super uidit y - presen as this is a gradual transition -
as perturbations of the localized atom picture. This allows us to interpret the
excitations presen in our systemin a relatively simple number-basispicture.

As we discussedin Chapter 3, the excitations for a perfect Ml phasein an
in nite lattice should occur at energiesof

( U;d) = jEpat] JEnoe) = JUNp J J( U(Np 1+ j=U; (4.1)

i.e. isindependen of the number of particlesper site N, or the chemicalpotertial
. The e ect of the static force, of course,is to createan energydi erence between
sites. When this energydi erence betweenneighbouring sitesis equalto the energy
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Etm:U/100 Emt:U/Z E.=U

Figure 4.1: Top row: Number of atoms per site for the rst v e number statesand Ey; = U=100
(left), Egx =U=2 (middle) and Eg =U (right). Bottom row: Number of atoms per site, but
multiplied with the probability for the wave function to bein this state. All valuesarefor Ny = 1
and N5 = 6.

U cortained in a excitation of the ground state, we expectto nd aresonance.For
the in nite lattice, resonancesorresmnd to the creation of a particle-hole pair. In
the Hamiltonian, the energydi erence is implemerted by adding a site-deenden
energyin the form of X
B=  Gny (4.2)
k
where iy is the number operator Ay = a{ak For G = kU, the di erence between
adjacen sitesis then just equalto U. We refer to a lattice with additional site-
dependent energyof the form of Eq. (4.2) asa tilted lattice.

The location of the particle-hole pairs created by the additional term in the
Hamiltonian dependson the strength of the applied force. From now on, we shall
discussthe forcein terms of the energydi erence it createsbetweenneighbouring
sites and term it Eg: . When this energydi erence is equal to the particle-hole
excitation energy U, we expect to nd a resonam creation of particle-hole pairs
from adjacen sites. As the tunneling probability dependson the overlap between
sites, the nearestneighbour resonancdor adjacer particle-hole pairs shouldbe the
strongest. In addition to this, we should seewealer resonancest multiples of U.
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Thesecorrespnd to the simultaneous creation of a number of nearestneighbour
particle-hole pairs and are consequetty energetically possible,but lessprobable.
The exactrelation of these multiple' excitationsto the simple particle-hole excita-
tion is dependen on the sizeof the lattice. For an in nite lattice, the probability
for an n particle-hole excitation should simply be P" where P is the probability
of a single particle-hole excitation. Finite lattice size manifestsitself in a further
decreaseof the probability for n particle-hole excitations whenn ! Ns.

Another interesting possibility is the creation of particle-hole pairs from non-
adjacent holes. The energyneededto produce one sud particle-hole pair is again
equalto U. The energiesk; betweenadjacen wells are then fractions of U. For
example, a particle-hole pair created in next nearestneighbour sites should be
found for Ey; =U=2, adding up to a total energydierence of U=2+ U=2 = U,
while larger distancesare re ected in resonancest even smallerfractions of U. In
general,particle-hole pairs that are n sitesapart will appear for energydi erences
betweenadjacern sitesthat are equalto U=(n + 1).

In principle, a conmbination of simultaneous creation of multiple particle-hole
pairs together with creationin non-adjacem holescould causeresonancest other
fractions of U, e.g. nU=m. As theseprocessesire much lessprobablethan the sim-
ple resonancest nU and U=n, n 2 N, they are unlikely to be of much importance
in the generalresonancespectrum.

We are, of course,not ableto study anin nite lattice. The particle-holepicture
still works surprisingly well even for our moderately-sizedlattice, howewer. To
illustrate this, we have plotted the wave function for U=J = 50 and N, = 1,
Ns = 6 for various valuesof E; in the number state basisin Fig. 4.1. To increase
the clarity of our plots, we showv the e ects on the v e states with the largest
probability coe cien ts only. In the top row of plots in Fig. 4.1 we plot the number
of atoms per site for these v e states for a non-resonan force (Ey; = U=100), a
next nearestneighbour resonance(Ey; = U=2) and a nearestneighbour resonance
(Egt =U). To illustrate the occupation probability for these states, we plot the
number of atoms per site multiplied by the probability of the number state in the
bottom row of plots. In other words, if we plotted the v e number states

j111111; j111201; j110211; j201111; j102111
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in one of the bar plots on the top, the bottom plot would have the row vectors

1 = jh111117 jj?j111111
, = jh111207 ij?j111201
s = jh11021] ij?j110211
4 = jh20111] ij?j201111
5 = jh10211] ij2j102111:

For the very small, o -resonanceenergyE; =U=100,wethen nd the expected
result for a state far into the Ml phase: a very high probability (about 99 %) for
the systemto bein the MI ground state j111111. At Ey: =U=2, we seeclearsigns
of next nearestneighbour hopping. Four of the v e most probable states shov a
next nearestneighbour particle-hole pair (the fth isthe j111111 ground state).
Similarly, the righthand plots with Ey; =U show nearestneighbour hopping. Both
for Eg =U and Ey; =U=2, we nd that the probability of the ground state is far
lower than the 99 % of E; = U=100. In other words, the excitation of the systemis
high. We nd that a plot of the meanvalue of the number variancefor U=J = 50
and time period = 0{ = 10=J, asin Fig. 4.2, also shavs theseresonances
(both fractional and integer) clearly.

Due to the nite sizeof the lattice and J 6 0, we nd that our results shov
excitations at additional valuesfor U=J ewen for squeezedcon gurations, as is
visible in Fig. 4.2. In order to support the assumption that these additional
excitations descrike real physics and are not down to numerical error, we also
plot someof the transition probability matrix elemens M .., for the applied force.
Thesematrix elemerts are de ned as

My =hijB i (4.3)

i.e., they represem the probability of the perturbation by the energy operator B
coupling eigenstatei with eigenstate; . B = ; Gn; is the energy operator we
de ned in Eqg. (4.2). In Fig. 4.2, we shav the matrix elemetts for the transition
probability from the ground state to excited states,M .1, wheren designatesthe
nth excited state. We nd that the matrix elemens are in good agreemen with
the location and width of the main peak. We will seethat the slightly broadertalil
of the main resonanceat E; = U is causedby Bloch oscillations.

As might be expected, excitations closerto the phasetransition are lesseasy
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Figure 4.2: The blue line shows the mean value of the number variance. The averageis carried
out over the perturbation period from = 0=J to = 10=J. The red lines showv the matrix
elemeris M .1 for overlap with the ground state. Valuesare for U=J = 50and Ns = 6, Np = 1.

to understandin a particle-basedpicture. After all, the SF phaseis characterized
by the delocalization of atoms acrossthe entire lattice. Closeto the phasetran-
sition, therefore, the wave function should be spread out over the number state
basis. For delocalized particles, our formalism of particle-hole excitations doesnot
give an accurate description of the physics as particles cannot be thought of as
localizedto a well. Consequetly, a description of excitations in terms of particles
hopping from one well to another does not make sense. In other words, a lack
of excitations understandablein a particle-hole formalism indicates closenesdo
the phasetransition betweenthe localizedMI phaseand the delocalized SF phase.
A study of the matrix elemets M .1, M .2, M .3 and M .4 for sud a transi-
tion state (U=J = 1), asplotted in Fig. 4.3, shavs good agreemeh betweenthe
excitation spectrum and overlap. In other words, even when excitations cannot
be understood in the particle-hole picture, there still is a corresppndencebetween
the overlap matrix elemerts of the static systemand the excitations found in our
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simulations.

It should be noted that transition states shav a signi cantly larger number
of non-zeromatrix elemens than thosein the MI phase. This can be understood
through the behaviour of the energygapEs. As Eg vanisheswith the approading
phasetransition, the di erence between eigenstateenergiesgrows smaller as well
by de nition. This meansboth that more statesare populated and that the range
of statesi and j, for which somegiven E; has a non-zeromatrix elemen grows
larger.
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Figure 4.3: The blue line is the meanof the number variancefor t = 0-t = 10=J and U=J = 1,
Ns = 6, N, = 1. The additional elemeris show the location and strength of someof the overlap
matrix elemeris M . Blue diamonds: M .1, red star: M .o, magerta dot: M .3, black +: M p.4.

In the superuid regime, e.g. at U=J = 0:001, the excitation processlacks
distinctive features. Due to the delocalization acrossthe lattice, there is no gap
to overcomein order to add energyto the lattice. Consequetly, the perturbation
strength simply varies smaoothly with the strength of the applied force. In Fig.
4.4, we shav the dynamicsof the number variance over time for the SF phaseand
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Figure 4.4: Top row: SF phase(U=J = 0:001, left plot) and transition phase(U=J = 0:1, right
plot), bottom row: transition phase(U=J = 1, left plot), MI phase(U=J = 10, right plot). All
valuesare for Ng = 6 and N, = 1.

transitional states. The oscillatory structures visible in that gure are causedby a
combination of Bloch oscillationsand oscillationsat the tunneling frequency both
of which will be discussedfurther in Chapter 6. Below, we will argue that the
number variance dynamics provide a useful tracker of the phasetransition due to
its local nature.

4.3 Numerical setup

For all calculationsin this chapter, we usethe Bose-Hubbardmodel, as descriked
on pagel2, with an addedenergyterm shavn in Eq. (4.2) wherethe Hamiltonian
is equalto

X X 1 X
Mouviaaa = 3 &/8+  Gafa+ U alafas: (4.4)

hij i i i
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The notation hi denotessummation about all nearestneighbours. As we are es-
pecially interestedin the region of the phasetransition, we choseto usean exact
approad basedon the full Hamiltonian to study the dynamical developmen of
the system. This limits our studiesin sizeand number of atoms and we consider
modestly-sizedlattices with betweenfour and eight sitesand meanatom numbers
N, of up to three atoms per site. The exact approad does, howeer, allow us to
study dewelopmerts right at the phasetransition, which would not be possiblefor
mean eld theoriesbasedon the Bogoliubov or GrossPitaevskii approad.

Experimerts that demonstratethe SF to Ml transition typically involve many
more lattice sitesthan this [40, 41, 85, 86]. By consideringthe ewlution of what
we expect to be locally determinedquartities sud asthe number variance,we are,
howeer, able to minimize the e ects of nite sizeon our results. This, in turn,
allows usto gain someinsight into the behaviour of larger lattices than we are able
to treat numerically. When comparingresultsfor di erent numbers of lattice sites,
we nd that they shav remarkably similar behaviour, encouragingus in our use
of the number variance as an indicator of lattice response. Due to the qualitative
similarity of the zero-temperature phasediagramfor one,two and three dimensions
[53, 64] we also beliewe that, while we usea one-dimensionakystemfor numerical
simplicity, the generalfeaturesof our results can be applied to higher-dimensional
systems.

We study our systemby solving the coupled equationsof motion for the com-
ponens of the wave functions in the number state basisusinga fth order Runge-
Kutta appraximation [87]. The initial statesfor the simulations are the eigenstates
of the Hamiltonian given in Eq. (4.4) for dierent values of U=J. We obtain
theseeigenstatedy exact diagonalizationof the Hamiltonian. The eigenstatesare
then probed by tilting the lattice in our simulations. This tilting is implemerted
by adding a linearly varying componert B (Eq. (4.2)) to the on-site energyE;.
Further details of the numerical approat will be setout in Appendix A.

There are a number of obsenablesthat we can useto track the e ect of exci-
tations. Primarily, we will study the number varianceV, de ned as

V=hn)4i mi? (4.5)

wherenf; isthe number operator for sitei and hi denotesthe expectation value. Why
usethe number variance? As discussedn Chapter 3, excitations in the MI phase
are usually measuredexperimertally (e.g. in [86]) via changesin the interference
patterns obsenedin the distribution of atomsreleasedrom the lattice. Excitations
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causedby tilting the lattice show up in the increasedwidth of the main interference
peaksfound whenthe systemis taken bad into the SF phase[86]. In other words,
these excitations are obsened through changesinduced in the phasecoherence
acrossthe lattice.

For single wells, number uctuations V and the phasecoherence acrossthe
well are related by the uncertainty relation

P Vv 1 (4.6)

which statesthat the simultaneous measuremen of number and phaseis limited
in precision.

There is no sud relation between the number uctuations of one well and
the phase coherenceacrossthe lattice. That becomesimmediately obvious by
consideringthat it istheoretically possibleto court all the atomsin onewell without
destroying the phasecoherencebetweenthe other lattice sites.

A reasonableassumptionto make, however, is that a decgy of the “local' phase
coherenceat ead lattice site will causethe deca of the "global' phasecoherence
acrossthe lattice at somepoint. Consequetly, a changein number uctuations
should be re ected in the interferencepattern in someform and vice versa.

In the extremelimits (i.e. for a lattice with in nite barrier height or an absert
lattice), the relation betweenthe two obsenablesis simple. Deepin the insulator
state thereis no phasecoherencesothat  >> 0and correspndingly zeronumber
variance. For a super uid, the number varianceis large while the phaseacrossthe
whole systemis well de ned - 0.

We are, of course,interestedin what happensin the transition region. While the
useof number variancein the theory of BEC and the relationship between phase
coherenceand number variance has beendiscussedfor somecases[88, 86, 89], a
simple relation between the two has not beenfound. Quite to the cortrary, it
has beenshown [76] that sud quartitativ e measuresas the fringe visibility of the
interferencepattern have no immediate relation to the uctuations in the number
variance.

We should note that the number varianceis also an experimertally accessible
quartity. It directly a ects the collapseand revival times of the relative phase
between sites [86, 88, 89, 90, 91, 92]. It also plays a role in the three-body loss
rate: the three-body correlation function G} is strongly depender on the number
variance [93]. We can also think of the number variance in terms of so-called
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number squeezing. The MI phasestates with vanishing number uctuations are
then number squeezed.

Consequetly, the dynamics of the number variance are of theoretical and ex-
perimertal interestin their own right. At the sametime, they canalsoserne asan
indication of what might be expectedto happen in the interferencepattern.
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Figure 4.5: In this plot we shaw the energyfor the rst 100 eigenstatesfor U=J = 1, 10, and
50 (bottom to top) and Ns = 6 and N, = 1.

Usingthe ground state of the Hamiltonian (calculated by exactdiagonalization)
asthe inital state allows usto study the changein E¢ directly aswe can calculate
the energyeigensgctrum. As we discussedearlier, the phasetransition will not
be sharpin a lattice of nite size. For the MI - SF transition in a nite lattice,
this translatesinto a gradual onsetof the energygap. We nd a similar e ect for
the energyeigensgctrum of our simulations. In Fig 4.5, we plot someexemplary
energyeigervaluesfor a number of valuesof U=J that arestudiedin our simulations:
for the transition region (U=J = 1), we seeindeedthat no gap is obsenable. As
expected, states further into the Mott insulator regime (U=J = 10 and U=J = 50)
showv a de nite gap, even though the bandsare still broadened.
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4.4 Results

We study the dynamical ewlution of the BHM Hamiltonian for a number of rea-
sons. Firstly, we want to explorethe excitational structure around and beyond the
phasetransition. Secondly we want to investigatethe useof the energygap asan
indicator of the phasetransition. In order to do that, we shall comparethe use of
number varianceto other obsenables,sud asthe addedenergyand changein the
interferencepattern, to gain an idea of how useful the various obsenables might
be.
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Figure 4.6: Excitation pattern for petu = 2=J, U=10, J=1, Ns = 4 and N, = 1;2 and 3
(bottom to top). The mean variance (y-axis) is dimensionless.

To theseends,we usestateswith arangeof di erent degreesof number squeez-
ing asthe initial statesin our simulations and apply a tilt for atime ,enum . We
then determine the number varianceV, the added energy E and interferencepat-
terns for the resulting wave function of atomsin the lattice. We shall rst discuss
our resultsfor number varianceat somelength and then explorethe relation to the
other obsenables.
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We nd that ewen for rather small lattices the location of peaksis in good
agreemeh with those correspnding to particle-hole pairs expectedfor an in nite
lattice. Fig. 4.6, for example,shaws excitations for lling factors of one, two and
three for four lattice sites. All thesegraphsshon one-particle-holeexcitations at
E it U and Eg U=2. For N, 2, two, three and ewen four-particle-hole
excitations appear.

It is interesting to note that the qualitativ e featuresare still presen for non-
integer lling. Asis shown in Fig. 4.7, non-integer lling resultsin a more promi-
nert cortinuousspectrum, asmight be expectedin a systemwith defects. Howe\er,
we still seedistinct Mott insulator peaks,albeit with somewhatgreater widths.

Non-integer lling is of interestbecausdhe phasediagramfor the in nite lattice
(seeFig. 3.1) predicts that non-integer density shouldleadto a super uid ground
state asthe density in the Ml phaseis pinned to integer values. Finding that the
particle-hole excitations are still clearly visible is a good indicator that the “soft'
phasetransition doeshave di erent featuresto thosein anin nite lattice. In other
words, the crucial property of non-compressibiliy is no longerpresen even though
the excitation spectrum shows clear signsof a distinct energygap. A similar e ect
has beennoted for optical lattices in inhomogenoudraps [72].

We now turn to the dependenceof excitations on the number of lattice sitesfor
a rangeof four to eigh lattice sites. For morethan v e lattice sitesand U=J 20,
the changesin the resultsasa function of lattice sizebecomemodest(seeFig. 4.8).

Even for the smaller con gurations, i.e. four and v e sites, the important
featureslook qualitatively the same. This leadsus to be reasonablycon dent of
the relevance of the principal features of our calculations for the larger systems
studied in laboratories. In studiesof the corvergencetowards the thermodynamic
limit of the meanmomertum [94] in lattices, it was found that good cornvergence
had setin for 12 lattice sites, provided the ewlution time remainedshorter than
the tunneling time. Even eight lattice sites already shoved good agreemeh We
study a local variable that should be lessdependen on the sizeof the lattice than
the mean momertum. In other words, the results of [94] appear to con rm our
conclusionthat we can considerdynamicsin the Ml phaseas, at the very least, a
good indicator for possiblee ects in larger lattices.

We have found that the number variance correspnds well to the expected
particle-hole excitational structure. But how doesit correspnd to other observ-
ables? We can comparethe number varianceto the added energyE .44 Which we
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Figure 4.7: The thick lines show the mean of the number variance for integer lling (black
Np = 2, red Np = 1), while the thin blue broken line shows results for N, = 11=6. For all N,
the mean value is taken over a perturbation period perub = 5=J and for valuesU=J = 20 and
Ns = 6. The mean variance (y-axis) is dimensionless.

calculated by the expection value
Eadd = h (1)jHeum ;o] (V)i (4.7)

where (t) is the wave function at time t and Hgyyw .o is the BHM Hamiltonian
for a non-tilted lattice. E.qq is a global variable so we would expect agreemen
betweenV and E,qq to be best for a systemcharacterisedby local quartities (i.e.
the Mott insulator), while a super uid might show greaterdi erences.

Encouragingly we nd that ewen for a moderately squeezedsystem, i.e. for
U=J = 2 shawvn in Fig. 4.9, the number variancemirrors the pattern of the added
energyrather well. For more squeezedystems,the agreemen is almost exact, as
can be seenin Fig. 4.10and in Fig. 4.11for meanvalues.

One interesting feature to note is an additional fractional peakin the added
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Figure 4.8: This plot shavs the meanvariance takenfor t=0 - 7=J for U=J = 20,Ns = 4;5;6;7
and 8 and N = 1. The mean variance (y-axis) is dimensionless.

energy plots for U=J = 50 in Fig. 4.10and Fig. 4.11. Here, fractional peaks
are visible not only, as expected from the simple model, at Ey; = U=3 or even
Eqt = U=, but alsoat Eyz = U=5. This peak is not visible in the number
varianceplots, however.

In the simple in nite lattice picture, this excitation can be understood as a
particle-hole excitation that is divided by four sitesin between the particle site
and the hole site. A look at the number state basisfor a wavefunction produced
by Eg: con rms this relation: Fig. 4.12shows quite clearly that the wave function
after excitation is almostertirely a Fock state with j011112. This neatly illustrates
the dangersof local variables: if they are only read out in specic points of the
system, sudh as a site in the middle of the lattice, interesting e ects involving
di erent sitescould be missed.

In this case,we have studied the number variancefor statestowards the middle
of the chain to avoid end e ects. Due to the limited sizeof our model, a fractional
resonanceat Eg =U=5 only shavs up in the endsof the chain. The interference
pattern and energy on the other hand, which areglobalvariablesthat arecalculated
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Figure 4.9: Left plot: contour plot of the number variance over time, right plot: cortour plot
of the added energy over time. Both are for U=J = 2 and Ns = 6, Ny = 1.

for the whole system,both shaw this e ect. The relative strength of this excitation
comparedto other e ects is an e ect of the limited sizeof the systems.

There are a number of conclusionsto draw from this. For one, studying the
dynamicsof the number variancegivesus a very good idea of the changein energy-
but only up to the point wherethe dynamic processesead the sizeof the system.
This is neither surprising nor worrying. Firstly, thesedynamic processe®nly play
a very minor role in the total excitation spectrum and do not provide any new
information safethat we can extend possibleexcitations from hopping over four
states to hopping over v e. Secondly the very fact that the number variance
is a local quartity and thus, for highly squeezedsystems,is sensitive to system
conditions might o er possibilities for usein an experimertal cortext. After all,
theorists are currertly predicting that bosonsin optical lattices will - under the
right circumstances form domainsrather than exist in onecommonphasefor the
ertire system. A comparisonof the excitational responseof the number variance
to that of a global variable sud asthe interferencepattern could then possibly be
an indicator of the sizeof thesedomains.

Due to numerical constrairts, a comparisonof dynamicsof the number variance
with the interferencepattern could not be carried out in as great a detail asthe
comparisonwith the addedenergy We shall discussnumerical resultsfor a number
of interesting casesthat suggestgood agreemenh betwen the conjugate variables
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Figure 4.10: Left plot: corntour plot of the number variance over time, right plot: contour plot
of the added energy over time. Both are for U=J = 50 and Ns = 6, Np = 1.

with respect to the main excitations.
We calculate the interferencepattern asdescrited in [80, 95 and Eq. (3.7) by
1 X
nk)= . e )&y (4.8)
S hij i
where N is the number of sitesand is equal to the phasedi erence between
sites. The summationindex i; j runs over all lattice sites.

In experimerts, a changein interferencepattern is usually quarti ed by taking
the full width at half maximum (FWHM) of the main interferencepeak. For a
small lattice sudh as ours, this is a rather imprecisemeasureas the main peak s
lesspronouncedand the small changesare likely to be of the order of numerical
uncertainty. Fig. 4.13illustrates this di cult y: we have plotted the dewelopmert
of the interferencepattern over time for a relatively squeezedstate (U=J = 50)
for a very small perturbation (Eg: = U=10) and a strong perturbation (Eg: = U).
While the small perturbation producesthe expected result - oscillation, but no
sizabledeviancefrom the initial pattern, the changein interferencepattern for the
resonam excitation is drastic, but hard to quartify asthe peak and the point at
which to take the FWHM are di cult to locate. For the purposesof this chapter,
howewer, we are interested not so much in the precisenature of the relationship
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Figure 4.11: This plot shovs mean valuesof the number variance (blue) and the added energy
(green) taken for U=J = 50 and Ns = 6, N, = 1 over the time period = 0{ = 10=J.

between the number variance and the interferencepattern (after all, we already
know that there is no one-to-onecorrespndence),but in the qualitativ e signatures
of particle-hole excitations for the interferencepattern. Consequetly, the exact
details of how to quartify changein the interferencepattern are not of too much
importance.

We therefore chooseto plot the lossin height of the certral momernium peak.
This has the advantage of being simple to consistetly measurefor any pattern
and can be usedas a simple measureof the disturbanceof the interferencepattern
by the exciting force. We nd a very good correlation between excitations in
the number variance (short: Var) and interferencepattern (short: Int) ewen for
relatively super uid systems(Fig. 4.14, middle plot and right plot). As might be
expected,the corresppndencegrowsincreasinglyworsewith the importanceof long-
rangecoherencdFig. 4.14,left plot). Again, the gradualtransition is visible in the
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Figure 4.12: Analogousto Fig. 4.1, this plot shavs the number of atoms per site multiplied
with the state probability for Egx = U=5 and the initial conditions U=J = 50,Ns = 6and N, = 1.

excitational structure beyond the particle-hole excitations and smooth super uid
increase.

4.5 Summary

We have presened a rangeof simulations of atomsin an optical lattice in the region
of a quantum phasetransition. We have shown that the changein atom number
varianceis a good indicator of excitations producedby tilting the lattice potential.
Moreover, we have seenthat the main featuresof the excitation spectrum are only
weakly dependen on the size of the lattice and con rm the origin of resonances
seenin recen experimerts [40, 41]. In addition, we obsene higher order e ects in
the responsethat t very well into the picture of excitations at multiples of the
energygapU in anin nite lattice. Our resultsalsoindicate that non-integer lling
does not obscurethe Mott insulator peaksin the responseof the lattice. This
implies that the changein atom number variance could be a useful probe even in
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Figure 4.13: We have calculated the interference pattern asin Eq. (4.8) for = 1. These
plots show the developmert of the resulting n(k) momertum distribution over time. The left plot
shows the e ect of a small perturbation (Ey: =U=10) while the right plot shows the momertum
pattern for a resonart energyEq; =U. All calculations are for U=J = 50, Ns = 6 and N, = 1.

non-ideal systems,sud as lattices with defects. It could also be a useful probe
of phasesthat go beyond a pure MI phaseor SF phase,but rather incorporate
elemerts of both in a patterned structure.
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Figure 4.14: In theseplots, we comparethe mean value of number variance over time with the
mean height of the main interferencepeak. Blue diamonds: number variance, red squares: height

of interferencepeak. All valuesare calculated for Ns = 6 and N, = 1.



Chapter 5

Time-dependent excit ations

While the application of a static forceasin Chapter 4 has proved to be extremely
successfulexperimertally, it has a number of disadwantages. Most importantly,
the magnitude of force neededfor experimentally distinguishablesignalscan cause
heating and thus destroy the very systemit wasintendedto probe. A static force
will alsocauseBloch oscillationswhich, even though interesting in their own right,
can make an analysisof the responseof the systemto excitations di cult.

One alternative approad is to usetime-dependen excitations. In this chapter,
we will discussa speci ¢ experimertal realization of this, Bragg spectroscopy, and
its advantages. We will give a brief overview of the use of dynamical excitations
and explain our numerical implemertation of this method. Finally, we will set out
the resultsof our numericsand discusssomepossibleconsequence®r experimertal
work.

5.1 Exp eriments

One of the interesting aspects of bosonsin optical lattices is that they bridge the
borderline between quartum optics and condensedmatter physics. Experimen-
talists and theorists alike have transferred a wide range of techniques from both
sub- elds to this system. The technique that we are interested in here, Bragg
spectroscop, hasa very long history in condensednatter physics. It makesuse of
Bragg scattering, a processhat was rst demonstratedin 1912by W.H. Bragg[96]
for x-rays in crystals. He found that wave vectors are scattered when the Bragg

44
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condition
n = 2dsin (5.1)

isfullled. isthe wavelengthof the incomingwave, d the distancebetweenlattice
planesand the angle of incidence. It was later [97, 98 establishedthat Bragg
scattering is also applicable for particle de Broglie waves.

Bragg scattering of atoms 0 a standing light wave was rst demonstratedin
1988[99. Experimenrtalists quickly realizedthe usefulnesf this technique and it
wasusedin a variety of experimertal settings,rangingfrom manipulation of atomic
samplesin atom interferometers[100]to coupling out of Bose-Einsteincondensates
[101]. The term "Braggspectroscopy' wascoinedin 1997by Bermanet al in [102]in
analogyto Ramanspectroscop. The authors show that a systemwhereatoms are
Bragg scattered by courterpropagating light waveswith di erent frequenciescan
bereducedto that found for pump-probe spectroscopy of two or multilevel systems.
In pump-probe spectroscop, the systemis excited by a so-calledpump beamand
then probed by a secondbeam called the probe beam. The momertum transfer g
and energytransfer2 arethen givenby jgj = 2Nksin( =2)and = N where

is the anglebetweenthe two beamswith wave vector k and frequencydi erence

Experimenrtal evidenceof Bragg spectroscoly was soon found by Stengeret al
[103]for a trapped condensate.The method was then applied to atomsin an op-
tical lattice in 2004[41]. In cortrast to the static force we discussedn Chapter
4, Bragg spectroscopy is not very susceptibleto Zener tunneling or other heat-
ing e ects. The Bragg scattering scheme can be implemerted by modulating the
lattice potertial with a sinusoidal amplitude modulation A Sin(2 t) in a one-
dimensionaloptical lattice. With this modulation, two sidebandswith frequencies

relative to the lattice laser frequency are added to the system. Thesethen
de ne the energy2 of the excitation. If this excitation energy2 correspnds
to a resonanceof the system,photons are absorbed and energyis transferred. The
location of the resonancesare found by subsequetty ramping down the lattice
potentials linearly, allowing atoms to rethermalize at a relatively shallov depth.
All potertials (including the magnetic trap) are then suddenly switched o and
the resulting matter wave interferencepattern is detected by absorption imaging
after ballistic expansion. As discussedbrie y in Chapter 3, the full width at half
maximum (FWHM) of the certral momernium peak is taken as a measureof the
introducedenergy
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5.2 Numerical implemen tation

For our numerical model, we follow the designof a recern experimert [4]] as de-
scribed in the last sectionand add a sinusoidal modulation to the lattice potertial
of the Bose-HubbardHamiltonian (Eq. (2.14)). The new lattice potential Viagice IS
then equalto

Viar = Vo sin®(kx)(1 + F sin(! t))

wherek = Z- is the lattice wave vector for a standing wave with wavelength and
F is a dimensionlessonstart governing the strength of the perturbation.

Rather than keepthe explicit spacedependenceof the secondquartized Hamil-
tonian of Eq. (2.14), it is far more corveniert numerically and conceptually to
simplify it to the well-known BHM Hamiltonian, albeit with time dependen coef-
cients U and J.

As in Chapter 2 we once again assumethat we can restrict the model to dy-
namicsin the lowest band. We also make the assumptionthat the tight-binding
appraoximation is valid.

The shape of the Wannier functions

o+ = p—pl;exp( x2=2 ?) (5.2)

then dependson the potential height since is determinedby Vs (t). Following

amethod rst proposedby Baym and Pethick [104, we calculate by minimizing

the energyfunctional
2z

E[ 1= o dx

Z Z

2
T00 s M Oo] 0+ 0 dxj () (53)

dx

for the given lattice potential. For Vi.x = Vosin?(kx)(1 + F sin(! t), the equation
for isthen equalto
N ~aN?

1+ F)Vopsin(! )Nk? “exp( k% 3) — —— =0 5.4

(L+ F)Vosin(! 1) KD oo 5 (5.4)
Due to the exponertial term, a closedsolution to this is not easyto nd. As we
assumethat the tight-binding approximation holds, howeer, it seemsnstructive
to gain a simpler variational estimate by aaproximating the lattice potertial by
the harmonicform V = im 2x2where = Y@*RISnOK "1 the tight-binding

m

appraximation, there is little overlap between sites. For the Gaussianfunction
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o+, localizedmainly in the certre of the trap, the trapping potertial is then well
approximated by a harmonic trap. This approximation givesus the simpler form

of )
1 4 a;
4 int
int + P

- et (5.5)

as shown, for example,in [52]. This appraximation allows us to calculate explicit
valuesfor , using experimertal parameters. It doesnot, howewer, give a single-
valued function for the dewelopmen of over time which would be signi cantly
more corveniert numerically. A rst estimate of sud a single-\alued function can
be found by neglectingthe interaction energyin the energyfunctional E[ ] sothat
(5.3) changesto

Z , Z
_ 1 d (x) 1 | 242 2.
E[]= >m dx X +  dXx ém. X (X)) (5.6)
It is then trivially easyto nd
T 1 :
non it m mVok2(1 + F sin(! t)) ®.7)

where = YeSOK Thig is the well-known length scalefor the ground state

in a harmonic trap with potertial %m 2x2. We nd that, for the parametersused
in our system, non int IS @ very good approximation of i,;. Fig. 5.1 shavs some
exemplaryvaluesof o int @and ;.
The BHM constarts J and U consist of integrals over Wannier functions, i.e.
from Egs. (2.18) and (2.19):
z
J = drw(r R)Mow(r R;) (5.8)
Z
4 a; drjw(r R;y)j* (5.9)

U

where lt?o = P%=2m + Viax (X; 1) is the single particle Hamiltonian (2.9).
Carrying out the integration in Eq. (5.9) resultsin

U=2 a= (5.10)

and
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Figure 5.1: The blue line shovs non int (EQ. 5.7) while the red stars are calculated by the
fourth order equation Eq. (5.5). System parametersare Vg = 20Eg and F =0.1.

J = exp 4—12 K (5.11)

1 1 2
dm 2 2m 4 2k

Vo(1 + F sin(! t))(% + exp( k? ?))

After substitution of .o, int, J and U are equalto

q
U= 4a g mVo(1 + F sin(! t))k | (5.12)
Y . :
] 2 in(!
J = exp 1 mVo(1 + F sin(! t) Vo(1+ F sin(! t))+ (5.13)
4 k 2
!
Vo(L+ Fsin('t)exp p K
° ' T MVo(L+ F sin(! 1)
k P 2

am mVo(1+ F sin(! t))  Vo(1+ F sin(! t))§ :
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A simple way of thinking about the e ect of lattice height on J and U is by
assumingthat the overlap of wave functions betweensitesis soweak that it has,
roughly, a linear dependenceon the barrier height. In that case,a sine wave
perturbation of V; translatesinto

Jperub = Joexp( Fsin(! 1)) (5.14)

12 T T T T T T T T T 12

=
[N

J (Wannier, sigma non .nt)
=
J (simple linear dependency)

o
©

0.8 | | | | | | | | | 08
0 . . 2

Time [s]

Figure 5.2: The blue line shovs J( non int) @and no interactions while the green line shows
Jperturs = Jo exp(F sin(! t)).

For the small perturbations usedin experimerts, we nd that this very rough
picture already producesresultsthat are surprisingly similar to the more involved
calculations discussedearlier. Fig. 5.2 shows both the changein J when calcu-
lating it with Wannier functions accordingto Eq. (5.12) and a simple sine wave
perturbation asin Eq. (5.14).

The simple sinewave perturbation in Eqg. (5.14) is essehally equivalert to the
tight-binding approximation we madeearlier. Consequetly, we take the correspn-
denceof the two perturbations of Fig. 5.2 as an indication that the assumptions
we madein order to gain the time dependencywe found for both J and U, arein
good agreemenh with the systemparameters.
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5.3 Theory of excitations

The dynamicsand excitation structure of the BHM has beenthe subject of much

theoretical attention [105,106,107, 108 109 110,111. The simplestexcitationsare
“particle-like": aswe discussedn Chapter 4, for anin nite lattice and a strongly in-

teracting system,we can understandmost e ects by approximating the eigenstates
with Fock states. More complex, howewer, are the collective excitations which can

take the shape of breathing modesor dipole modes,for example. The preciseform

of these excitations is highly dependen on various system parametersand phase
spacecan be chaotic.

Our interest lies mainly with the “particle-like' excitations as we would like to
usedynamic excitations to explorethe energygap of the Mott insulator aswell as
the phasetransition. In order to ensurethat we mainly excite these “particle-like'
states,we will comparethe energyeigenstatesof the static systemwith the results
of the perturbation. We assumehat agreemen betweenthe energyeigensgctrum
of the static systemand the resonancdrequenciesf the perturbed systemindicates
that it is reasonabldo usethe static systemto understandthe excitation processes.

uiJ=1 U/iJ=10 U/J=100
1.2 T T 3.5 T T T 4 .
~ 3.5
1r ‘ 8
“ 3 L
| 25
0.8+ ‘\
£ ‘ = =29
: ‘\ i :
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= ‘ = =15+
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1r
\ 1
i
L - 1
0.2 | { VA 0.5¢ \‘ ‘ ] 0.5l
I
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0 J ﬂ“ ] Gﬁh U i 0 o A 0 .
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Figure 5.3: Red: M y, blue: M ;. Valuesare calculated for Ns = 6;N, = 1 and U=J = 1 (left),
U=J = 10 (middle) and U=J = 100 (right).

Making the assumptionthat the system stays reasonablycloseto the static
system, which resonancesdo we expect? In order to understand the e ect of
modulating J and U, we look at the matrix elemens M of the overlap betweenthe
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initial wave function j i (calculated by exact diagonalization of the Hamiltonian)
and the perturbed wave function j iyen, i.€.

X X
My=h jdmea(t)  &&j i; My=h jUna() &%83 i (5.15)

where Jmog(t) and Unoq(t) are the time dependen variablesof the BHM Hamilto-
nian.

We nd that only a small number of the possibleeigenstatesshov matrix el-
emerns signi cantly larger than 0 (seeFig. 5.4 for a comparisonof the range of
eigenstateswith the location of non-zeromatrix elemerts.)

U/J=50, Ns:6, Np:1
100 \

901

80

70¢

60

501

Energy [in U]

401

30
201 1
10 A 1
OO 1A0 20 30 4AO 50

eigenstates

Figure 5.4: Red: M y, blue: M ;. The black line shaws the energy spectrum of the static
Hamiltonian for U=J = 50, Ns = 6 and N, = 1.

This may be a result of the symmetriesof the system. Let us rst considerthe
straightforward caseof two atomsin two wells. The eigenstatesof the systemare
then, in the number state basis,equalto

jii = Gjlii  G(jo2 + j20) (5.16)
j ia = Dijlli + Dp(jO2 + j20i) (5.17)
j iz = (jo2 j20’)=p§ (5.18)
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wherej 1, isthe groundstateandj i3 the statewith the highestenergyeigervalue.
G., and D;.; aredependert onthe ratio U=J. Applying the perturbed Hamiltonian
to the ground state then producesthe new states

X

U &2%8% i;= 2G(j02 + j20) (5.19)
X _

J  aaj i = P 2G,(jO2 + j20i) 2Gj11li (5.20)

j i1;U

j i1;\]

It isthen clearthat the matrix elemets M §, = h 3j iy andM 3, = h 5 iy
vanish due to the anti-symmetry of j is.

Obviously, larger lattices (and speci cally thoseusedin the simulations) have a
much larger basis. Due to the high degreeof translational symmetry, permutations
of Fock statesalways have the sameprobability coe cient in the eigenstates.For
example,all number stateswith N, + 1 atomsin onesite, N, 1atomsin asecond
and N, atomsin all other siteswill have the sameprobability p. The amplitude C
for ead individual state canthen only be equalto P p- As both the interaction
perturbation Unoq(t)  &’*8% and and the coupling perturbation Jneq(t) &4 are
symmetric operators, the overlap between eigenstatesthen depends on the ratio
of positive C to negative C. Further details of the physics of the overlap matrix
elemens will be the subject of future work (seealso Chapter 7).

For experimertal con gurations, we expect the energybandsto be signi cantly
more narrow sothat overlap for single eigenstatess indistinguishable and we see
a smooth curve over the band instead.

54 Results

There are a number of di erent e ects we want to explorein this section. Firstly,
due to the di erent dependenciesof the hopping J and the interaction U on the
perturbation strength F, the responseof the systemto the perturbation will, in
general,not just scalelinearly.

Fortunately, for the weak perturbation strengthsthat we are interestedin, both
U and J are roughly linearly dependert on F as can be seenin Fig. 5.5. The
relation of U to J, howewer, is not constart. This changing importance of M
and M ; is illustrated in Fig. 5.3 - with growing squeezing,M ; is increasingly
strongerthan M . This is a direct result of the ground state distribution in the
number state basis. Roughly speaking, the probability for the systemto be in the
J111::: 1i Fock state determinesthe strength of M ;, while the matrix elemen M



5.4. Results 53

0.25 0.25
0.2r 10.2
0.15F 10.15
D L)
0.1 10.1
0.05F 10.05
0 1 1 1 1 1 O
0 0.02 0.04 0.06 0.08 0.1 0.12
F

Figure 5.5: This plot shows the maximum value of perturbation (i.e. max(Umoq(t)) and
max(Jmod(t))) for Jo = 1 (green) and Up = 10 (blue) for F = 0:0001to 0.1.

is dependert on the probability of stateswith dipoleelemetrs, e.g.j1:::0112:::1i.
Consequetly, while the location of excitations should be fairly independert of the
strength of the perturbation, the relative strength of peaksshould vary.

A comparisonof the results for F = 0:001and 0.1 (seeFig. 5.6 for a detailed
view and Fig. 5.7 for an overview) shows that, despite the large di erence in
perturbation strength, results shov good agreemen in the location of excitations.
Wedo nd that stronger perturbations producea greater number of visible peaks,
but this is dueto the variation of the relative height of the peaks(seethe detail in
Fig. 5.6 for an example).

This agreemen of scalingis important for a number of reasons. For one, the
independenceof location from the perturbation strength indicatesthat theseexci-
tations areindeedresonat e ects couplingspeci ¢ statesrather than static heating
e ects. It alsois a good indicator that the appraximations madein the numerical
model in the calculation of the time dependenceof U and J do not detract from the
fundamertal objective of studying the systemwith a Bragg spectroscoy approad.

Another bendymark of the numerical model is the agreemen of the matrix
elemens M .; for the static Hamiltonian (Eq. (5.15)) with the results of our
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Figure 5.6: We compare the mean value of the number variance for dierent perturbation
strengths and for U=J = 20, Ns = 6 and N, = 1. Blue: F = 0:1, green: F = 0:001. Note that
the yl-axis and the y2-axis do not have the samescaling.

simulations. The original motivation for the use of dynamic excitations was the
possibility of exploring the energy spectrum of the system. Any perturbation of
a systemruns the risk of exciting it to sud an extert that the energy spectrum
suggestediy the resonancedearsno relation to that of the original con guration.

In orderto excludethis possibility, we compareour resultswith the original energy
spectrum calculated by exact diagonalization of the static Hamiltonian.

Fig. 5.8 shavs the mean value of the number varianceover = 21=J for a
systemwith non-integer lling (7 atomsin 6 sites). Due to the greater complexity
of the eigenstates,the resonancespectrum is more varied than that for integer
lling (asin Fig. 5.6). The left subplot shavs the resonancespectrum together
with the overlap calculated by exact diagonalization of the static Hamiltonian for
perturbation of the coupling (red) and of the interaction (black). We nd that,
while the overlap corresppndswell to peaksof the resonancespectrum, there are a
number of peaksleft unexplained. This is dueto the fact that in caseof a favourable
transition betweenstates (i.e. a non-zeromatrix elemem), transition is possible
for fractions as well asinteger multiples of the original transition frequency! . In
the middle plot, we have added the matrix elemens for ! =2 and the right plot
shovs M ; and M  for !, ! =2 and 2! . All prominent peaksare then accourted
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Figure 5.7: These plots show scaling for F = 0:001 (green) and F = 0:1 (blue) for U=J = 10,
Np = 3, Ng = 4 (left plot), U=J = 1, N, = 1, Ng = 6 (middle plot) and U=J = 10, N, = 7=6,
Ng = 6.

for, which encouragesis in the assumptionthat the resonancespectrum is a valid
indication of the static energy structure. We nd similar fractional and integer
structures for the other possiblecon gurations (i.e. integer lling, variation of U
and J) aswell (seealsoFig. 5.13).

In order to understand the fractional resonanceswe should remind oursehes
of the interpretation of Bragg spectroscoy as a two-photon process,giving the
integer resonanceat (in the Ml phase) U. During thesetwo-photon processes,
one photon is absorked und one emitted, coupling statesto higher lying states of
the energyspectrum. An additional possibility is a four-photon processwheretwo
photons are absorked and two reemitted. This has beenexperimertally obsened
for Bragg scattering of atoms o a standing light wave [113. Characteristic for a
four-photon processis the simultaneousabsorption of two photonswith frequency

which resultsin the couplingto a momertum state with energyof 4

The good correspndenceof changesin the number variance with the original
energyspectrum is also supported by a comparisonwith the added energywhich
we calculate by

Eada = h ()jHemm ;o) (D)i: (5.21)

As with the static forcein Chapter 4, changesin the number variance are closely
correlatedto this obsenable. We nd that location, dynamicsand relative heighs
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Figure 5.8: The coupling matrix elemeris are red dots (and scaledby 1/4 to t), the interaction
matrix elemerns are black dots. Left plot: M j.y.n.1 , middle plot: M j.4y:n1 + M 3.u:n:1/2, right
plot: M j.u:n1 M 3.un:1/2 + 2M 5.4:n.1. All valuesare calculated for U=J = 10, Ng = 6 and
Np = 7=6.

agreevery well for statesin the Ml phase,as Fig. 5.9 shaws for U=J = 20. For
super uid states, howewer, the relative height of excitations changesdrastically
while the location and dynamicsremain remarkably similar.

We also nd that the location of changesin the interferencefringe pattern
correspnds both to the number variance and the added energyin the MI phase
and transition phase,seee.g. Fig. 5.10. Their relative heigh, howewer, varies
considerably This is partly due to the relative simplicity of our indicator of in-
terference pattern change- asin Chapter 4, we track the heigh of the certral
interferencepeak. This is related, but not idertical to the FWHM aslong asthe
peak stays roughly Gaussianand the momenum spreadis only moderate. For
high-momenum processesud asthe four-photon processat ! =2, the strength of
the system perturbation could be underestimated. The fact that the resonances
other than the main peakat! U shawv up soweakly in comparisonto results for
the added energy and number variance thus supports the assumptionthat these
resonance®ccur for coupling to higher momenum states.

As discussedecerly [76, 113, the correspndencebetweenvarianceand inter-
ferencepattern should break down at somepoint of the gradual transition, inde-
penden of all numerical considerations.This conbination of agreemen in the Mi
phasewith increasingbreakdavn asthe transition to the SF phaseis approathed
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Figure 5.9: The lefthand plot shows the mean valuesof the added energy and number variance
over time for U=J = 20and N, = 1;Ns = 6. Note that the yl-axis and the y2-axis do not usethe
samescale. The righthand plots show cortour plots of the dynamics of the added energy (top)
and the number variance (bottom) for the samecon guration asin the left plot.

could conceiably be usedas an indicator for how closethe systemis to the phase
transition. At the very least, when the numerical dynamics and the interference
pattern dynamicsagree the systemis certainly not in the SF phase. We will discuss
this possibility for future work further in Chapter 7.

We have seerthat the location of excitationsvisible in the number variance(and
to somedegreen the related obsenables)mirrors the static energyspectrum closely
ewven for super uid systems. This is encouragingwith respect to the usefulnessof
the number variancefor tracking the phasetransition. The important aspect here
is not the focus on how the number variance changeswith respect to the phase
transition, but rather to usethe location of the excitationsin the number variance
asa closepicture of the energyspectrum. The energyspectrum, though, e ectively
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Figure 5.10: The blue diamonds are mean valuesof the number variance, the red squaresshow
the height of the interferencepeak. The left plot shows results for U=J = 10,Ns = 6 and N, = 1,
the right plot shows results for U=J = 20,Ns = 6 and N, = 1.

descritesthe eigenstatef the systemand canthus be usedto determinethe phase
of the system. This approad is really only viable for the preciseresonancesaused
by Braggspectroscopy. As Fig. 5.11shovsfor U=J = 0:1 10,aresonancestructure
remains clearly visible even for U < J. This illustrates one of the advantages of
Bragg spectroscoy over other methods sud as the application of a static force
- the resonancesat small U=J are no longer obscuredby Bloch oscillations and
various other e ects.
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Figure 5.11: From top to bottom: the left plot shaws contour plots of the number variance for
uU=J =0.1, 0.2,0.3,0.4,0.5, 0.6, 0.7, 0.8, 0.9, and 1. The right plot shows contour plots of the
number variancefor U=J = 1, 2, 3,4,5,6,7,8,9,and 10, Ns = 6 and N, = 1. The perturbation
strength is F = 0:1in all cases.The oscillatory structure is causedby the time dependencyof J
and U.
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Unfortunately, discerningthe ertire excitational spectrum and thus the under-
lying energystructure is far from trivial. Consequetly, we will now explorewhich
speci ¢ aspectsmight be usefulwithout needingto considerthe details of the ertire
resonanceegion.

One possibility is the strength of excitations in the number variance. Progress
towards the M|l phaseappearsto be re ected in the ratio of peakto the starting
value of the number variance (and energyanalogously). As shown in the left plot
in Fig. 5.12, peaksat the resonam energygrow progressiely more pronounced.
This e ect is even clearer when comparing it with the baselevel of the number
varianceV for no perturbation asin the right subplot in Fig. 5.12by plotting

_ Max(V) Min(V) .

max;min — Min(V) (5.22)
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Figure 5.12: The left plot shows the mean value of the number variance for U=J=0.1 - blue, 1
- red, 5 - green, 10 - black, 30 - cyan, 40 - magerta. Noticable is also the shift in the resonance
location which is due to the changeof energygapswith shifting U. The right plot shovs max:min
for U=J=0.1-40. All valuesare for Ns = 6 and N, = 1.

Another possibility for tracking the progressfrom super uid to Mott insulator
is via the distance between peaks. The more squeezedhe system, the cleareris

the "mirror' of the main resonanceof the rst band at half the energy seee.g. Fig.
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5.13. This hasthe addedadvantage that it shouldbe apparert independen of the
exact structure within the band.

5.5 Summary

We have seenthat Bragg spectroscopy o ers a very preciseinstrument to study
the energyspectrum of a system. We nd that resonancesn the number variance
correspnd very well to the static energystructure, indicating that this might be
a useful experimertal obsenable. We also nd a number of additional e ects that
could be of usein tracking the phaseof the system. Quartifying thesevariables
will be the subject of future work and we shall discussthis further in Chapter 7.
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Chapter 6

Oscilla tions - Bloch, hopping
and beyond

While we were interestedin the useof a static eld simply asa tool to study the
energy gap of a Mott insulator in Chapter 4, the application of this static force
can also produce interesting e ects in its own right. One of thesee ects is a rich
structure of oscillations over time both in the number variance and in the added
energy

In this chapter, wewill rst discusshe varioustheoretical causedor oscillations,
then review someof the experimertal work doneon the subject and nally presen
our results.

6.1 Theory

The problem of atoms in a periodic eld and a static eld is closelyrelated to a
more generalstudy of particlesin a periodic lattice under the in uence of a static
eld. This systemhasbeenextensi\ely studied over the last decadeq§114,115 11§
in the guiseof the Wannier-Stark system. It was shown that theseso called Bloch
particles can exhibit periodic motion, i.e. Bloch oscillations, with a Bloch period
of

Tg = 2 =dF (6.1)

63
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where d is the distance between sites (i.e. the lattice periodicity) and F is the
static forcein the single particle Wannier-Stark Hamiltonian

Bws = %+ V(x) Fx; V(x+L)=V(X): (6.2)

In experimertal settings,the potertial V (x) usually takesthe form of a periodic
cosinewave, i.e. V(x) = V,cog(k_x) wherek, = 2 =d.

This is a rather courter-intuitiv e result that was debated for years (seee.g.
Ref. [117, 118) - after all, the classicalresponseto a static force sud as gravity
does not usually involve oscillations. In order to understand the dynamics, it is
helpful to rst considerthe eigenstatesof the system. From an arbitrary eigen-
state of Hys, i.e. Hws o= Eg o, Onecan construct a whole ladder of eigenstates
with eigervaluesg, = Eq + |dF by atranslation of  over | periods of the lattice
constart d (assuminga simple single-bandsystem). The resulting Wannier-Stark
(WS) eigenstatesarethe resonancestatesof the systemand are collectively know as
Wannier-Stark ladders[119]. Any superposition of theseWS statesthen shows os-
cillatory behaviour with a Bloch period. Theseoscillationsare e ectiv ely causedby
Bragg scattering. On average,the Bloch particles do follow the static acceleration
and travel "'dowvn' the lattice. During that motion along the lattice, they scatter
badk and forth o the lattice asin standard Bragg theory where we get interfer-
encefor n = 2dsin . The calculation of the WS ladder, esgecially for interacting
particles and in higher dimensions,has proven to be non trivial [120, 121, 127.
Part of the reasonfor this is that, for more than one band, the deca of the WS
stateshasto be takeninto accoun. Again, the exactform of this decg is system
dependent, but can be estimated using the formalism of Landau-Zenertunneling
[123,116].

Bloch oscillations can also be studied from an atom optical view point [123.
This includes the assumptionthat we can think of the eigenstatesof the static
systemas particle-like', i.e. tight-binding and non-interacting.

The Sdiredinger equation for the single particle Hamiltonian of Eq. (6.2) is
given by
X X

(p;t) + . (p+lkg; )+ 1 (p Ikg;t) (6.3)
! |

@@t _ (p+FY? 1
@ 2M 2

wherethe couplingconstaris | and | dependon the exactnature of the potential
V and k, = 2 =dis the border of the rst Brillouin zone.
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The analogueto the Wannier-Stark ladder in momertum terms are the discrete
states ,(t) = (po + nkg;t) wheren No. The dynamic equation for these
discrete statesis

0 1 0 10 1

=
=
=
N
w
=

i—@ 0 _ 1 0 1 2 0 (6.)
@ 1 > 1 1 1 1
2 3 2 1 2 2

where , = (pp+ nNkg + Ft)2=2M) + o=(2). Any two ladder states ,, .. are
then coupledby the 2 2 matrix

i@@n _ n I n . .
'@n+| - ’ (65)
) | n+l n+l

Resonancedetween statesn and n + | occur at a time t, where the di erence
betweenthe diagonal elemerts is small, i.e. for

ko

1
N+l ”:V é(2n+|)k0,+ pot Ft ! O (6.6)

In other words, we expect a transition whenthe initial momerium py haschanged
to a multiple of ky=2, i.e.

po+ Ft= Kko(n+ 1=2) (6.7)

which brings us bad to the condition of Bragg scattering discussedearlier. This
resonancecondition is equivalert to the kinetic energyof the particle, p?>=2M , being
equalto the spacingbetweenthe discreteladder states. As suggestedoy [123], we
assumethat at the time t,,+, for which n+1 ! 0 all o-diagonal matrix
elemelts other than | are suppressed.

For a Landau-Zenertransition, the probability that a particle will stay in its
initial state is approximately [123]

j i

k= o

Pstay (I ) = eXp
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The probabilities for various transitions thus depend on the matrix elemens .
For a sinusoidal poterntial and in the non-interacting approximation, we should
only nd the simple Bloch oscillation occurring between o and ; with a period
of tg = 2 =Fd. For a more complex potential and/or for non-zerointeractions,
howewer, there are some | 6 0 for | 6 0 sothat higher order Bloch oscillations
may occur.

In the speci ¢ caseof optical lattices in the Mott regime, neither the Wannier-
Stark picture nor the atom optical approad aloneare su cient astheseare single
particle models. The e ect of interactions on Bloch oscillations has been studied
in [124. The author nds that there is an additional period with

Tadd =2 =U: (69)

This result is only valid for a strong- eld condition as the derivation makes the
assumptionthat the systemis su ciently squeezedhat Fock statescanbe usedas
eigenstatesof the system. The exactdependencyon the interaction, including weak
values, is complex and not yet clearly understood [122]. One approad [94] is to
study the quasienergyspectrum of the interacting Hamiltonian including the static
eld, analogousto the study of WS resonances.The author of that paper nds
that the quasienergystatesin a restricted basis,and with thesethe periodicity of
oscillations, depend on the detuning of interaction with respect to the static force

= (U dF)=J. Theseoscillations are on a much longer time scalethan the
‘normal’ Bloch oscillations. We will seethat we nd periodicities that alsodepend
onthe detuning of the systemfrom resonancesAs [94] doesnot further quartify
the dependenceof their results, further comparisonsare di cult to make.

We interpret thesedetuning resonancessfollows. Bloch oscillationsare caused
by the dynamical ewlution of ground state particles along the lattice where the
ground state is closeto the j111:::1i Fock state. At the resonancesthe system
can readh a state where it is predominartly in the Fock eigenstateof the tilted
system. Oncea large part of the systemis in the tilted ground state, howewer, we
should nd additional Bloch oscillationswith a periodicity of

Tres= 2 9Fd  Ejesonancd: (6.10)

Theseoscillationsshould give us an idea of the exact location of resonancesswell
asthe strength of the resonancesvhen comparedto the original Bloch oscillations.
For easeof distinction, we will refer to the Bloch oscillationswith a detuned peri-
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odicity asresonanceBloch oscillationsand call the normal Bloch oscillationsorigin
Bloch oscillations.

In the super uid phase,i.e. for a very weak lattice, the systemis more akin
to onelarge condensate.Consequetly, we expectto nd either oscillationsat the
tunneling frequencyor collective oscillations causedby exciting the system. These
oscillations can take a variety of forms and are highly dependen on the exact
systemcharacteristics[106 109 111 125 126,127].

6.2 Experiment

Bloch oscillations have beenobsened in a wide range of experimertal conditions -
their rst realization was in semiconductorsuperlattices [128]. In optical lattices,
Bloch oscillations (and the correspnding Wannier-Stark ladders) were rst ob-
sened under the in uence of gravity [129 13(. Later experimerts createda static
force in the optical lattice con guration by using a tunable frequencydi erence
betweenthe two (or more) courterpropagating wavesthat form the standing laser
wave [131]].

This frequencydi erence is created by an upshift of the left laser wave (with
wavelength ) by  and a downshift of the right laserwave by an equalamourt.
The two wavesare then Doppler shifted into the samefrequencywhenregardedin
a referencerame moving to the right at a velocity v = . The periodic potertial
is constart in this frame. A linear increaseof  overtime t; from Oto ,4 then
producesan uniformly acceleratedpotential with an accelerationproportional to
d( )=d = constduring time t, [137.

The reasonfor the large time lag betweenthe theoretical conceptionof Bloch
oscillations in 1928 [133 to their experimertal realization in 1992 [128] lies in
the dependency of the Bloch period on the force F and the lattice constart d
with Tz = 2 =dF. In the solid-state electron systemsfor which the problem was
initially formulated, forcesstrong enoughthat the Bloch time wassmallerthan the
relaxation time causedsigni cant scattering by impurities, electron-phononand
phonon-phononinteractions so that Bloch oscillations were no longer obsenable.
Semiconductorsuperlattices that were fabricated by epitaxial growth of GaAs and
GaAlAs, in cortrast, had periodic potertials whoseperiod d was two orders of
magnitude larger than those of bulk semiconductorsso that it was possiblefor
the Bloch time, thus reducedby two orders of magnitude, to be smallerthan the
relaxation time.
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Part of the attraction of using optical lattices to nd Bloch oscillationswasthe
absenceof disturbancesby scattering of phononsor lattice impurities, excitonic
e ects and more. Another advantage is the easeof tuning the accelerationto
speci c values. A common experimertal procedure[130, 59 usesan adiabatic
switch-on of the static optical lattices after the atoms have beencooled (e.g. by
stimulated Raman cooling). This adiabaticity hasthe advantage of transfering the
initial momertum spreadinto a spreadof the lattice quasi-mometum. The optical
potential is then acceleratedover atime t,. Both the accelerationand the standing
optical potertial are nally switched o abruptly sothat a measuremen of the
atomic momertum distribution of the freeatomscanbetakenasinstantaneouslyas
possible. Comparingthe atomic momertum distribution for a rangeof acceleration
times t, then shows the oscillating wave padets.

6.3 Numerics

As in Chapter 4, we take the eigenstatesof the BHM Hamiltonian (Eq. (2.17))
(calculated by exact diagonalizationof the static Hamiltonian) asour initial states
and then instantly switch on the perturbation sothat the dynamic Hamiltonian is

X X 1 X
Han:= 3 g+ e+ U aafas (6.11)

hi;j i [ i
where | = (W )U,ie. ;= (W DU, ,= W 2Uand y = 0U. We
then solve the Hamiltonian exactly usinga fth order Runge-Kutta approad [87].
While experimertal setupsusually study the changein the momertum distribution,
we will focuson the number variance. We will nd that it correspndswell both to
the energyaddedto the systemand to the changesin the momertum distribution
(in the form of the interferencepattern). In cortrast to the interferencepattern, it
is signi cantly more e cient to calculate numerically due to its locality.

The wave function resulting from the dynamical approad is sampledat regular
time intervals (typically with an interval length of 0.000E&J). The number variance
V is then calculated from this wave function (V= hNn;)%  m;i2 wheren; is the
number operator for sitei.)
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Figure 6.1: These plots show the dynamics of the number variance for a range of values for
U=J, Ngs and N,. Top plot: U=J = 10, Ns = 6 and Np = 1, secondplot: U=J = 10, Ns = 6,
Np = 7=6, third plot: U=J = 20, Ns = 4, N, = 2, bottom plot: U=J = 50, Ns = 6, Np = 1.
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The resulting dynamics of number variance, energy (and interferencepattern,
for comparisonpurposes)shawv clearoscillatory structuresascanbe seenin Fig. 6.1
for the number variance. For a comparisonbetween number variance and added
energy seeFigs. 4.9, 4.10, 6.2 and 6.3. In order to be able to interpret these
oscillations, we usea fast fourier transformation - the t routine of Matlab 6.1- to
extract the oscillation frequenciesrom the number variance.

6.4 Results

A plot of the dynamicsof a very super uid systemwith U = 0:001andJ = 1 (see
Fig. 6.2) shaws a very small responsewith the periodicity of the tunneling time,
3 = 2 =J. Fourier analysisfor the number variance givesinteger multiples of the
tunneling frequency ; = 1= ;. As expected,the strength of the resppnsedepends
on the strength of the perturbation and doesnot shov any evidenceof an energy
gap. Instead, there is a gradual increasewith increasedforce. The lack of Bloch
oscillationsis due to our choice of systemparameters. As the interaction constan
U dependson the lattice height, a very small value for U will imply a very shallov
lattice. For a deeplattice with vanishing s-wave scattering length a5, howewer, we
would expect to seeBloch oscillationssimilar to thoseof Bloch electronsin crystals.
In this thesis,we will focus on more strongly interacting systems.

Even a very moderate amourt of squeezing,e.g. U=J = 1, causesa drastic
change (seeFig. 6.2). Instead of the smaoth oscillations for the very super uid
systemwith U = 0:00LJ = 1, we now nd a dependencyon the force that is
related to the eigervalue spectrum (seee.g. Fig. 4.3) and clear Bloch oscillations
with the Bloch period of appraximately 2 =dF, seeFig. 6.3.

Interestingly, we also nd signs of oscillationsat 2 g. This is likely due to
the fact that the systemis still only very moderately squeezed. The transition
probability betweenladder statesis thus relatively high sothat higher order Bloch
oscillations are viable. TheseBloch oscillationsat 2 g and higher frequenciesare
probably a sign of oscillating between sites that are not immediate neighbours,
analogousto the hopping we sav in Chapter 2. It is instructive to think of non-
adjacen lattice sites as lattices with a larger lattice constart. For example, we
considernext nearestneighbour hopping for a lattice with lattice constart 2d. The
concomitart Bloch oscillationsclearly occurat g = Fd®2 = Fd= = 2 3. The
lattice site at d*=2 = d canthen be treated asa perturbation that hasthe e ect of
reducing the tunneling probability betweensitesat x and at x + d°
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Figure 6.2: The top plots show the dynamics of the number variance and the added energy for
U=J = 0:001. The bottom plots showv number variance and added energyfor U=J = 1. All values
are calculated for Ns = 6 and N, = 1.

The “normal' Bloch oscillations are far stronger than the higher order ones,
howewer. Interestingly, we also nd a dependenceof the strength of the Bloch
oscillations on the strength of the excitations in the number variance. This can
be understood by taking into accoun that the Bloch oscillationsare really a phe-
nomenonof a non-interacting systemsud asthe original Bloch electronsin crystals
which could successfullybe descrited in a single-particlemodel. With the increase
of localizing interactions, tunneling is increasinglylesslikely and Bloch oscillations
are weak. We will seethat this weakening of the oscillationsis still visible when
increasingthe ratio U=J, seee.qg. Fig. 6.5wherethe Bloch oscillation has all but
disappearedfor U=J = 20. When the number varianceshaws excitations, howe\er,
that implies that atoms are lesslocalized and thus more likely to Bloch oscillate.
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In other words, the strength of the Bloch oscillation is also an indicator of the
strength of the changein the number variance. A closerstudy of the frequencies

Number variance for U/J=1, N S=6, Np=1 Added energy for U/J=1, N S:6, Np=l
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Figure 6.3: Theseplots show the oscillation frequenciesof the number variance (left) and added
energy (right) for U=J = 1 and N, = 1;Ns = 6. The magerta lines represert Bloch oscillations
at the frequencies g and 2 g.

for a squeezedsystem (e.g. U=J = 20, seeFig. 6.4) shavs a number of addi-
tional featuresto the Bloch oscillation g. As we can seein the left plot of Fig.
6.4, the predicted additional frequencies i,y = 22 of [124 are indeed visible (red
lines). We also nd multiples of ., i.e. 2 iy and 3 j,;. Of special interest here,
though, are the resonanceBloch oscillation frequenciesthat we discussedearlier.
Theseoscillations appear to be dependert on the detuning of the applied force
from a resonance.For example,for the resonanceat U, we nd a dependencyon

= j(Eqx  U)j. Theseoscillations have the sameslope as the Bloch oscillation
originating from OU, i.e. = (Fd U)=(2 ). Both resonanceand origin oscilla-
tions aretracedin the right-hand plot with white lines. One possibleinterpretation
of theseresonanceBloch oscillationsis to considerthem in terms of origin Bloch
oscillations of the tilted lattice. The symmetry of these oscillations around their
point of origin is in good accordancewith this possibility. In this interpretation,
we assumethat the resonanceexcitation is strong enoughthat the eigenstatesof
the tilted lattice are populated signi cantly.
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Similar to our resultsfor the Bloch oscillationsfor U=J = 1 (Fig. 6.3), we again
seehigher order oscillations at double the frequencyi.e. 3 = 2 . This is true
ewven for the non-origin frequencies. This can be understaod by using the Bragg
re ection interpretation. According to the Bragg criterion, re ection is possible
preciselythen whenthe distancebetweenre ection points is an integer multiple of
the wavelength.

It is alsointerestingto note that, in cortrast to U=J = 1, the origin Bloch oscil-
lation is no longerthe strongestfrequencyin the system. Instead, as we predicted
earlier, the resonanceBloch oscillation for Eg = U grows progressiely stronger
in cortrast to the other e ects with the increaseof U=J. Fig. 6.5 shaows this for
U=J = 1and U=J = 20.
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Figure 6.4: Both plots show a contour plot of the t spectrum for the dynamics of the number
variance over time for U=J = 20, Ns = 6 and N, = 1. In the left plot, interaction frequencies
( = U=2 ) aredrawn in red lines. In the right plot, origin and Bloch oscillations are shown in

white lines. Note that the spectrum strength is depicted on a log scale.

Sofar, we have discussedesults for integer lling (i.e. N, 2 N). Even though
the energyeigensgctrum changesfor non-integer lling, the oscillationswe obsene
fall in the samecategoriesas those already discussedabove: there is the interac-
tion frequency i, = zi the origin Bloch frequency g and the resonanceBloch
frequency g.es. Frequenciedor non-integer lling dier in the relative importance
of oscillations, though. This is a direct consequencef the results we found in
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Figure 6.5: These plots show the frequency spectrum for U=J = 1 (left plot) and U=J = 20
(right plot) for N, = 1 and Ns = 6. Origin Bloch oscillations are marked with white lines,
resonanceoscillations with yellow lines.

Chapter 4 (seee.g. Fig. 4.6): dueto the “extra' atoms, higher order processese.g.
hopping at the resonanceEy; = 2U becomemuch more likely. Consequetly, the
Bloch oscillations of those resonancegplay a more prominert role in the Fourier
analysisspectrum.

The greater strength of resonanceBloch oscillations also allows us to distin-
guish between the various cortributions at Egze U from the energy band. In
an in nite lattice, the energy valuesfor statesin one band are degenerate- i.e.
Bloch oscillations should occur at exactly Eq = U. In a nite lattice, howeer,
the band will have a nite non-zerowidth. For example, for an applied energy
di erence betweensitesEy;: U, resonanceexcitations could involve the creation
of particle-hole pairs at site 5 and 6, i.e. 111102 ::i aswell as particle-hole pairs
at 1 and 2, 3 and 4 and 5 and 6 (j020202). Due to the nite lattice size which
is expressedn a nite band width, these have di erent energiesand resonances
thus occur for slightly di erent Ey; . The spreadof resonan frequenciesaround,
for example,Eg = U canthen be usedasan indicator on the band width.

We found in Chapter 4 that non-integer lling for nite systemshassomewhat
di erent featuresto thosepredicted by the in nite lattice phasediagramasin Fig.
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3.1. In aninnite lattice, the non-compressibiliy of the MI phaseimplies that a
non-integer lling will leadto a super uid ground state. Finite systems,howe\er,
are characterizedby a gradual phasetransition rather than a sharp switch between
SF phaseand MI phase. Consequetly, there can be states with simultaneous
o -diagonal and diagonal long range order that shov MI characteristics sud as
evidenceof an energygap, but are no longer non-compressibleand also posses$SF
characteristics.

TheseSF phasecharacteristicscan manifestthemselesin the relative strength
of origin Bloch oscillationsto the resonanceBloch oscillations at multiples of the
interaction energyU. This canbe understood by reminding oneselfof the fact that
the origin Bloch oscillationswere originally a phenomenonof electronsin a crystal
that could approximately be treated as a non-interacting system. The eigenstates
of these so-calledBloch electronsare delocalized acrossthe ertire lattice. In an
optical lattice, this is equivalert to the SF phasewhere bosonsare delocalized
acrossthe lattice. The resonanceBloch oscillationsat Ey;  nU are solely an Ml
phenomenonas they imply that there is an energygap causedby the (repulsive)
interactions of the bosons. Consequetly, we should nd that the ratio of the
strength of origin Bloch oscillationsto resonanceBloch oscillationsgrows larger as
we approad the phasetransition. For the SF phase,resonanceBloch oscillations
should have vanishedertirely.

Our results support this argument. We nd that a comparisonof the frequency
spectrum for U=J = 1 and U=J = 20 (seeFig. 6.5) shows a clear changein the
prominenceof origin Bloch oscillations and resonanceBloch oscillations.

Fig. 6.6 alsoshaws results that agreewell with this theory. For a dependence
of the ratio of resonanceto origin Bloch oscillations on the phaseof the system,
this makes senseas adding a non-integer lling is analogousto lowering U=J save
that we nd the sameU dependen oscillations. In other words, nding the same
e ect for changing U=J asfor changing N, is a strong indication that this ratio is
indeeddepender on the phaseof the system.

6.5 Summary

We have beenable to con rm Bloch oscillations with the Bloch frequency g =
dF=(2 ) aswell as oscillationswith frequency i, = U=(2 ). In addition to this,
we nd so-calledresonanceBloch oscillations with frequenciesthat appear to be
dependert on the detuning from aresonan force. We give a possibleinterpretation
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of this e ect and note that the relative strength of original Bloch oscillations to
resonanceBloch oscillations could be useful as an indicator of the phaseof the
system.
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Figure 6.6: The left two plots show the frequency spectrum for Ns = 6;N, = 1 and U=J = 10
(top) and Ns = 6; N, = 7=6 and U=J = 10 (bottom). The right two plots show the samevalues

in a contour plot. The magerta line indicates the origin Bloch oscillation.



Chapter 7

Possible directions for future
work

In this chapter we will discussprospects for future work and draw some nal
conclusionswith regardto this thesis.

7.1 Comparison of local and global variables

One of the challengesin detecting the SF-MI phasetransition is the appropriate
choice of obsenable. It seemghat none of the currently usedexperimertal meth-
ods can accurately pinpoint the areaof transition due to various limitations. The
main characteristic of the phasetransition is the changefrom delocalization (SF)

to localization (MI). It might therefore be pro table to explore the relationship
betweenthe number variance(local variable) and the phasecoherenceglobal vari-

able) further. We are esgecially interestedin the possibility of studying the phase
transition by tracking the relation betweenboth variables. In principle, agreemen
should be best in the transition phasewhere the systemshavs both SF and Mi

characteristics simultaneously At the sametime, depending on the trapping po-
tential, it hasbeensuggestedhat no global phaseswill form at all, but that we see
domainsof MI phases,SF phasesand mixed phases.As the number varianceis a
local variable, its dynamicsare dependen on the scaleof the excitations. We thus
feelthat the dynamic excitational spectrum of the number variance could provide
us with an idea of the extert of the domains.

78
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We would like to use a variety of approadies. For one, we are interested in
studying a numerical model where small clustersare linked by somede ned cross-
ing betweenthem. This would entail adding the possibility of lossto the system
conditions. One idea might be to usea mixture of mean- eld and exact modelling
sothat any cluster ‘seesa mean- eld basin into which lossestake place. The dy-
namicsinside the cluster, though, would be treated with an exact model asin this
thesis.

An alternative approad might be to explore further simulation methods sut
asthe time-dependent density-matrix renormalization-grouptechnique [134. This
method incorporates a block-decimation technique while still retaining ertangle-
mernt betweenblocks (dependern onthe dimension)and could consequetly beideal
to study the patterned lattice that we are interestedin.

Thirdly, there hasbeensomework doneon the possibility of a reduction of the
lattice basisto lower computational cost of exact calculations. We would like to
explorewhether a basiscould be dynamically adoptedto systemparameters.

7.2 Dynamic excitations

In Chapter 5, we found that there are particular states for which resonanceex-
citation was possible. We suggestthat it might be worth taking the idea of the
symmetriesand anti-symmetries in the number state basisfurther and usethis to
gain a better understanding of the nature of the excitational spectrum. This is
motivated by the fact that when the wave function is likely to be in the ewenly
distributed state jn:::ni wheren = N,, it hasa high probability of beingin the
MI phase. In the delocalized SF phase,in cortrast, we expect to nd the wave
function spreadout over the number state basis, i.e. the occurrenceof antisym-
metric coe cien ts in the ground state and relevant excited statesrisessigni cantly.
With antisymmetric coe cien ts, we referto the wave function amplitudes of states
that are the sameapart from permutation (such asj20:::i andj02:::i) and thus
have idertical probability p, but whosevaluesin the wave function have opposite
signs, i.g. P p and P p. In other words, when the wave function can be written
as = ;G i, Giseitherequalto G orequalto C; when ; and ; aresimilar
apart from permutation.

This anti-symmetry can obviously not occur for the Fock state jn:::ni. Conse-
quertly, asthe overlap betweenstatesdoesdepend on symmetry or anti-symmetry
(as we shawved for two wells in Chapter 5), the makeup of the ground state with
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respect to localization or delocalization shouldbe re ected in the excitational spec-
trum and we feelthat the extert of this connectionmight be interesting.

7.3 Understanding the behaviour of resonance
Blo ch oscillations

We have found resonanceBloch oscillations that are dependert on the validity
of a localized MI phasestate. We would like to explore their sensitivity to the
phasetransition more extensiwely. This could also entail further study of their
characteristics closeto the resonanceas we nd evidenceof deviation from the
linear Bloch oscillation slope there.

7.4 Extensions of the Bose-Hubbard model

We are alsointerestedin what would happenif we relaxedsomeof the fundamenal
assumptionson which the theory of Ml - SF phasetransitions in optical lattices
is based. The Bose-Hubbardmodel on which we have basedall of the work in
this thesisincorporates a number of important appraximations. One of them is
the limitation of interaction to on-site, zero-rangescattering. With the possibil-
ity of tuning interaction coe cien ts to a wide range experimertally by exploiting
Festbad resonance$135, it might be very interesting to look at a modi ed BHM
where the interaction rangeis assumedto be of the order of the lattice constart.
This should dramatically changesomeof the most characteristic properties of the
BHM.

7.5 Concluding remarks - main ndings of the
thesis

In this thesis, we have used an exact model to study the dynamics of various
obsenablesaround the SF-MI phasetransition. We have found that the number
varianceis a very good indicator of systemdynamicsin the Ml phaseand leading
up to the phasetransition and suggestthat it could well be of useexperimenrtally,
especially in conjunction with the obsenation of global obsenables sud as the
interferencepattern.
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We have found a number of new e ects that are indicative of the systemphase.
In particular, we seeresonancest fractions of the expectedvaluesin the particle-
hole picture for both static and dynamic excitations. Thesefractions are of special
interest, becausewe may be able to usethem to study relative values of experi-
mertal obsenables,e.g. the ratio of the main resonancepeak at U to a peak at
U=2. Potentially of mostsigni canceis the obsenation of Bloch oscillationsfor the
resonanceenergies. In consequencethey could sene as a direct indicator of the
energyspectrum. This is especially interesting as they are not a local e ect and
can occur for delocalized states as well. That meansthat the onset of resonance
Bloch oscillations should be a sensitive measureof the phasetransition.



Appendix A

Runge-Kutt a numerical
appr oximation

The Runge-Kutta (RK) method is basedon the Euler method in which small

incremerts are addedto a function correspnding to derivatives (i.e. right-hand

sidesof the equations)multiplied by stepsizes.When solvinga di erential equation
by useof an RK method, onethen propagatesthe solution by making a number of

Euler-style stepsand then using the information obtained to match a Taylor series
expansionup to somehigher order. Further details of this method can be found in

[87].

For the numerical simulations carried out for the work in this thesis, we have
madeuseof the fth-order RK method. The fth order correspndsto the number
of Euler-style stepscarried out within the routing. Thus, if the time derivative of
our wavefunction is given by

i%: L (A.1)

the propagationfrom t to t + t is carried out by calculating [87]

k1 = idti (A.2)

k2 = idt®( + 0:2k1) (A.3)
. 9 3

k3 = idtB( + 20k2+ 25kD) (A.4)
. 6 9 3

k4 = idtB( + K3 ok2+ 1okD) (A.5)
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ks = idtB( + S7k4  5ok3+ Sk2 k1) (A.6)
k6 = if; ;b( +£€9i’6k5+ fl“ozggm %}3 (A7)
+ 5—12k2+ @éd)
(t+dt) = + 33—778k1+ 0k2 + %k3+ %Zk4+ #kG; (A.8)

wheredt is a (small) timestep. The numerical coe cien ts are so-calledCash-Karp
parameters[87)].

In order to cortrol the numerical error, we use this fth order RK method
in conjunction with an adaptive stepsizecortrol. This method controls the size
of incremerns to the wave function - in rough terms, that meansthat more
rapid changesin the wave function correspnds to smaller time steps. One of
the advantagesof the fth order Runge-Kutta method set out above is the fact
that another combination of the six valuesof k givesa fourth-order Runge-Kutta
formula. This is known as an emtedded method. The comparisonof the result of
the enbeddedfourth-order formula with that of the fth order method can then
be usedas an estimate of the truncation error.

This allows us to set an upper limit for the truncation error and, if that limit
is breaded, to lower the sizeof the timestep adaptively.
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